summaryrefslogtreecommitdiff
path: root/numpy/testing/utils.py
blob: 23b8de1f78cb0cf3c12d9e073f742ed1738da0ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
"""
Utility function to facilitate testing.
"""

import os
import sys
import re
import operator
import types
from nosetester import import_nose

__all__ = ['assert_equal', 'assert_almost_equal','assert_approx_equal',
           'assert_array_equal', 'assert_array_less', 'assert_string_equal',
           'assert_array_almost_equal', 'assert_raises', 'build_err_msg',
           'decorate_methods', 'jiffies', 'memusage', 'print_assert_equal',
           'raises', 'rand', 'rundocs', 'runstring', 'verbose', 'measure',
           'assert_', 'assert_valid_refcount']

verbose = 0

def assert_(val, msg='') :
    """Assert that works in release mode."""
    if not val :
        raise AssertionError(msg)

def gisnan(x):
    """like isnan, but always raise an error if type not supported instead of
    returning a TypeError object.

    Notes
    -----
    isnan and other ufunc sometimes return a NotImplementedType object instead
    of raising any exception. This function is a wrapper to make sure an
    exception is always raised.

    This should be removed once this problem is solved at the Ufunc level."""
    from numpy.core import isnan
    st = isnan(x)
    if isinstance(st, types.NotImplementedType):
        raise TypeError("isnan not supported for this type")
    return st

def gisfinite(x):
    """like isfinite, but always raise an error if type not supported instead of
    returning a TypeError object.

    Notes
    -----
    isfinite and other ufunc sometimes return a NotImplementedType object instead
    of raising any exception. This function is a wrapper to make sure an
    exception is always raised.

    This should be removed once this problem is solved at the Ufunc level."""
    from numpy.core import isfinite
    st = isfinite(x)
    if isinstance(st, types.NotImplementedType):
        raise TypeError("isfinite not supported for this type")
    return st

def gisinf(x):
    """like isinf, but always raise an error if type not supported instead of
    returning a TypeError object.

    Notes
    -----
    isinf and other ufunc sometimes return a NotImplementedType object instead
    of raising any exception. This function is a wrapper to make sure an
    exception is always raised.

    This should be removed once this problem is solved at the Ufunc level."""
    from numpy.core import isinf
    st = isinf(x)
    if isinstance(st, types.NotImplementedType):
        raise TypeError("isinf not supported for this type")
    return st

def rand(*args):
    """Returns an array of random numbers with the given shape.

    This only uses the standard library, so it is useful for testing purposes.
    """
    import random
    from numpy.core import zeros, float64
    results = zeros(args, float64)
    f = results.flat
    for i in range(len(f)):
        f[i] = random.random()
    return results

if sys.platform[:5]=='linux':
    def jiffies(_proc_pid_stat = '/proc/%s/stat'%(os.getpid()),
                _load_time=[]):
        """ Return number of jiffies (1/100ths of a second) that this
    process has been scheduled in user mode. See man 5 proc. """
        import time
        if not _load_time:
            _load_time.append(time.time())
        try:
            f=open(_proc_pid_stat,'r')
            l = f.readline().split(' ')
            f.close()
            return int(l[13])
        except:
            return int(100*(time.time()-_load_time[0]))

    def memusage(_proc_pid_stat = '/proc/%s/stat'%(os.getpid())):
        """ Return virtual memory size in bytes of the running python.
        """
        try:
            f=open(_proc_pid_stat,'r')
            l = f.readline().split(' ')
            f.close()
            return int(l[22])
        except:
            return
else:
    # os.getpid is not in all platforms available.
    # Using time is safe but inaccurate, especially when process
    # was suspended or sleeping.
    def jiffies(_load_time=[]):
        """ Return number of jiffies (1/100ths of a second) that this
    process has been scheduled in user mode. [Emulation with time.time]. """
        import time
        if not _load_time:
            _load_time.append(time.time())
        return int(100*(time.time()-_load_time[0]))
    def memusage():
        """ Return memory usage of running python. [Not implemented]"""
        raise NotImplementedError

