1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
|
try:
from threading import Lock
except ImportError:
from dummy_threading import Lock
from libc.string cimport memcpy
from cpython.pycapsule cimport PyCapsule_New
import numpy as np
cimport numpy as np
from .common cimport *
from .distributions cimport bitgen_t
from .entropy import random_entropy, seed_by_array
__all__ = ['Xoshiro512']
np.import_array()
cdef extern from "src/xoshiro512/xoshiro512.h":
struct s_xoshiro512_state:
uint64_t s[8]
int has_uint32
uint32_t uinteger
ctypedef s_xoshiro512_state xoshiro512_state
uint64_t xoshiro512_next64(xoshiro512_state *state) nogil
uint32_t xoshiro512_next32(xoshiro512_state *state) nogil
void xoshiro512_jump(xoshiro512_state *state)
cdef uint64_t xoshiro512_uint64(void* st) nogil:
return xoshiro512_next64(<xoshiro512_state *>st)
cdef uint32_t xoshiro512_uint32(void *st) nogil:
return xoshiro512_next32(<xoshiro512_state *> st)
cdef double xoshiro512_double(void* st) nogil:
return uint64_to_double(xoshiro512_next64(<xoshiro512_state *>st))
cdef class Xoshiro512:
"""
Xoshiro512(seed=None)
Container for the xoshiro512** pseudo-random number generator.
Parameters
----------
seed : {None, int, array_like}, optional
Random seed initializing the pseudo-random number generator.
Can be an integer in [0, 2**64-1], array of integers in [0, 2**64-1]
or ``None`` (the default). If `seed` is ``None``, then data is read
from ``/dev/urandom`` (or the Windows analog) if available. If
unavailable, a hash of the time and process ID is used.
Attributes
----------
lock: threading.Lock
Lock instance that is shared so that the same bit git generator can
be used in multiple Generators without corrupting the state. Code that
generates values from a bit generator should hold the bit generator's
lock.
Notes
-----
xoshiro512** is written by David Blackman and Sebastiano Vigna.
It is a 64-bit PRNG that uses a carefully constructed linear transformation.
This produces a fast PRNG with excellent statistical quality
[1]_. xoshiro512** has a period of :math:`2^{512} - 1`
and supports jumping the sequence in increments of :math:`2^{256}`,
which allows multiple non-overlapping subsequences to be generated.
``Xoshiro512`` provides a capsule containing function pointers that
produce doubles, and unsigned 32 and 64- bit integers. These are not
directly consumable in Python and must be consumed by a ``Generator``
or similar object that supports low-level access.
See ``Xorshift256`` for a related PRNG with a different period
(:math:`2^{256} - 1`) and jumped size (:math:`2^{128} - 1`).
**State and Seeding**
The ``Xoshiro512`` state vector consists of a 4 element array
of 64-bit unsigned integers.
``Xoshiro512`` is seeded using either a single 64-bit unsigned
integer or a vector of 64-bit unsigned integers. In either case, the seed
is used as an input for another simple random number generator, SplitMix64,
and the output of this PRNG function is used as the initial state. Using
a single 64-bit value for the seed can only initialize a small range of
the possible initial state values.
**Parallel Features**
``Xoshiro512`` can be used in parallel applications by calling the
method ``jumped`` which advances the state as-if :math:`2^{128}` random
numbers have been generated. This allows the original sequence to be split
so that distinct segments can be used in each worker process. All
generators should be chained to ensure that the segments come from the same
sequence.
>>> from numpy.random import Generator, Xoshiro512
>>> bit_generator = Xoshiro512(1234)
>>> rg = []
>>> for _ in range(10):
... rg.append(Generator(bit_generator))
... # Chain the BitGenerators
... bit_generator = bit_generator.jumped()
**Compatibility Guarantee**
``Xoshiro512`` makes a guarantee that a fixed seed will always
produce the same random integer stream.
Examples
--------
>>> from numpy.random import Generator, Xoshiro512
>>> rg = Generator(Xoshiro512(1234))
>>> rg.standard_normal()
0.123 # random
References
----------
.. [1] "xoroshiro+ / xorshift* / xorshift+ generators and the PRNG shootout",
http://xorshift.di.unimi.it/
"""
cdef xoshiro512_state rng_state
cdef bitgen_t _bitgen
cdef public object capsule
cdef object _ctypes
cdef object _cffi
cdef public object lock
def __init__(self, seed=None):
self.seed(seed)
self.lock = Lock()
self._bitgen.state = <void *>&self.rng_state
self._bitgen.next_uint64 = &xoshiro512_uint64
self._bitgen.next_uint32 = &xoshiro512_uint32
self._bitgen.next_double = &xoshiro512_double
self._bitgen.next_raw = &xoshiro512_uint64
self._ctypes = None
self._cffi = None
cdef const char *name = "BitGenerator"
self.capsule = PyCapsule_New(<void *>&self._bitgen, name, NULL)
# Pickling support:
def __getstate__(self):
return self.state
def __setstate__(self, state):
self.state = state
def __reduce__(self):
from ._pickle import __bit_generator_ctor
return __bit_generator_ctor, (self.state['bit_generator'],), self.state
cdef _reset_state_variables(self):
self.rng_state.has_uint32 = 0
self.rng_state.uinteger = 0
def random_raw(self, size=None, output=True):
"""
random_raw(self, size=None)
Return randoms as generated by the underlying BitGenerator
Parameters
----------
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
output : bool, optional
Output values. Used for performance testing since the generated
values are not returned.
