1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
|
__all__ = ['record', 'recarray','format_parser']
import numeric as sb
import numerictypes as nt
import sys
import types
import re
# formats regular expression
# allows multidimension spec with a tuple syntax in front
# of the letter code '(2,3)f4' and ' ( 2 , 3 ) f4 '
# are equally allowed
format_re = re.compile(r'(?P<repeat> *[(]?[ ,0-9]*[)]? *)(?P<dtype>[A-Za-z0-9.]*)')
numfmt = nt.typeDict
_typestr = nt._typestr
def find_duplicate(list):
"""Find duplication in a list, return a list of duplicated elements"""
dup = []
for i in range(len(list)):
if (list[i] in list[i+1:]):
if (list[i] not in dup):
dup.append(list[i])
return dup
def _split(input):
"""Split the input formats string into field formats without splitting
the tuple used to specify multi-dimensional arrays."""
newlist = []
hold = ''
for element in input.split(','):
if hold != '':
item = hold + ',' + element
else:
item = element
left = item.count('(')
right = item.count(')')
# if the parenthesis is not balanced, hold the string
if left > right :
hold = item
# when balanced, append to the output list and reset the hold
elif left == right:
newlist.append(item)
hold = ''
# too many close parenthesis is unacceptable
else:
raise SyntaxError, item
# if there is string left over in hold
if hold != '':
raise SyntaxError, hold
return newlist
class format_parser:
def __init__(self, formats, names, titles, aligned=False):
self._parseFormats(formats, aligned)
self._setfieldnames(names, titles)
self._createdescr()
def _parseFormats(self, formats, aligned=0):
""" Parse the field formats """
_alignment = nt._alignment
_bytes = nt.nbytes
if (type(formats) in [types.ListType, types.TupleType]):
_fmt = formats[:]
elif (type(formats) == types.StringType):
_fmt = _split(formats)
else:
raise NameError, "illegal input formats %s" % `formats`
self._nfields = len(_fmt)
self._repeats = [1] * self._nfields
self._itemsizes = [0] * self._nfields
self._sizes = [0] * self._nfields
stops = [0] * self._nfields
self._offsets = [0] * self._nfields
self._rec_aligned = aligned
# preserve the input for future reference
self._formats = [''] * self._nfields
# fields-compatible formats
self._f_formats = [''] * self._nfields
sum = 0
maxalign = 1
unisize = nt._unicodesize
for i in range(self._nfields):
# parse the formats into repeats and formats
try:
(_repeat, _dtype) = format_re.match(_fmt[i].strip()).groups()
except TypeError, AttributeError:
raise ValueError('format %s is not recognized' % _fmt[i])
# Flexible types need special treatment
_dtype = _dtype.strip()
if _dtype[0] in ['V','S','U','a']:
self._itemsizes[i] = int(_dtype[1:])
if _dtype[0] == 'U':
self._itemsizes[i] *= unisize
if _dtype[0] == 'a':
_dtype = 'S'
else:
_dtype = _dtype[0]
if _repeat == '':
_repeat = 1
else:
_repeat = eval(_repeat)
_fmt[i] = numfmt[_dtype]
if not issubclass(_fmt[i], nt.flexible):
self._itemsizes[i] = _bytes[_fmt[i]]
self._repeats[i] = _repeat
if (type(_repeat) in [types.ListType, types.TupleType]):
self._sizes[i] = self._itemsizes[i] * \
reduce(lambda x,y: x*y, _repeat)
else:
self._sizes[i] = self._itemsizes[i] * _repeat
sum += self._sizes[i]
if self._rec_aligned:
# round sum up to multiple of alignment factor
align = _alignment[_fmt[i]]
sum = ((sum + align - 1)/align) * align
maxalign = max(maxalign, align)
stops[i] = sum - 1
self._offsets[i] = stops[i] - self._sizes[i] + 1
# Unify the appearance of _format, independent of input formats
revfmt = _typestr[_fmt[i]]
self._f_formats[i] = revfmt
if issubclass(_fmt[i], nt.flexible):
if issubclass(_fmt[i], nt.unicode_):
self._f_formats[i] += `self._itemsizes[i] / unisize`
else:
self._f_formats[i] += `self._itemsizes[i]`
self._formats[i] = `_repeat`+self._f_formats[i]
if (_repeat != 1):
self._f_formats[i] = (self._f_formats[i], _repeat)