if os.name=='nt' and sys.version[:3] > '2.3':
    # Code "stolen" from enthought/debug/memusage.py
    def GetPerformanceAttributes(object, counter, instance = None,
                                 inum=-1, format = None, machine=None):
        # NOTE: Many counters require 2 samples to give accurate results,
        # including "% Processor Time" (as by definition, at any instant, a
        # thread's CPU usage is either 0 or 100).  To read counters like this,
        # you should copy this function, but keep the counter open, and call
        # CollectQueryData() each time you need to know.
        # See http://msdn.microsoft.com/library/en-us/dnperfmo/html/perfmonpt2.asp
        # My older explanation for this was that the "AddCounter" process forced
        # the CPU to 100%, but the above makes more sense :)
        import win32pdh
        if format is None: format = win32pdh.PDH_FMT_LONG
        path = win32pdh.MakeCounterPath( (machine,object,instance, None, inum,counter) )
        hq = win32pdh.OpenQuery()
        try:
            hc = win32pdh.AddCounter(hq, path)
            try:
                win32pdh.CollectQueryData(hq)
                type, val = win32pdh.GetFormattedCounterValue(hc, format)
                return val
            finally:
                win32pdh.RemoveCounter(hc)
        finally:
            win32pdh.CloseQuery(hq)

    def memusage(processName="python", instance=0):
        # from win32pdhutil, part of the win32all package
        import win32pdh
        return GetPerformanceAttributes("Process", "Virtual Bytes",
                                        processName, instance,
                                        win32pdh.PDH_FMT_LONG, None)

def build_err_msg(arrays, err_msg, header='Items are not equal:',
                  verbose=True,
                  names=('ACTUAL', 'DESIRED')):
    msg = ['\n' + header]
    if err_msg:
        if err_msg.find('\n') == -1 and len(err_msg) < 79-len(header):
            msg = [msg[0] + ' ' + err_msg]
        else:
            msg.append(err_msg)
    if verbose:
        for i, a in enumerate(arrays):
            try:
                r = repr(a)
            except:
                r = '[repr failed]'
            if r.count('\n') > 3:
                r = '\n'.join(r.splitlines()[:3])
                r += '...'
            msg.append(' %s: %s' % (names[i], r))
    return '\n'.join(msg)

def assert_equal(actual,desired,err_msg='',verbose=True):
    """
    Raise an assertion if two objects are not equal.

    Given two objects (lists, tuples, dictionaries or numpy arrays), check
    that all elements of these objects are equal. An exception is raised at
    the first conflicting values.

    Parameters
    ----------
    actual : list, tuple, dict or ndarray
      The object to check.
    desired : list, tuple, dict or ndarray
      The expected object.
    err_msg : string
      The error message to be printed in case of failure.
    verbose : bool
      If True, the conflicting values are appended to the error message.

    Raises
    ------
    AssertionError
      If actual and desired are not equal.

    Examples
    --------
    >>> np.testing.assert_equal([4,5], [4,6])
    ...
    <type 'exceptions.AssertionError'>:
    Items are not equal:
    item=1
     ACTUAL: 5
     DESIRED: 6

    """
    if isinstance(desired, dict):
        if not isinstance(actual, dict) :
            raise AssertionError(repr(type(actual)))
        assert_equal(len(actual),len(desired),err_msg,verbose)
        for k,i in desired.items():
            if k not in actual :
                raise AssertionError(repr(k))
            assert_equal(actual[k], desired[k], 'key=%r\n%s' % (k,err_msg), verbose)
        return
    if isinstance(desired, (list,tuple)) and isinstance(actual, (list,tuple)):
        assert_equal(len(actual),len(desired),err_msg,verbose)
        for k in range(len(desired)):
            assert_equal(actual[k], desired[k], 'item=%r\n%s' % (k,err_msg), verbose)
        return
    from numpy.core import ndarray, isscalar, signbit
    from numpy.lib import iscomplexobj, real, imag
    if isinstance(actual, ndarray) or isinstance(desired, ndarray):
        return assert_array_equal(actual, desired, err_msg, verbose)
    msg = build_err_msg([actual, desired], err_msg, verbose=verbose)