Returns
-------
out : uint or ndarray
Drawn samples.
Notes
-----
This method directly exposes the the raw underlying pseudo-random
number generator. All values are returned as unsigned 64-bit
values irrespective of the number of bits produced by the PRNG.
See the class docstring for the number of bits returned.
"""
return random_raw(&self._bitgen, self.lock, size, output)
def _benchmark(self, Py_ssize_t cnt, method=u'uint64'):
return benchmark(&self._bitgen, self.lock, cnt, method)
def seed(self, seed=None):
"""
seed(seed=None)
Seed the generator.
This method is called at initialization. It can be called again to
re-seed the generator.
Parameters
----------
seed : {int, ndarray}, optional
Seed for PRNG. Can be a single 64 bit unsigned integer or an array
of 64 bit unsigned integers.
Raises
------
ValueError
If seed values are out of range for the PRNG.
"""
ub = 2 ** 64
if seed is None:
try:
state = random_entropy(16)
except RuntimeError:
state = random_entropy(16, 'fallback')
state = state.view(np.uint64)
else:
state = seed_by_array(seed, 8)
for i in range(8):
self.rng_state.s[i] = <uint64_t>int(state[i])
self._reset_state_variables()
cdef jump_inplace(self, np.npy_intp iter):
"""
Jump state in-place
Not part of public API
Parameters
----------
iter : integer, positive
Number of times to jump the state of the rng.
"""
cdef np.npy_intp i
for i in range(iter):
xoshiro512_jump(&self.rng_state)
self._reset_state_variables()
def jumped(self, np.npy_intp iter=1):
"""
jumped(iter=1)
Returns a new bit generator with the state jumped
The state of the returned big generator is jumped as-if
2**(256 * iter) random numbers have been generated.
Parameters
----------
iter : integer, positive
Number of times to jump the state of the bit generator returned
Returns
-------
bit_generator : Xoshiro512
New instance of generator jumped iter times
"""
cdef Xoshiro512 bit_generator
bit_generator = self.__class__()
bit_generator.state = self.state
bit_generator.jump_inplace(iter)
return bit_generator
@property
def state(self):
"""
Get or set the PRNG state
Returns
-------
state : dict
Dictionary containing the information required to describe the
state of the PRNG
"""
state = np.empty(8, dtype=np.uint64)
for i in range(8):
state[i] = self.rng_state.s[i]
return {'bit_generator': self.__class__.__name__,
's': state,
'has_uint32': self.rng_state.has_uint32,
'uinteger': self.rng_state.uinteger}
@state.setter
def state(self, value):
if not isinstance(value, dict):
raise TypeError('state must be a dict')
bitgen = value.get('bit_generator', '')
if bitgen != self.__class__.__name__:
raise ValueError('state must be for a {0} '
'PRNG'.format(self.__class__.__name__))
for i in range(8):
self.rng_state.s[i] = <uint64_t>value['s'][i]
self.rng_state.has_uint32 = value['has_uint32']
self.rng_state.uinteger = value['uinteger']
@property
def ctypes(self):
"""
ctypes interface
Returns
-------
interface : namedtuple
Named tuple containing ctypes wrapper
* state_address - Memory address of the state struct
* state - pointer to the state struct
* next_uint64 - function pointer to produce 64 bit integers
* next_uint32 - function pointer to produce 32 bit integers
* next_double - function pointer to produce doubles
* bitgen - pointer to the bit generator struct
"""
if self._ctypes is None:
self._ctypes = prepare_ctypes(&self._bitgen)
return self._ctypes
@property
def cffi(self):
"""
CFFI interface
Returns
-------
interface : namedtuple
Named tuple containing CFFI wrapper
* state_address - Memory address of the state struct
* state - pointer to the state struct
* next_uint64 - function pointer to produce 64 bit integers
* next_uint32 - function pointer to produce 32 bit integers
* next_double - function pointer to produce doubles
* bitgen - pointer to the bit generator struct
"""
if self._cffi is not None:
return self._cffi
self._cffi = prepare_cffi(&self._bitgen)
return self._cffi
|