diff options
author | Matth?us G. Chajdas <dev@anteru.net> | 2019-11-10 13:56:53 +0100 |
---|---|---|
committer | Matth?us G. Chajdas <dev@anteru.net> | 2019-11-10 13:56:53 +0100 |
commit | 1dd3124a9770e11b6684e5dd1e6bc15a0aa3bc67 (patch) | |
tree | 87a171383266dd1f64196589af081bc2f8e497c3 /tests/examplefiles/example.thy | |
parent | f1c080e184dc1bbc36eaa7cd729ff3a499de568a (diff) | |
download | pygments-master.tar.gz |
Diffstat (limited to 'tests/examplefiles/example.thy')
-rw-r--r-- | tests/examplefiles/example.thy | 751 |
1 files changed, 0 insertions, 751 deletions
diff --git a/tests/examplefiles/example.thy b/tests/examplefiles/example.thy deleted file mode 100644 index abaa1af8..00000000 --- a/tests/examplefiles/example.thy +++ /dev/null @@ -1,751 +0,0 @@ -(* from Isabelle2013-2 src/HOL/Power.thy; BSD license *) - -(* Title: HOL/Power.thy - Author: Lawrence C Paulson, Cambridge University Computer Laboratory - Copyright 1997 University of Cambridge -*) - -header {* Exponentiation *} - -theory Power -imports Num -begin - -subsection {* Powers for Arbitrary Monoids *} - -class power = one + times -begin - -primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where - power_0: "a ^ 0 = 1" - | power_Suc: "a ^ Suc n = a * a ^ n" - -notation (latex output) - power ("(_\<^bsup>_\<^esup>)" [1000] 1000) - -notation (HTML output) - power ("(_\<^bsup>_\<^esup>)" [1000] 1000) - -text {* Special syntax for squares. *} - -abbreviation (xsymbols) - power2 :: "'a \<Rightarrow> 'a" ("(_\<^sup>2)" [1000] 999) where - "x\<^sup>2 \<equiv> x ^ 2" - -notation (latex output) - power2 ("(_\<^sup>2)" [1000] 999) - -notation (HTML output) - power2 ("(_\<^sup>2)" [1000] 999) - -end - -context monoid_mult -begin - -subclass power . - -lemma power_one [simp]: - "1 ^ n = 1" - by (induct n) simp_all - -lemma power_one_right [simp]: - "a ^ 1 = a" - by simp - -lemma power_commutes: - "a ^ n * a = a * a ^ n" - by (induct n) (simp_all add: mult_assoc) - -lemma power_Suc2: - "a ^ Suc n = a ^ n * a" - by (simp add: power_commutes) - -lemma power_add: - "a ^ (m + n) = a ^ m * a ^ n" - by (induct m) (simp_all add: algebra_simps) - -lemma power_mult: - "a ^ (m * n) = (a ^ m) ^ n" - by (induct n) (simp_all add: power_add) - -lemma power2_eq_square: "a\<^sup>2 = a * a" - by (simp add: numeral_2_eq_2) - -lemma power3_eq_cube: "a ^ 3 = a * a * a" - by (simp add: numeral_3_eq_3 mult_assoc) - -lemma power_even_eq: - "a ^ (2 * n) = (a ^ n)\<^sup>2" - by (subst mult_commute) (simp add: power_mult) - -lemma power_odd_eq: - "a ^ Suc (2*n) = a * (a ^ n)\<^sup>2" - by (simp add: power_even_eq) - -lemma power_numeral_even: - "z ^ numeral (Num.Bit0 w) = (let w = z ^ (numeral w) in w * w)" - unfolding numeral_Bit0 power_add Let_def .. - -lemma power_numeral_odd: - "z ^ numeral (Num.Bit1 w) = (let w = z ^ (numeral w) in z * w * w)" - unfolding numeral_Bit1 One_nat_def add_Suc_right add_0_right - unfolding power_Suc power_add Let_def mult_assoc .. - -lemma funpow_times_power: - "(times x ^^ f x) = times (x ^ f x)" -proof (induct "f x" arbitrary: f) - case 0 then show ?case by (simp add: fun_eq_iff) -next - case (Suc n) - def g \<equiv> "\<lambda>x. f x - 1" - with Suc have "n = g x" by simp - with Suc have "times x ^^ g x = times (x ^ g x)" by simp - moreover from Suc g_def have "f x = g x + 1" by simp - ultimately show ?case by (simp add: power_add funpow_add fun_eq_iff mult_assoc) -qed - -end - -context comm_monoid_mult -begin - -lemma power_mult_distrib: - "(a * b) ^ n = (a ^ n) * (b ^ n)" - by (induct n) (simp_all add: mult_ac) - -end - -context semiring_numeral -begin - -lemma numeral_sqr: "numeral (Num.sqr k) = numeral k * numeral k" - by (simp only: sqr_conv_mult numeral_mult) - -lemma numeral_pow: "numeral (Num.pow k l) = numeral k ^ numeral l" - by (induct l, simp_all only: numeral_class.numeral.simps pow.simps - numeral_sqr numeral_mult power_add power_one_right) - -lemma power_numeral [simp]: "numeral k ^ numeral l = numeral (Num.pow k l)" - by (rule numeral_pow [symmetric]) - -end - -context semiring_1 -begin - -lemma of_nat_power: - "of_nat (m ^ n) = of_nat m ^ n" - by (induct n) (simp_all add: of_nat_mult) - -lemma power_zero_numeral [simp]: "(0::'a) ^ numeral k = 0" - by (simp add: numeral_eq_Suc) - -lemma zero_power2: "0\<^sup>2 = 0" (* delete? *) - by (rule power_zero_numeral) - -lemma one_power2: "1\<^sup>2 = 1" (* delete? *) - by (rule power_one) - -end - -context comm_semiring_1 -begin - -text {* The divides relation *} - -lemma le_imp_power_dvd: - assumes "m \<le> n" shows "a ^ m dvd a ^ n" -proof - have "a ^ n = a ^ (m + (n - m))" - using `m \<le> n` by simp - also have "\<dots> = a ^ m * a ^ (n - m)" - by (rule power_add) - finally show "a ^ n = a ^ m * a ^ (n - m)" . -qed - -lemma power_le_dvd: - "a ^ n dvd b \<Longrightarrow> m \<le> n \<Longrightarrow> a ^ m dvd b" - by (rule dvd_trans [OF le_imp_power_dvd]) - -lemma dvd_power_same: - "x dvd y \<Longrightarrow> x ^ n dvd y ^ n" - by (induct n) (auto simp add: mult_dvd_mono) - -lemma dvd_power_le: - "x dvd y \<Longrightarrow> m \<ge> n \<Longrightarrow> x ^ n dvd y ^ m" - by (rule power_le_dvd [OF dvd_power_same]) - -lemma dvd_power [simp]: - assumes "n > (0::nat) \<or> x = 1" - shows "x dvd (x ^ n)" -using assms proof - assume "0 < n" - then have "x ^ n = x ^ Suc (n - 1)" by simp - then show "x dvd (x ^ n)" by simp -next - assume "x = 1" - then show "x dvd (x ^ n)" by simp -qed - -end - -context ring_1 -begin - -lemma power_minus: - "(- a) ^ n = (- 1) ^ n * a ^ n" -proof (induct n) - case 0 show ?case by simp -next - case (Suc n) then show ?case - by (simp del: power_Suc add: power_Suc2 mult_assoc) -qed - -lemma power_minus_Bit0: - "(- x) ^ numeral (Num.Bit0 k) = x ^ numeral (Num.Bit0 k)" - by (induct k, simp_all only: numeral_class.numeral.simps power_add - power_one_right mult_minus_left mult_minus_right minus_minus) - -lemma power_minus_Bit1: - "(- x) ^ numeral (Num.Bit1 k) = - (x ^ numeral (Num.Bit1 k))" - by (simp only: eval_nat_numeral(3) power_Suc power_minus_Bit0 mult_minus_left) - -lemma power_neg_numeral_Bit0 [simp]: - "neg_numeral k ^ numeral (Num.Bit0 l) = numeral (Num.pow k (Num.Bit0 l))" - by (simp only: neg_numeral_def power_minus_Bit0 power_numeral) - -lemma