    # Handle complex numbers: separate into real/imag to handle
    # nan/inf/negative zero correctly
    # XXX: catch ValueError for subclasses of ndarray where iscomplex fail
    try:
        usecomplex = iscomplexobj(actual) or iscomplexobj(desired)
    except ValueError:
        usecomplex = False

    if usecomplex:
        if iscomplexobj(actual):
            actualr = real(actual)
            actuali = imag(actual)
        else:
            actualr = actual
            actuali = 0
        if iscomplexobj(desired):
            desiredr = real(desired)
            desiredi = imag(desired)
        else:
            desiredr = desired
            desiredi = 0
        try:
            assert_equal(actualr, desiredr)
            assert_equal(actuali, desiredi)
        except AssertionError:
            raise AssertionError("Items are not equal:\n" \
                    "ACTUAL: %s\n" \
                    "DESIRED: %s\n" % (str(actual), str(desired)))

    # Inf/nan/negative zero handling
    try:
        # isscalar test to check cases such as [np.nan] != np.nan
        if isscalar(desired) != isscalar(actual):
            raise AssertionError(msg)

        # If one of desired/actual is not finite, handle it specially here:
        # check that both are nan if any is a nan, and test for equality
        # otherwise
        if not (gisfinite(desired) and gisfinite(actual)):
            isdesnan = gisnan(desired)
            isactnan = gisnan(actual)
            if isdesnan or isactnan:
                if not (isdesnan and isactnan):
                    raise AssertionError(msg)
            else:
                if not desired == actual:
                    raise AssertionError(msg)
            return
        elif desired == 0 and actual == 0:
            if not signbit(desired) == signbit(actual):
                raise AssertionError(msg)
    # If TypeError or ValueError raised while using isnan and co, just handle
    # as before
    except TypeError:
        pass
    except ValueError:
        pass
    if desired != actual :
        raise AssertionError(msg)

def print_assert_equal(test_string,actual,desired):
    import pprint
    try:
        assert(actual == desired)
    except AssertionError:
        import cStringIO
        msg = cStringIO.StringIO()
        msg.write(test_string)
        msg.write(' failed\nACTUAL: \n')
        pprint.pprint(actual,msg)
        msg.write('DESIRED: \n')
        pprint.pprint(desired,msg)
        raise AssertionError(msg.getvalue())

def assert_almost_equal(actual,desired,decimal=7,err_msg='',verbose=True):
    """
    Raise an assertion if two items are not equal up to desired precision.

    The test is equivalent to abs(desired-actual) < 0.5 * 10**(-decimal)

    Given two objects (numbers or ndarrays), check that all elements of these
    objects are almost equal. An exception is raised at conflicting values.
    For ndarrays this delegates to assert_array_almost_equal

    Parameters
    ----------
    actual : number or ndarray
      The object to check.
    desired : number or ndarray
      The expected object.
    decimal : integer (decimal=7)
      desired precision
    err_msg : string
      The error message to be printed in case of failure.
    verbose : bool
      If True, the conflicting values are appended to the error message.

    Raises
    ------
    AssertionError
      If actual and desired are not equal up to specified precision.

    See Also
    --------
    assert_array_almost_equal: compares array_like objects
    assert_equal: tests objects for equality


    Examples
    --------
    >>> npt.assert_almost_equal(2.3333333333333, 2.33333334)
    >>> npt.assert_almost_equal(2.3333333333333, 2.33333334, decimal=10)
    ...
    <type 'exceptions.AssertionError'>:
    Items are not equal:
     ACTUAL: 2.3333333333333002
     DESIRED: 2.3333333399999998

    >>> npt.assert_almost_equal(np.array([1.0,2.3333333333333]),
    \t\t\tnp.array([1.0,2.33333334]), decimal=9)
    ...
    <type 'exceptions.AssertionError'>:
    Arrays are not almost equal
    <BLANKLINE>
    (mismatch 50.0%)
     x: array([ 1.        ,  2.33333333])
     y: array([ 1.        ,  2.33333334])

    """
    from numpy.core import ndarray
    from numpy.lib import iscomplexobj, real, imag