self._fmt = _fmt
# This pads record so next record is aligned if self._rec_align is
# true. Otherwise next the record starts right after the end
# of the last one.
self._total_itemsize = (stops[-1]/maxalign + 1) * maxalign
def _setfieldnames(self, names, titles):
"""convert input field names into a list and assign to the _names
attribute """
if (names):
if (type(names) in [types.ListType, types.TupleType]):
pass
elif (type(names) == types.StringType):
names = names.split(',')
else:
raise NameError, "illegal input names %s" % `names`
self._names = map(lambda n:n.strip(), names)[:self._nfields]
else:
self._names = []
# if the names are not specified, they will be assigned as "f1, f2,..."
# if not enough names are specified, they will be assigned as "f[n+1],
# f[n+2],..." etc. where n is the number of specified names..."
self._names += map(lambda i:
'f'+`i`, range(len(self._names)+1,self._nfields+1))
# check for redundant names
_dup = find_duplicate(self._names)
if _dup:
raise ValueError, "Duplicate field names: %s" % _dup
if (titles):
self._titles = [n.strip() for n in titles][:self._nfields]
else:
self._titles = []
titles = []
if (self._nfields > len(titles)):
self._titles += [None]*(self._nfields-len(titles))
def _createdescr(self):
self._descr = sb.dtypedescr({'names':self._names,
'formats':self._f_formats,
'offsets':self._offsets,
'titles':self._titles})
class record(nt.void):
def __repr__(self):
return self.__str__()
def __str__(self):
fdict = self.fields
names = fdict.keys()
all = []
for name in names:
item = fdict[name]
if (len(item) > 3) and item[2] == name:
continue
all.append(item)
all.sort(lambda x,y: cmp(x[1],y[1]))
outlist = [self.getfield(item[0], item[1]) for item in all]
return str(tuple(outlist))
def __getattribute__(self, attr):
if attr in ['setfield', 'getfield', 'fields']:
return nt.void.__getattribute__(self, attr)
fielddict = nt.void.__getattribute__(self, 'fields')
res = fielddict.get(attr,None)
if res:
return self.getfield(*res[:2])
return nt.void.__getattribute__(self, attr)
def __setattr__(self, attr, val):
if attr in ['setfield', 'getfield', 'fields']:
raise AttributeError, "Cannot set '%s' attribute" % attr;
fielddict = nt.void.__getattribute__(self,'fields')
res = fielddict.get(attr,None)
if res:
return self.setfield(val,*res[:2])
return nt.void.__setattr__(self,attr,val)
def __getitem__(self, obj):
return self.getfield(*(self.fields[obj][:2]))
def __setitem__(self, obj, val):
return self.setfield(val, *(self.fields[obj][:2]))
# The recarray is almost identical to a standard array (which supports
# named fields already) The biggest difference is that it can use
# attribute-lookup to the fields.
class recarray(sb.ndarray):
def __new__(subtype, shape, formats, names=None, titles=None,
buf=None, offset=0, strides=None, swap=0, aligned=0):
if isinstance(formats, sb.dtypedescr):
descr = formats
elif isinstance(formats,str):
parsed = format_parser(formats, names, titles, aligned)
descr = parsed._descr
else:
if aligned:
if not isinstance(formats, dict) and \
not isinstance(formats, list):
raise ValueError, "Can only deal with alignment"\
"for list and dictionary type-descriptors."
