1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
|
"""passlib.pwd -- password generation helpers
TODO
====
* XXX: add a "crack time" estimation to generate & classify?
might be useful to give people better idea of what measurements mean.
* unittests for generation code
* straighten out any unicode issues this code may have.
- primarily, this should always return unicode (currently doesn't)
* don't like existing wordsets.
- diceware has some weird bordercases that average users may not like
- electrum's set isn't large enough for these purposes
- looking into modified version of wordfrequency.info's 5k list
(could merge w/ diceware, and remove commonly used passwords)
* should recommend zxcvbn in the docs for this module.
"""
#=============================================================================
# imports
#=============================================================================
from __future__ import absolute_import, division, print_function, unicode_literals
# core
import codecs
from collections import defaultdict
from itertools import chain
from math import ceil, log as logf
import logging; log = logging.getLogger(__name__)
import os
# site
# pkg
from passlib import exc
from passlib.utils.compat import PY2, irange, itervalues, int_types
from passlib.utils import rng, getrandstr, to_unicode, memoized_property
# local
__all__ = [
'genword',
'genphrase',
]
#=============================================================================
# constants
#=============================================================================
entropy_aliases = dict(
# barest protection from throttled online attack
unsafe=12,
# some protection from unthrottled online attack
weak=24,
# some protection from offline attacks
fair=36,
# reasonable protection from offline attacks
strong=48,
# very good protection from offline attacks
secure=60,
)
#=============================================================================
# internal helpers
#=============================================================================
def _superclasses(obj, cls):
"""return remaining classes in object's MRO after cls"""
mro = type(obj).__mro__
return mro[mro.index(cls)+1:]
def _self_info_rate(source):
"""
returns 'rate of self-information' --
i.e. average (per-symbol) entropy of the sequence **source**,
where probability of a given symbol occurring is calculated based on
the number of occurrences within the sequence itself.
if all elements of the source are unique, this should equal ``log(len(source), 2)``.
:arg source:
iterable containing 0+ symbols
(e.g. list of strings or ints, string of characters, etc).
:returns:
float bits of entropy
"""
try:
size = len(source)
except TypeError:
# if len() doesn't work, calculate size by summing counts later
size = None
counts = defaultdict(int)
for char in source:
counts[char] += 1
if size is None:
values = counts.values()
size = sum(values)
else:
values = itervalues(counts)
if not size:
return 0
# NOTE: the following performs ``- sum(value / size * logf(value / size, 2) for value in values)``,
# it just does so with as much pulled out of the sum() loop as possible...
return logf(size, 2) - sum(value * logf(value, 2) for value in values) / size
# def _total_self_info(source):
# """
# return total self-entropy of a sequence
# (the average entropy per symbol * size of sequence)
# """
# return _self_info_rate(source) * len(source)
def _max_self_info_rate(alphabet_size, output_size):
"""
calculate maximum _self_info_rate() of all strings of length <output_size>
created from at most <alphabet_size> symbols (assuming all symbols have equal probability).
"""
# NOTE: this accomplishes it's purpose by assuming maximum average entropy
# would be a string repeating all symbols ``output//alphabet`` times,
# and with ``extra = output % alphabet`` symbols repeated one extra time.
# the following code then calculates _self_info_rate() for such a string.
# sanity check
if output_size <= 0:
if not output_size:
return 0
raise ValueError("output size must be positive integer")
if alphabet_size <= 0:
raise ValueError("alphabet size must be positive integer")
# all symbols repeated <count> times, and <extra> of them repeated 1 more time.
count, extra = divmod(output_size, alphabet_size)
# assert 0 <= extra < alphabet_size
# assert alphabet_size * count + extra == output_size
# average entropy contributed by head symbols.
# there are <alphabet-extra> of them (all of alphabet but tail symbols),
# and each occurs <count> times.
if count:
prob_head = count / output_size
head_bits = (alphabet_size - extra) * prob_head * logf(prob_head, 2)
else:
# avoid log(0) error when count=0
head_bits = 0
# average entropy contributed by tail symbols.
# there are <extra> of them, and each occurs <count+1> times.
if extra:
prob_tail = (count + 1) / output_size
tail_bits = extra * prob_tail * logf(prob_tail, 2)
else:
tail_bits = 0
# combine
return -(head_bits + tail_bits)
# def _self_info_rate_per_char(wordset):
# """
# return the average *per-character* entropy in a wordset,
# using each char's frequency in the wordset as the probability of occurrence.
#
# essentially just treats wordset as one long string,
# and calculates :func:`_self_info_rate`.
#
# :arg wordset:
# iterable containing 1+ words, each of which are themselves
# iterables containing 1+ characters.
#
# :returns:
# float bits of entropy
# """
# return _self_info_rate(chain.from_iterable(wordset))
#: path to passlib's data dir
_data_dir = os.path.join(os.path.dirname(__file__), "_data")
def _load_wordset(name):
"""
load wordset from compressed datafile within package data.
returns tuple so result can be hashed & randomly accessed.