    # Handle complex numbers: separate into real/imag to handle
    # nan/inf/negative zero correctly
    # XXX: catch ValueError for subclasses of ndarray where iscomplex fail
    try:
        usecomplex = iscomplexobj(actual) or iscomplexobj(desired)
    except ValueError:
        usecomplex = False

    if usecomplex:
        if iscomplexobj(actual):
            actualr = real(actual)
            actuali = imag(actual)
        else:
            actualr = actual
            actuali = 0
        if iscomplexobj(desired):
            desiredr = real(desired)
            desiredi = imag(desired)
        else:
            desiredr = desired
            desiredi = 0
        try:
            assert_almost_equal(actualr, desiredr, decimal=decimal)
            assert_almost_equal(actuali, desiredi, decimal=decimal)
        except AssertionError:
            raise AssertionError("Items are not equal:\n" \
                    "ACTUAL: %s\n" \
                    "DESIRED: %s\n" % (str(actual), str(desired)))

    if isinstance(actual, (ndarray, tuple, list)) \
            or isinstance(desired, (ndarray, tuple, list)):
        return assert_array_almost_equal(actual, desired, decimal, err_msg)
    msg = build_err_msg([actual, desired], err_msg, verbose=verbose,
                         header='Arrays are not almost equal')
    try:
        # If one of desired/actual is not finite, handle it specially here:
        # check that both are nan if any is a nan, and test for equality
        # otherwise
        if not (gisfinite(desired) and gisfinite(actual)):
            if gisnan(desired) or gisnan(actual):
                if not (gisnan(desired) and gisnan(actual)):
                    raise AssertionError(msg)
            else:
                if not desired == actual:
                    raise AssertionError(msg)
            return
    except TypeError:
        pass
    if round(abs(desired - actual),decimal) != 0 :
        raise AssertionError(msg)


def assert_approx_equal(actual,desired,significant=7,err_msg='',verbose=True):
    """
    Raise an assertion if two items are not equal up to significant digits.

    Given two numbers, check that they are approximately equal.
    Approximately equal is defined as the number of significant digits
    that agree.

    Parameters
    ----------
    actual : number
      The object to check.
    desired : number
      The expected object.
    significant : integer (significant=7)
      desired precision
    err_msg : string
      The error message to be printed in case of failure.
    verbose : bool
      If True, the conflicting values are appended to the error message.

    Raises
    ------
    AssertionError
      If actual and desired are not equal up to specified precision.

    See Also
    --------
    assert_almost_equal: compares objects by decimals
    assert_array_almost_equal: compares array_like objects by decimals
    assert_equal: tests objects for equality


    Examples
    --------
    >>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20)
    >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20,
                                       significant=8)
    >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20,
                                       significant=8)
    ...
    <type 'exceptions.AssertionError'>:
    Items are not equal to 8 significant digits:
     ACTUAL: 1.234567e-021
     DESIRED: 1.2345672000000001e-021

    the evaluated condition that raises the exception is

    >>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1)
    True

    """
    import numpy as np
    actual, desired = map(float, (actual, desired))
    if desired==actual:
        return
    # Normalized the numbers to be in range (-10.0,10.0)
    # scale = float(pow(10,math.floor(math.log10(0.5*(abs(desired)+abs(actual))))))
    scale = 0.5*(np.abs(desired) + np.abs(actual))
    scale = np.power(10,np.floor(np.log10(scale)))
    try:
        sc_desired = desired/scale
    except ZeroDivisionError:
        sc_desired = 0.0
    try:
        sc_actual = actual/scale
    except ZeroDivisionError:
        sc_actual = 0.0
    msg = build_err_msg([actual, desired], err_msg,
                header='Items are not equal to %d significant digits:' %
                                 significant,
                verbose=verbose)
    try:
        # If one of desired/actual is not finite, handle it specially here:
        # check that both are nan if any is a nan, and test for equality
        # otherwise
        if not (gisfinite(desired) and gisfinite(actual)):
            if gisnan(desired) or gisnan(actual):
                if not (gisnan(desired) and gisnan(actual)):
                    raise AssertionError(msg)
            else:
                if not desired == actual:
                    raise AssertionError(msg)
            return
    except TypeError:
        pass
    if np.abs(sc_desired - sc_actual) >= np.power(10.,-(significant-1)) :
        raise AssertionError(msg)

def assert_array_compare(comparison, x, y, err_msg='', verbose=True,
                         header=''):
    from numpy.core import array, isnan, any
    x = array(x, copy=False, subok=True)
    y = array(y, copy=False, subok=True)

    def isnumber(x):
        return x.dtype.char in '?bhilqpBHILQPfdgFDG'

    try:
        cond = (x.shape==() or y.shape==()) or x.shape == y.shape
        if not cond:
            msg = build_err_msg([x, y],
                                err_msg
                                + '\n(shapes %s, %s mismatch)' % (x.shape,
                                                                  y.shape),
                                verbose=verbose, header=header,
                                names=('x', 'y'))
            if not cond :
                raise AssertionError(msg)