descr = sb.dtypedescr(formats, aligned)
if buf is None:
self = sb.ndarray.__new__(subtype, shape, (record, descr))
else:
self = sb.ndarray.__new__(subtype, shape, (record, descr),
buffer=buf, swap=swap)
return self
def __getattribute__(self, attr):
fielddict = sb.ndarray.__getattribute__(self,'dtypedescr').fields
try:
res = fielddict[attr][:2]
except:
return sb.ndarray.__getattribute__(self,attr)
return self.getfield(*res)
def __setattr__(self, attr, val):
fielddict = sb.ndarray.__getattribute__(self,'dtypedescr').fields
try:
res = fielddict[attr][:2]
except:
return sb.ndarray.__setattr__(self,attr,val)
return self.setfield(val,*res)
def fromarrays(arrayList, formats=None, names=None, titles=None, shape=None,
swap=0, aligned=0):
""" create a record array from a (flat) list of arrays
>>> x1=array([1,2,3,4])
>>> x2=array(['a','dd','xyz','12'])
>>> x3=array([1.1,2,3,4])
>>> r=fromarrays([x1,x2,x3],names='a,b,c')
>>> print r[1]
(2, 'dd\x00', 2.0)
>>> x1[1]=34
>>> r.a
array([1, 2, 3, 4])
"""
if shape is None or shape == 0:
shape = arrayList[0].shape
if isinstance(shape, int):
shape = (shape,)
if formats is None:
# go through each object in the list to see if it is an ndarray
# and determine the formats.
formats = ''
for obj in arrayList:
if not isinstance(obj, sb.ndarray):
raise ValueError, "item in the array list must be an ndarray."
if obj.ndim == 1:
_repeat = ''
elif len(obj._shape) >= 2:
_repeat = `obj._shape[1:]`
formats += _repeat + _typestr[obj.dtype]
if issubclass(obj.dtype, nt.flexible):
formats += `obj.itemsize`
formats += ','
formats=formats[:-1]
for obj in arrayList:
if obj.shape != shape:
raise ValueError, "array has different shape"
parsed = format_parser(formats, names, titles, aligned)
_names = parsed._names
_array = recarray(shape, parsed._descr, swap=swap)
# populate the record array (makes a copy)
for i in range(len(arrayList)):
_array[_names[i]] = arrayList[i]
return _array
def fromrecords(recList, formats=None, names=None, titles=None, shape=None,
swap=0, aligned=0):
""" create a Record Array from a list of records in text form
The data in the same field can be heterogeneous, they will be promoted
to the highest data type. This method is intended for creating
smaller record arrays. If used to create large array e.g.
r=fromrecords([[2,3.,'abc']]*100000)
it is slow.
>>> r=fromrecords([[456,'dbe',1.2],[2,'de',1.3]],names='col1,col2,col3')
>>> print r[0]
(456, 'dbe', 1.2)
>>> r.col1
array([456, 2])
>>> r.col2
array(['dbe', 'de'])
>>> import cPickle
>>> print cPickle.loads(cPickle.dumps(r))
recarray[
(456, 'dbe', 1.2),
(2, 'de', 1.3)
]
"""
if (shape is None or shape == 0):
shape = len(recList)
if isinstance(shape, int):
shape = (shape,)
nfields = len(recList[0])
if formats is None: # slower
obj = sb.array(recList,dtype=object)
arrlist = [sb.array(obj[:,i].tolist()) for i in xrange(nfields)]
return fromarrays(arrlist, formats=formats, shape=shape, names=names,
titles=titles, swap=swap, aligned=aligned)
parsed = format_parser(formats, names, titles, aligned)
_names = parsed._names
_array = recarray(shape, parsed._descr, swap=swap)
farr = _array.flat
for k in xrange(_array.size):
for j in xrange(nfields):
farr[k][_names[j]] = recList[k][j]
return _array
|