"""
source = os.path.join(_data_dir, "%s.words.txt" % name)
with codecs.open(source, "r", "utf-8") as fh:
gen = (word.strip() for word in fh)
words = tuple(word for word in gen if word)
log.debug("loaded %d-element wordset from %r", len(words), source)
return words
def _dup_repr(source):
"""return repr of duplicates in string/list, for use in error message"""
seen = set()
dups = set()
for elem in source:
(dups if elem in seen else seen).add(elem)
dups = sorted(dups)
trunc = 8
if len(dups) > trunc:
trunc = 5
dup_repr = ", ".join(repr(str(word)) for word in dups[:trunc])
if len(dups) > trunc:
dup_repr += ", ... plus %d others" % (len(dups) - trunc)
return dup_repr
#=============================================================================
# base generator class
#=============================================================================
class SequenceGenerator(object):
"""
base class used by word & phrase generators.
These objects take a series of options, corresponding
to those of the :func:`generate` function.
They act as callables which can be used to generate a password
or a list of 1+ passwords. They also expose some read-only
informational attributes.
:param entropy:
Optionally specify the amount of entropy the resulting passwords
should contain (as measured with respect to the generator itself).
This will be used to autocalculate the required password size.
Also exposed as a readonly attribute.
:param length:
Optionally specify the length of password to generate,
measured in whatever symbols the subclass uses (characters or words).
Note that if both ``length`` and ``entropy`` are specified,
the larger requested size will be used.
Also exposed as a readonly attribute.
:param min_complexity:
By default, generators derived from this class will avoid
generating passwords with excessively high per-symbol redundancy
(e.g. ``aaaaaaaa``). This is done by rejecting any strings
whose self-information per symbol is below a certain
percentage of the maximum possible a given string and alphabet
size. This defaults to 40%, or ``min_complexity=0.4``.
.. autoattribute:: length
.. autoattribute:: symbol_count
.. autoattribute:: entropy_per_symbol
.. autoattribute:: entropy
Subclassing
-----------
Subclasses must implement the ``.__next__()`` method,
and set ``.symbol_count`` before calling base ``__init__`` method.
"""
#=============================================================================
# instance attrs
#=============================================================================
#: requested size of final password
length = None
#: requested entropy of final password
requested_entropy = "strong"
#: random number source to use
rng = rng
#: number of potential symbols
symbol_count = None
#: default threshold for rejecting low entropy sequences,
#: measured as % of maximum possible average entropy over all
#: sequences of given output & alphabet size.
#: TODO: defend this default -- it was picked via experimentation
min_complexity = 0.1
#=============================================================================
# init
#=============================================================================
def __init__(self, entropy=None, length=None, rng=None, min_complexity=None, **kwds):
# make sure subclass set things up correctly
assert self.symbol_count is not None, "subclass must set .symbol_count"
# init length & entropy
if entropy is not None or length is None:
if entropy is None:
entropy = self.requested_entropy
entropy = entropy_aliases.get(entropy, entropy)
if entropy <= 0:
raise ValueError("`entropy` must be positive number")
min_length = int(ceil(entropy / self.entropy_per_symbol))
if length is None or length < min_length:
length = min_length
self.requested_entropy = entropy
if length < 1:
raise ValueError("`length` must be positive integer")
self.length = length
# init min complexity
if min_complexity is None:
min_complexity = self.min_complexity
if min_complexity < 0 or min_complexity > 1:
raise ValueError("`min_complexity` must be between 0 and 1")
self.min_complexity = min_complexity
# TODO: increase length/entropy to account for min_complexity
# stripping out some possibilities
# init other common options
if rng is not None:
self.rng = rng
# hand off to parent
if kwds and _superclasses(self, SequenceGenerator) == (object,):
raise TypeError("Unexpected keyword(s): %s" % ", ".join(kwds.keys()))
super(SequenceGenerator, self).__init__(**kwds)
#=============================================================================
# informational helpers
#=============================================================================
@memoized_property
def entropy_per_symbol(self):
"""
average entropy per symbol (assuming all symbols have equal probability)
"""
return logf(self.symbol_count, 2)
@memoized_property
def entropy(self):
"""
actual entropy of generated passwords.