        if (isnumber(x) and isnumber(y)) and (any(isnan(x)) or any(isnan(y))):
            # Handling nan: we first check that x and y have the nan at the
            # same locations, and then we mask the nan and do the comparison as
            # usual.
            xnanid = isnan(x)
            ynanid = isnan(y)
            try:
                assert_array_equal(xnanid, ynanid)
            except AssertionError:
                msg = build_err_msg([x, y],
                                    err_msg
                                    + '\n(x and y nan location mismatch %s, ' \
                                    '%s mismatch)' % (xnanid, ynanid),
                                    verbose=verbose, header=header,
                                    names=('x', 'y'))
                raise AssertionError(msg)
            # If only one item, it was a nan, so just return
            if x.size == y.size == 1:
                return
            val = comparison(x[~xnanid], y[~ynanid])
        else:
            val = comparison(x,y)
        if isinstance(val, bool):
            cond = val
            reduced = [0]
        else:
            reduced = val.ravel()
            cond = reduced.all()
            reduced = reduced.tolist()
        if not cond:
            match = 100-100.0*reduced.count(1)/len(reduced)
            msg = build_err_msg([x, y],
                                err_msg
                                + '\n(mismatch %s%%)' % (match,),
                                verbose=verbose, header=header,
                                names=('x', 'y'))
            if not cond :
                raise AssertionError(msg)
    except ValueError:
        msg = build_err_msg([x, y], err_msg, verbose=verbose, header=header,
                            names=('x', 'y'))
        raise ValueError(msg)

def assert_array_equal(x, y, err_msg='', verbose=True):
    """
    Raise an assertion if two array_like objects are not equal.

    Given two array_like objects, check that the shape is equal and all
    elements of these objects are equal. An exception is raised at
    shape mismatch or conflicting values. In contrast to the standard usage
    in numpy, NaNs are compared like numbers, no assertion is raised if
    both objects have NaNs in the same positions.

    The usual caution for verifying equality with floating point numbers is
    advised.

    Parameters
    ----------
    x : array_like
      The actual object to check.
    y : array_like
      The desired, expected object.
    err_msg : string
      The error message to be printed in case of failure.
    verbose : bool
        If True, the conflicting values are appended to the error message.

    Raises
    ------
    AssertionError
      If actual and desired objects are not equal.

    See Also
    --------
    assert_array_almost_equal: test objects for equality up to precision
    assert_equal: tests objects for equality


    Examples
    --------
    the first assert does not raise an exception

    >>> np.testing.assert_array_equal([1.0,2.33333,np.nan],
    \t\t\t[np.exp(0),2.33333, np.nan])

    assert fails with numerical inprecision with floats

    >>> np.testing.assert_array_equal([1.0,np.pi,np.nan],
    \t\t\t[1, np.sqrt(np.pi)**2, np.nan])
    ...
    <type 'exceptions.ValueError'>:
    AssertionError:
    Arrays are not equal
    <BLANKLINE>
    (mismatch 50.0%)
     x: array([ 1.        ,  3.14159265,         NaN])
     y: array([ 1.        ,  3.14159265,         NaN])

    use assert_array_almost_equal for these cases instead

    >>> np.testing.assert_array_almost_equal([1.0,np.pi,np.nan],
    \t\t\t[1, np.sqrt(np.pi)**2, np.nan], decimal=15)

    """
    assert_array_compare(operator.__eq__, x, y, err_msg=err_msg,
                         verbose=verbose, header='Arrays are not equal')

def assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True):
    """
    Raise an assertion if two objects are not equal up to desired precision.

    The test verifies identical shapes and verifies values with
    abs(desired-actual) < 0.5 * 10**(-decimal)

    Given two array_like objects, check that the shape is equal and all
    elements of these objects are almost equal. An exception is raised at
    shape mismatch or conflicting values. In contrast to the standard usage
    in numpy, NaNs are compared like numbers, no assertion is raised if
    both objects have NaNs in the same positions.

    Parameters
    ----------
    x : array_like
      The actual object to check.
    y : array_like
      The desired, expected object.
    decimal : integer (decimal=6)
      desired precision
    err_msg : string
      The error message to be printed in case of failure.
    verbose : bool
        If True, the conflicting values are appended to the error message.

