diff options
author | Matth?us G. Chajdas <dev@anteru.net> | 2019-11-10 13:56:53 +0100 |
---|---|---|
committer | Matth?us G. Chajdas <dev@anteru.net> | 2019-11-10 13:56:53 +0100 |
commit | 1dd3124a9770e11b6684e5dd1e6bc15a0aa3bc67 (patch) | |
tree | 87a171383266dd1f64196589af081bc2f8e497c3 /tests/examplefiles/example.bug | |
parent | f1c080e184dc1bbc36eaa7cd729ff3a499de568a (diff) | |
download | pygments-master.tar.gz |
Diffstat (limited to 'tests/examplefiles/example.bug')
-rw-r--r-- | tests/examplefiles/example.bug | 54 |
1 files changed, 0 insertions, 54 deletions
diff --git a/tests/examplefiles/example.bug b/tests/examplefiles/example.bug deleted file mode 100644 index 9ccd531d..00000000 --- a/tests/examplefiles/example.bug +++ /dev/null @@ -1,54 +0,0 @@ -# Alligators: multinomial - logistic regression -# http://www.openbugs.info/Examples/Aligators.html -model { - # PRIORS - alpha[1] <- 0; # zero contrast for baseline food - for (k in 2 : K) { - alpha[k] ~ dnorm(0, 0.00001) # vague priors - } - # Loop around lakes: - for (k in 1 : K){ - beta[1, k] <- 0 - } # corner-point contrast with first lake - for (i in 2 : I) { - beta[i, 1] <- 0 ; # zero contrast for baseline food - for (k in 2 : K){ - beta[i, k] ~ dnorm(0, 0.00001) # vague priors - } - } - # Loop around sizes: - for (k in 1 : K){ - gamma[1, k] <- 0 # corner-point contrast with first size - } - for (j in 2 : J) { - gamma[j, 1] <- 0 ; # zero contrast for baseline food - for ( k in 2 : K){ - gamma[j, k] ~ dnorm(0, 0.00001) # vague priors - } - } - - # LIKELIHOOD - for (i in 1 : I) { # loop around lakes - for (j in 1 : J) { # loop around sizes - - # Fit standard Poisson regressions relative to baseline - lambda[i, j] ~ dflat() # vague priors - for (k in 1 : K) { # loop around foods - X[i, j, k] ~ dpois(mu[i, j, k]) - log(mu[i, j, k]) <- lambda[i, j] + alpha[k] + beta[i, k] + gamma[j, k] - culmative.X[i, j, k] <- culmative(X[i, j, k], X[i, j, k]) - } - } - } - - # TRANSFORM OUTPUT TO ENABLE COMPARISON - # WITH AGRESTI'S RESULTS - for (k in 1 : K) { # loop around foods - for (i in 1 : I) { # loop around lakes - b[i, k] <- beta[i, k] - mean(beta[, k]); # sum to zero constraint - } - for (j in 1 : J) { # loop around sizes - g[j, k] <- gamma[j, k] - mean(gamma[, k]); # sum to zero constraint - } - } -} |