(should always be LCM of entropy_per_symbol >= self.entropy)
"""
return self.length * self.entropy_per_symbol
@memoized_property
def max_self_info_rate(self):
"""
maximum self-info rate acheiveable by a sequence <length>
built from <symbol_count> symbols.
"""
return _max_self_info_rate(self.symbol_count, self.length)
@memoized_property
def min_self_info_rate(self):
"""
minimum entropy allowed in a generated password
(controlled by min_complexity option)
"""
return self.min_complexity * self.max_self_info_rate
#=============================================================================
# debugging
#=============================================================================
# def _complexity(self, pwd):
# """
# measure 'complexity' of generated password
# """
# return _average_entropy(pwd) / self.max_self_info_rate
#
# def _analyze_complexity(self, count=1):
# """
# temporarily helper while exploring additional filters for
# password generation. looking into forbidding above a certain
# threshold of redundancy (as minimum % of max possible average entropy)
# """
# result = [(p, self._complexity(p)) for p in self(count)]
# result.sort(key=lambda elem: (elem[1], elem[0]))
# return result
#=============================================================================
# generation
#=============================================================================
def __next__(self):
"""main generation function, should create one password/phrase"""
raise NotImplementedError("implement in subclass")
def __call__(self, returns=None):
"""
frontend used by genword() / genphrase() to create passwords
"""
if returns is None:
return next(self)
elif isinstance(returns, int_types):
return [next(self) for _ in irange(returns)]
elif returns is iter:
return self
else:
raise exc.ExpectedTypeError(returns, "<None>, int, or <iter>", "returns")
def __iter__(self):
return self
if PY2:
def next(self):
return self.__next__()
#=============================================================================
# eoc
#=============================================================================
#=============================================================================
# password generator
#=============================================================================
class WordGenerator(SequenceGenerator):
"""
class which generates passwords by randomly choosing from a string of unique characters.
:param chars:
custom character string to draw from.
:param charset:
predefined charset to draw from.
:param \*\*kwds:
all other keywords passed to :class:`SequenceGenerator`.
.. autoattribute:: chars
.. autoattribute:: charset
.. autoattribute:: default_charsets
"""
#=============================================================================
# class attributes
#=============================================================================
#: classwide dict of predefined characters sets
default_charsets = dict(
# ascii letters, digits, and some punctuation
ascii72='0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!@#$%^&*?/',
# ascii letters and digits
ascii62='0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',
# ascii50, without visually similar '1IiLl', '0Oo', '5S', '8B'
ascii50='234679abcdefghjkmnpqrstuvwxyzACDEFGHJKMNPQRTUVWXYZ',
# lower case hexadecimal
hex='0123456789abcdef',
)
#=============================================================================
# instance attrs
#=============================================================================
#: Predefined character set in use (set to None for instances using custom 'chars')
charset = "ascii62"
#: string of chars to draw from -- usually filled in from charset
chars = None
#=============================================================================
# init
#=============================================================================
def __init__(self, chars=None, charset=None, **kwds):
# init chars and charset
if chars:
if charset:
raise TypeError("`chars` and `charset` are mutually exclusive")
else:
if not charset:
charset = self.charset
assert charset
chars = self.default_charsets[charset]
self.charset = charset
chars = to_unicode(chars, param="chars")
if len(set(chars)) != len(chars):
raise ValueError("`chars` cannot contain duplicate elements")
self.chars = chars
# hand off to parent
super(WordGenerator, self).__init__(**kwds)
# log.debug("WordGenerator(): entropy/char=%r", self.entropy_per_symbol)
#=============================================================================
# informational helpers
#=============================================================================
@memoized_property
def symbol_count(self):
return len(self.chars)
#=============================================================================
# generation
#=============================================================================
def __next__(self):
while True:
secret = getrandstr(self.rng, self.chars, self.length)
# check that it satisfies minimum self-information limit
# set by min_complexity. i.e., reject strings like "aaaaaaaa"
# even if they're long enough.
if _self_info_rate(secret) < self.min_self_info_rate:
continue
# XXX: could do things like optionally ensure character groups
# (e.g. letters & punctuation) are included.
return secret
#=============================================================================
# eoc
#=============================================================================
def genword(entropy=None, length=None, returns=None, **kwds):
"""Generate one or more random passwords.
This function uses :mod:`random.SystemRandom` to generate
one or more passwords; it can be configured to generate
alphanumeric passwords, or full english phrases.
The complexity of the password can be specified
by size, or by the desired amount of entropy.