    Raises
    ------
    AssertionError
      If actual and desired are not equal up to specified precision.

    See Also
    --------
    assert_almost_equal: simple version for comparing numbers
    assert_array_equal: tests objects for equality


    Examples
    --------
    the first assert does not raise an exception

    >>> np.testing.assert_array_almost_equal([1.0,2.333,np.nan],
                                             [1.0,2.333,np.nan])

    >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
    \t\t\t[1.0,2.33339,np.nan], decimal=5)
    ...
    <type 'exceptions.AssertionError'>:
    AssertionError:
    Arrays are not almost equal
    <BLANKLINE>
    (mismatch 50.0%)
     x: array([ 1.     ,  2.33333,      NaN])
     y: array([ 1.     ,  2.33339,      NaN])

    >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
    \t\t\t[1.0,2.33333, 5], decimal=5)
    <type 'exceptions.ValueError'>:
    ValueError:
    Arrays are not almost equal
     x: array([ 1.     ,  2.33333,      NaN])
     y: array([ 1.     ,  2.33333,  5.     ])

    """
    from numpy.core import around, number, float_
    from numpy.core.numerictypes import issubdtype
    from numpy.core.fromnumeric import any as npany
    def compare(x, y):
        try:
            if npany(gisinf(x)) or npany( gisinf(y)):
                xinfid = gisinf(x)
                yinfid = gisinf(y)
                if not xinfid == yinfid:
                    return False
                # if one item, x and y is +- inf
                if x.size == y.size == 1:
                    return x == y
                x = x[~xinfid]
                y = y[~yinfid]
        except TypeError:
            pass
        z = abs(x-y)
        if not issubdtype(z.dtype, number):
            z = z.astype(float_) # handle object arrays
        return around(z, decimal) <= 10.0**(-decimal)
    assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose,
                         header='Arrays are not almost equal')

def assert_array_less(x, y, err_msg='', verbose=True):
    """
    Raise an assertion if two array_like objects are not ordered by less than.

    Given two array_like objects, check that the shape is equal and all
    elements of the first object are strictly smaller than those of the
    second object. An exception is raised at shape mismatch or incorrectly
    ordered values. Shape mismatch does not raise if an object has zero
    dimension. In contrast to the standard usage in numpy, NaNs are
    compared, no assertion is raised if both objects have NaNs in the same
    positions.



    Parameters
    ----------
    x : array_like
      The smaller object to check.
    y : array_like
      The larger object to compare.
    err_msg : string
      The error message to be printed in case of failure.
    verbose : bool
        If True, the conflicting values are appended to the error message.

    Raises
    ------
    AssertionError
      If actual and desired objects are not equal.

    See Also
    --------
    assert_array_equal: tests objects for equality
    assert_array_almost_equal: test objects for equality up to precision



    Examples
    --------
    >>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1.1, 2.0, np.nan])
    >>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1, 2.0, np.nan])
    ...
    <type 'exceptions.ValueError'>:
    Arrays are not less-ordered
    (mismatch 50.0%)
     x: array([  1.,   1.,  NaN])
     y: array([  1.,   2.,  NaN])

    >>> np.testing.assert_array_less([1.0, 4.0], 3)
    ...
    <type 'exceptions.ValueError'>:
    Arrays are not less-ordered
    (mismatch 50.0%)
     x: array([ 1.,  4.])
     y: array(3)

    >>> np.testing.assert_array_less([1.0, 2.0, 3.0], [4])
    ...
    <type 'exceptions.ValueError'>:
    Arrays are not less-ordered
    (shapes (3,), (1,) mismatch)
     x: array([ 1.,  2.,  3.])
     y: array([4])

