1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
from numerictypes import character, string, unicode_, obj2dtype, integer
from numeric import ndarray, multiter, empty
# special sub-class for character arrays (string and unicode_)
# This adds equality testing and methods of str and unicode types
# which operate on an element-by-element basis
class ndchararray(ndarray):
def __new__(subtype, shape, itemlen=1, unicode=False, buffer=None,
offset=0, strides=None, swap=0, fortran=0):
if unicode:
dtype = 'U%d' % itemlen
else:
dtype = 'U%d' % itemlen
swap = 0
if buffer is None:
self = ndarray.__new__(subtype, shape, dtype, fortran=fortran)
else:
self = ndarray.__new__(subtype, shape, dtype, buffer=buffer,
offset=offset, strides=strides,
swap=swap, fortran=fortran)
return self
def __reduce__(self):
pass
# these should be moved to C
def __eq__(self, other):
b = multiter(self, other)
result = empty(b.shape, dtype=bool)
res = result.flat
for k, val in enumerate(b):
res[k] = (val[0] == val[1])
return result
def __ne__(self, other):
b = multiter(self, other)
result = empty(b.shape, dtype=bool)
res = result.flat
for k, val in enumerate(b):
res[k] = (val[0] != val[1])
return result
def __ge__(self, other):
b = multiter(self, other)
result = empty(b.shape, dtype=bool)
res = result.flat
for k, val in enumerate(b):
res[k] = (val[0] >= val[1])
return result
def __le__(self, other):
b = multiter(self, other)
result = empty(b.shape, dtype=bool)
res = result.flat
for k, val in enumerate(b):
res[k] = (val[0] <= val[1])
return result
def __gt__(self, other):
b = multiter(self, other)
result = empty(b.shape, dtype=bool)
res = result.flat
for k, val in enumerate(b):
res[k] = (val[0] > val[1])
return result
def __lt__(self, other):
b = multiter(self, other)
result = empty(b.shape, dtype=bool)
res = result.flat
for k, val in enumerate(b):
res[k] = (val[0] < val[1])
return result
def __add__(self, other):
b = multiter(self, other)
arr = b.iters[1].base
outitem = self.itemsize + arr.itemsize
dtype = self.dtypestr[1:2] + str(outitem)
result = empty(b.shape, dtype=dtype)
res = result.flat
for k, val in enumerate(b):
res[k] = (val[0] + val[1])
return result
def __radd__(self, other):
b = multiter(other, self)
outitem = b.iters[0].base.itemsize + \
b.iters[1].base.itemsize
dtype = self.dtypestr[1:2] + str(outitem)
result = empty(b.shape, dtype=dtype)
res = result.flat
for k, val in enumerate(b):
res[k] = (val[0] + val[1])
return result
def __mul__(self, other):
b = multiter(self, other)
arr = b.iters[1].base
if not issubclass(arr.dtype, integer):
raise ValueError, "Can only multiply by integers"
outitem = b.iters[0].base.itemsize * arr.max()
dtype = self.dtypestr[1:2] + str(outitem)
result = empty(b.shape, dtype=dtype)
res = result.flat
for k, val in enumerate(b):
res[k] = val[0]*val[1]
return result
def __rmul__(self, other):
b = multiter(self, other)
arr = b.iters[1].base
if not issubclass(arr.dtype, integer):
raise ValueError, "Can only multiply by integers"
outitem = b.iters[0].base.itemsize * arr.max()
dtype = self.dtypestr[1:2] + str(outitem)
result = empty(b.shape, dtype=dtype)
res = result.flat
for k, val in enumerate(b):
res[k] = val[0]*val[1]
return result
def __mod__(self, other):
return NotImplemented
def __rmod__(self, other):
return NotImplemented
def capitalize(self):
pass
def center(self):
pass
def count(self):
pass
def decode(self):
pass
def encode(self):
pass
def endswith(self):
pass
def expandtabs(self):
pass
def find(self):
pass
def index(self):
pass
def isalnum(self):
pass
def isalpha(self):
pass
def isdigit(self):
pass
def islower(self):
pass
def isspace(self):
pass
def istitle(self):
pass
def isupper(self):
pass
def join(self):
pass
def ljust(self):
pass
def lower(self):
pass
def lstrip(self):
pass
def replace(self):
pass
def rfind(self):
pass
def rindex(self):
pass
def rjust(self):
pass
def rsplit(self):
pass
def rstrip(self):
pass
def split(self):
pass
def splitlines(self):
pass
def startswith(self):
pass
def strip(self):
pass
def swapcase(self):
pass
def title(self):
pass
def translate(self):
pass
def upper(self):
pass
def zfill(self):
pass
def chararray(obj, itemlen=7, copy=True, unicode=False, fortran=False):
if isinstance(obj, charndarray):
if copy or (itemlen != obj.itemlen) \
or (not unicode and obj.dtype == unicode_) \
or (unicode and obj.dtype == string):
return obj.astype(obj.dtypestr[1:])
else:
return obj
if isinstance(obj, ndarray) and (obj.dtype in [unicode_, string]):
copied = 0
if unicode:
dtype = 'U%d' % obj.itemlen
if obj.dtype == string:
obj = obj.astype(dtype)
copied = 1
else:
dtype = 'S%d' % obj.itemlen
if obj.dtype == unicode_:
obj = obj.astype(dtype)
copied = 1
if copy and not copied:
obj = obj.copy()
return ndarray.__new__(chararray, obj.shape)
if unicode:
dtype = "U%d" % itemlen
else:
dtype = "S%d" % itemlen
val = asarray(obj).astype(dtype)
return ndchararray(val.shape, itemlen, unicode, buffer=val,
strides=val.strides, fortran=fortran)
def aschararray(obj):
return chararray(obj, copy=False)
|