Usage Example::
>>> # generate a random alphanumeric string with 48 bits of entropy (the default)
>>> pwd.genword()
'DnBHvDjMK6'
>>> # generate a random hexadecimal string with 52 bits of entropy
>>> pwd.genword(entropy=52, charset="hex")
'DnBHvDjMK6'
:param entropy:
Strength of resulting password, measured in bits of Shannon entropy
(defaults to 48). An appropriate **length** value will be calculated
based on the requested entropy amount, and the size of the character set.
If both ``entropy`` and ``length`` are specified,
the larger effective length will be used.
This can also be one of a handful of aliases to predefined
entropy amounts: ``"weak"`` (24), ``"fair"`` (36),
``"strong"`` (48), and ``"secure"`` (56).
:param length:
Size of resulting password, measured in characters.
If omitted, the size is auto-calculated based on the ``entropy`` parameter.
:param returns:
If ``None`` (the default), this function will generate a single password.
If an integer, this function will return a list containing that many passwords.
If the ``iter`` constant, will return an iterator that yields passwords.
:param charset:
The character set to draw from, if not specified explicitly by **chars**.
Defaults to ``"ascii62"``, but can be any of:
* ``"ascii62"`` -- all digits and ascii upper & lowercase letters.
Provides ~5.95 entropy per character.
* ``"ascii50"`` -- subset which excludes visually similar characters
(``1IiLl0Oo5S8B``). Provides ~5.64 entropy per character.
* ``"ascii72"`` -- all digits and ascii upper & lowercase letters,
as well as some punctuation. Provides ~6.17 entropy per character.
* ``"hex"`` -- Lower case hexadecimal. Providers 4 bits of entropy per character.
:param chars:
Optionally specify custom charset as a string of characters.
This option cannot be combined with **charset**.
:returns:
:class:`!str` containing randomly generated password
(or list of 1+ passwords if ``choices`` is specified)
"""
gen = WordGenerator(length=length, entropy=entropy, **kwds)
return gen(returns)
#=============================================================================
# pass phrase generator
#=============================================================================
class JOIN(object):
"""constants for PhraseGenerator join modes"""
NONE = "none"
SPACE = "space"
CAMEL = "camelcase"
class PhraseGenerator(SequenceGenerator):
"""class which generates passphrases by randomly choosing
from a list of unique words.
:param wordset:
wordset to draw from.
:param preset:
name of preset wordlist to use instead of ``wordset``.
:param spaces:
whether to insert spaces between words in output (defaults to ``True``).
:param \*\*kwds:
all other keywords passed to :class:`SequenceGenerator`.
.. autoattribute:: wordset
"""
#=============================================================================
# class attrs
#=============================================================================
#: dict of preset word sets,
#: values set to None are lazy-loaded from disk by _load_wordset()
default_wordsets = dict(
diceware=None,
beale=None,
electrum=None,
)
#=============================================================================
# instance attrs
#=============================================================================
#: predefined wordset to use
wordset = "beale"
#: list of words to draw from
words = None
#: separator to use when joining words
sep = " "
#=============================================================================
# init
#=============================================================================
def __init__(self, wordset=None, words=None, sep=None, **kwds):
# init words and wordset
if words is not None:
if wordset is not None:
raise TypeError("`words` and `wordset` are mutually exclusive")
else:
if wordset is None:
wordset = self.wordset
assert wordset
words = self.default_wordsets[wordset]
if words is None:
words = self.default_wordsets[wordset] = _load_wordset(wordset)
self.wordset = wordset
if not isinstance(words, (list, tuple)):
words = tuple(words)
if len(set(words)) != len(words):
raise ValueError("`words` cannot contain duplicate elements: " + _dup_repr(words))
self.words = words
# init separator
if sep is None:
sep = self.sep
sep = to_unicode(sep, param="sep")
self.sep = sep
# hand off to parent
super(PhraseGenerator, self).__init__(**kwds)
##log.debug("PhraseGenerator(): entropy/word=%r entropy/char=%r min_chars=%r",
## self.entropy_per_symbol, self.entropy_per_char, self.min_chars)
#=============================================================================
# informational helpers
#=============================================================================
@memoized_property
def symbol_count(self):
return len(self.words)