    """
    assert_array_compare(operator.__lt__, x, y, err_msg=err_msg,
                         verbose=verbose,
                         header='Arrays are not less-ordered')

def runstring(astr, dict):
    exec astr in dict

def assert_string_equal(actual, desired):
    # delay import of difflib to reduce startup time
    import difflib

    if not isinstance(actual, str) :
        raise AssertionError(`type(actual)`)
    if not isinstance(desired, str):
        raise AssertionError(`type(desired)`)
    if re.match(r'\A'+desired+r'\Z', actual, re.M): return
    diff = list(difflib.Differ().compare(actual.splitlines(1), desired.splitlines(1)))
    diff_list = []
    while diff:
        d1 = diff.pop(0)
        if d1.startswith('  '):
            continue
        if d1.startswith('- '):
            l = [d1]
            d2 = diff.pop(0)
            if d2.startswith('? '):
                l.append(d2)
                d2 = diff.pop(0)
            if not d2.startswith('+ ') :
                raise AssertionError(`d2`)
            l.append(d2)
            d3 = diff.pop(0)
            if d3.startswith('? '):
                l.append(d3)
            else:
                diff.insert(0, d3)
            if re.match(r'\A'+d2[2:]+r'\Z', d1[2:]):
                continue
            diff_list.extend(l)
            continue
        raise AssertionError(`d1`)
    if not diff_list:
        return
    msg = 'Differences in strings:\n%s' % (''.join(diff_list)).rstrip()
    if actual != desired :
        raise AssertionError(msg)


def rundocs(filename=None, raise_on_error=True):
    """Run doc string tests found in file.

    By default raises AssertionError on failure.
    """
    import doctest, imp
    if filename is None:
        f = sys._getframe(1)
        filename = f.f_globals['__file__']
    name = os.path.splitext(os.path.basename(filename))[0]
    path = [os.path.dirname(filename)]
    file, pathname, description = imp.find_module(name, path)
    try:
        m = imp.load_module(name, file, pathname, description)
    finally:
        file.close()

    tests = doctest.DocTestFinder().find(m)
    runner = doctest.DocTestRunner(verbose=False)

    msg = []
    if raise_on_error:
        out = lambda s: msg.append(s)
    else:
        out = None

    for test in tests:
        runner.run(test, out=out)

    if runner.failures > 0 and raise_on_error:
        raise AssertionError("Some doctests failed:\n%s" % "\n".join(msg))


def raises(*args,**kwargs):
    nose = import_nose()
    return nose.tools.raises(*args,**kwargs)

def assert_raises(*args,**kwargs):
    """
    assert_raises(exception_class, callable, *args, **kwargs)

    Fail unless an exception of class exception_class is thrown
    by callable when invoked with arguments args and keyword
    arguments kwargs. If a different type of exception is
    thrown, it will not be caught, and the test case will be
    deemed to have suffered an error, exactly as for an
    unexpected exception.

    """
    nose = import_nose()
    return nose.tools.assert_raises(*args,**kwargs)

def decorate_methods(cls, decorator, testmatch=None):
    ''' Apply decorator to all methods in class matching testmatch

    Parameters
    ----------
    cls : class
        Class to decorate methods for
    decorator : function
        Decorator to apply to methods
    testmatch : compiled regexp or string to compile to regexp
        Decorators are applied if testmatch.search(methodname)
        is not None.  Default value is
        re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)
        (the default for nose)
    '''
    if testmatch is None:
        testmatch = re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)
    else:
        testmatch = re.compile(testmatch)
    cls_attr = cls.__dict__

    # delayed import to reduce startup time
    from inspect import isfunction

    methods = filter(isfunction, cls_attr.values())
    for function in methods:
        try:
            if hasattr(function, 'compat_func_name'):
                funcname = function.compat_func_name
            else:
                funcname = function.__name__
        except AttributeError:
            # not a function
            continue
        if testmatch.search(funcname) and not funcname.startswith('_'):
            setattr(cls, funcname, decorator(function))
    return


def measure(code_str,times=1,label=None):
    """ Return elapsed time for executing code_str in the
    namespace of the caller for given times.
    """
    frame = sys._getframe(1)
    locs,globs = frame.f_locals,frame.f_globals

    code = compile(code_str,
                   'Test name: %s ' % label,
                   'exec')
    i = 0
    elapsed = jiffies()
    while i < times:
        i += 1
        exec code in globs,locs
    elapsed = jiffies() - elapsed
    return 0.01*elapsed

def assert_valid_refcount(op):
    import numpy as np
    a = np.arange(100 * 100)
    b = np.arange(100*100).reshape(100, 100)
    c = b

    i = 1

    rc = sys.getrefcount(i)
    for j in range(15):
        d = op(b,c)

    assert(sys.getrefcount(i) >= rc)