1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
|
""" Cast Copy Tranpose is used in scipy_base.numerix's LinearAlgebra.py to convert
C ordered arrays to Fortran order arrays before calling Fortran
functions. A couple of C implementations are provided here that
show modest speed improvements. One is an "inplace" transpose that
does an in memory transpose of an arrays elements. This is the
fastest approach and is beneficial if you don't need to keep the
original array.
"""
# C:\home\ej\wrk\scipy\compiler\examples>python cast_copy_transpose.py
# Cast/Copy/Transposing (150,150)array 1 times
# speed in python: 0.870999932289
# speed in c: 0.25
# speed up: 3.48
# inplace transpose c: 0.129999995232
# speed up: 6.70
import scipy_base.numerix
from scipy_base.numerix import *
import sys
sys.path.insert(0,'..')
import inline_tools
import c_spec
from converters import blitz as cblitz
def _cast_copy_transpose(type,a_2d):
assert(len(shape(a_2d)) == 2)
new_array = zeros(shape(a_2d),type)
code = """
for(int i = 0; i < Na_2d[0]; i++)
for(int j = 0; j < Na_2d[1]; j++)
new_array(i,j) = a_2d(j,i);
"""
inline_tools.inline(code,['new_array','a_2d'],
type_converters = cblitz,
compiler='gcc',
verbose = 1)
return new_array
def _cast_copy_transpose2(type,a_2d):
assert(len(shape(a_2d)) == 2)
new_array = zeros(shape(a_2d),type)
code = """
const int I = Na_2d[0];
const int J = Na_2d[1];
for(int i = 0; i < I; i++)
{
int new_off = i*J;
int old_off = i;
for(int j = 0; j < J; j++)
{
new_array[new_off++] = a_2d[old_off];
old_off += I;
}
}
"""
inline_tools.inline(code,['new_array','a_2d'],compiler='gcc',verbose=1)
return new_array
def _inplace_transpose(a_2d):
assert(len(shape(a_2d)) == 2)
numeric_type = c_spec.num_to_c_types[a_2d.typecode()]
code = """
%s temp;
for(int i = 0; i < Na_2d[0]; i++)
for(int j = 0; j < Na_2d[1]; j++)
{
temp = a_2d(i,j);
a_2d(i,j) = a_2d(j,i);
a_2d(j,i) = temp;
}
""" % numeric_type
inline_tools.inline(code,['a_2d'],
type_converters = cblitz,
compiler='gcc',
extra_compile_args = ['-funroll-all-loops'],
verbose =2 )
return a_2d
#assert(len(shape(a_2d)) == 2)
#type = a_2d.typecode()
#new_array = zeros(shape(a_2d),type)
##trans_a_2d = transpose(a_2d)
#numeric_type = c_spec.num_to_c_types[type]
#code = """
# for(int i = 0; i < Na_2d[0]; i++)
# for(int j = 0; j < Na_2d[1]; j++)
# new_array(i,j) = (%s) a_2d(j,i);
# """ % numeric_type
#inline_tools.inline(code,['new_array','a_2d'],
# type_converters = cblitz,
# compiler='gcc',
# verbose = 1)
#return new_array
def cast_copy_transpose(type,*arrays):
results = []
for a in arrays:
results.append(_cast_copy_transpose(type,a))
if len(results) == 1:
return results[0]
else:
return results
def cast_copy_transpose2(type,*arrays):
results = []
for a in arrays:
results.append(_cast_copy_transpose2(type,a))
if len(results) == 1:
return results[0]
else:
return results
def inplace_cast_copy_transpose(*arrays):
results = []
for a in arrays:
results.append(_inplace_transpose(a))
if len(results) == 1:
return results[0]
else:
return results
def _castCopyAndTranspose(type, *arrays):
cast_arrays = ()
for a in arrays:
if a.typecode() == type:
cast_arrays = cast_arrays + (copy.copy(scipy_base.numerix.transpose(a)),)
else:
cast_arrays = cast_arrays + (copy.copy(
scipy_base.numerix.transpose(a).astype(type)),)
if len(cast_arrays) == 1:
return cast_arrays[0]
else:
return cast_arrays
import time
def compare(m,n):
a = ones((n,n),Float64)
type = Float32
print 'Cast/Copy/Transposing (%d,%d)array %d times' % (n,n,m)
t1 = time.time()
for i in range(m):
for i in range(n):
b = _castCopyAndTranspose(type,a)
t2 = time.time()
py = (t2-t1)
print ' speed in python:', (t2 - t1)/m
# load into cache
b = cast_copy_transpose(type,a)
t1 = time.time()
for i in range(m):
for i in range(n):
b = cast_copy_transpose(type,a)
t2 = time.time()
print ' speed in c (blitz):',(t2 - t1)/ m
print ' speed up (blitz): %3.2f' % (py/(t2-t1))
# load into cache
b = cast_copy_transpose2(type,a)
t1 = time.time()
for i in range(m):
for i in range(n):
b = cast_copy_transpose2(type,a)
t2 = time.time()
print ' speed in c (pointers):',(t2 - t1)/ m
print ' speed up (pointers): %3.2f' % (py/(t2-t1))
# inplace tranpose
b = _inplace_transpose(a)
t1 = time.time()
for i in range(m):
for i in range(n):
b = _inplace_transpose(a)
t2 = time.time()
print ' inplace transpose c:',(t2 - t1)/ m
print ' speed up: %3.2f' % (py/(t2-t1))
if __name__ == "__main__":
m,n = 1,500
compare(m,n)
|