# @memoized_property
# def min_chars(self):
# """
# minimum number of characters allowed in resulting password.
# (see comment in ``.__next__()`` for details).
# """
# chars_in_secret = (self.length * self.min_self_info_rate /
# _self_info_rate_per_char(self.words))
# return int(ceil(chars_in_secret))
#=============================================================================
# generation
#=============================================================================
def __next__(self):
while True:
# create random word
symbols = [self.rng.choice(self.words) for _ in irange(self.length)]
# check that it satisfies minimum self-information limit
# set by min_complexity. i.e., reject strings like "aaaaaaaa"
if _self_info_rate(symbols) <= self.min_self_info_rate:
continue
# XXX: this code isn't quite capturing the right calculation,
# so omitting this for now.
# # reject any passwords which contain so many short / repetitive words that it's below
# # ``chars_in_secret * self_info_rate_per_char < words_in_secret * min_self_info_rate``
# # ... where self_info_rate_per_char is determined based on frequency of chars in wordset.
# # To do this cheaply, we precalculate minimum chars_in_secret (above)
# chars = sum(len(elem) for elem in symbols)
# if chars < self.min_chars:
# continue
# join using separator
secret = self.sep.join(symbols)
return secret
#=============================================================================
# eoc
#=============================================================================
def genphrase(entropy=None, length=None, returns=None, **kwds):
"""Generate one or more random password / passphrases.
This function uses :mod:`random.SystemRandom` to generate
one or more passwords; it can be configured to generate
alphanumeric passwords, or full english phrases.
The complexity of the password can be specified
by size, or by the desired amount of entropy.
Usage Example::
>>> # generate random english phrase with 48 bits of entropy
>>> from passlib import pwd
>>> pwd.genphrase()
'cairn pen keys flaw'
:param entropy:
Strength of resulting password, measured in bits of Shannon entropy
(defaults to 48).
Based on the mode in use, the ``length`` parameter will be
autocalculated so that that an attacker will need an average of
``2**(entropy-1)`` attempts to correctly guess the password
(this measurement assumes the attacker knows the mode
and configuration options in use, but nothing of the RNG state).
If both ``entropy`` and ``length`` are specified,
the larger effective size will be used.
:param length:
Length of resulting password, measured in words.
If omitted, the size is autocalculated based on the ``entropy`` parameter.
:param returns:
If ``None`` (the default), this function will generate a single password.
If an integer, this function will return a list containing that many passwords.
If the ``iter`` constant, will return an iterator that yields passwords.
:param wordset:
Optionally use a pre-defined word-set when generating a password.
There are currently two presets available, the default is ``"beale"``:
``"diceware"``
preset which outputs random english phrases,
drawn randomly from a list of 7776 english words set down
by the `Diceware <http://world.std.com/~reinhold/diceware.html>`_ project.
This wordset has ~12.9 bits of entropy per word.
``"beale"``
variant of the Diceware wordlist as edited by
Alan Beale, also available from the diceware project.
This wordset has ~12.9 bits of entropy per word.
:param words:
Optionally specifies a list/set of words to use when randomly
generating a passphrase. This option cannot be combined
with ``wordset``.
:param sep:
Optional separator to use when joining words.
Defaults to ``" "`` (a space), but can be an empty string, a hyphen, etc.
:returns:
:class:`!str` containing randomly generated password,
or list of 1+ passwords if ``count`` is specified.
"""
gen = PhraseGenerator(entropy=entropy, length=length, **kwds)
return gen(returns)
#=============================================================================
# strength measurement
#
# NOTE:
# for a little while, had rough draft of password strength measurement alg here.
# but not sure if there's value in yet another measurement algorithm,
# that's not just duplicating the effort of libraries like zxcbn.
# may revive it later, but for now, leaving some refs to others out there:
# * NIST 800-63 has simple alg
# * zxcvbn (https://tech.dropbox.com/2012/04/zxcvbn-realistic-password-strength-estimation/)
# might also be good, and has approach similar to composite approach i was already thinking about,
# but much more well thought out.
# * passfault (https://github.com/c-a-m/passfault) looks thorough,
# but may have licensing issues, plus porting to python looks like very big job :(
# * give a look at running things through zlib - might be able to cheaply
# catch extra redundancies.
# zxcvbn -
# after some looking, it's not clear which is latest copy.
# * https://github.com/dropbox/python-zxcvbn -- official, not updated since 2013
# * https://github.com/rpearl/python-zxcvbn -- fork used by dropbox dev, not updated since 2013
# released to pypi - https://pypi.python.org/pypi/zxcvbn/1.0
# * https://github.com/moreati/python-zxcvbn -- has some updates as of july 2015
# * https://github.com/gordon86/python-zxcvbn (fork of above, released to pypi)
# - https://pypi.python.org/pypi/zxcvbn-py3/1.1 [2015-10]
#=============================================================================
#=============================================================================
# eof
#=============================================================================
|