power_neg_numeral_Bit1 [simp]: - "neg_numeral k ^ numeral (Num.Bit1 l) = neg_numeral (Num.pow k (Num.Bit1 l))" - by (simp only: neg_numeral_def power_minus_Bit1 power_numeral pow.simps) - -lemma power2_minus [simp]: - "(- a)\<^sup>2 = a\<^sup>2" - by (rule power_minus_Bit0) - -lemma power_minus1_even [simp]: - "-1 ^ (2*n) = 1" -proof (induct n) - case 0 show ?case by simp -next - case (Suc n) then show ?case by (simp add: power_add power2_eq_square) -qed - -lemma power_minus1_odd: - "-1 ^ Suc (2*n) = -1" - by simp - -lemma power_minus_even [simp]: - "(-a) ^ (2*n) = a ^ (2*n)" - by (simp add: power_minus [of a]) - -end - -context ring_1_no_zero_divisors -begin - -lemma field_power_not_zero: - "a \<noteq> 0 \<Longrightarrow> a ^ n \<noteq> 0" - by (induct n) auto - -lemma zero_eq_power2 [simp]: - "a\<^sup>2 = 0 \<longleftrightarrow> a = 0" - unfolding power2_eq_square by simp - -lemma power2_eq_1_iff: - "a\<^sup>2 = 1 \<longleftrightarrow> a = 1 \<or> a = - 1" - unfolding power2_eq_square by (rule square_eq_1_iff) - -end - -context idom -begin - -lemma power2_eq_iff: "x\<^sup>2 = y\<^sup>2 \<longleftrightarrow> x = y \<or> x = - y" - unfolding power2_eq_square by (rule square_eq_iff) - -end - -context division_ring -begin - -text {* FIXME reorient or rename to @{text nonzero_inverse_power} *} -lemma nonzero_power_inverse: - "a \<noteq> 0 \<Longrightarrow> inverse (a ^ n) = (inverse a) ^ n" - by (induct n) - (simp_all add: nonzero_inverse_mult_distrib power_commutes field_power_not_zero) - -end - -context field -begin - -lemma nonzero_power_divide: - "b \<noteq> 0 \<Longrightarrow> (a / b) ^ n = a ^ n / b ^ n" - by (simp add: divide_inverse power_mult_distrib nonzero_power_inverse) - -end - - -subsection {* Exponentiation on ordered types *} - -context linordered_ring (* TODO: move *) -begin - -lemma sum_squares_ge_zero: - "0 \<le> x * x + y * y" - by (intro add_nonneg_nonneg zero_le_square) - -lemma not_sum_squares_lt_zero: - "\<not> x * x + y * y < 0" - by (simp add: not_less sum_squares_ge_zero) - -end - -context linordered_semidom -begin - -lemma zero_less_power [simp]: - "0 < a \<Longrightarrow> 0 < a ^ n" - by (induct n) (simp_all add: mult_pos_pos) - -lemma zero_le_power [simp]: - "0 \<le> a \<Longrightarrow> 0 \<le> a ^ n" - by (induct n) (simp_all add: mult_nonneg_nonneg) - -lemma power_mono: - "a \<le> b \<Longrightarrow> 0 \<le> a \<Longrightarrow> a ^ n \<le> b ^ n" - by (induct n) (auto intro: mult_mono order_trans [of 0 a b]) - -lemma one_le_power [simp]: "1 \<le> a \<Longrightarrow> 1 \<le> a ^ n" - using power_mono [of 1 a n] by simp - -lemma power_le_one: "\<lbrakk>0 \<le> a; a \<le> 1\<rbrakk> \<Longrightarrow> a ^ n \<le> 1" - using power_mono [of a 1 n] by simp - -lemma power_gt1_lemma: - assumes gt1: "1 < a" - shows "1 < a * a ^ n" -proof - - from gt1 have "0 \<le> a" - by (fact order_trans [OF zero_le_one less_imp_le]) - have "1 * 1 < a * 1" using gt1 by simp - also have "\<dots> \<le> a * a ^ n" using gt1 - by (simp only: mult_mono `0 \<le> a` one_le_power order_less_imp_le - zero_le_one order_refl) - finally show ?thesis by simp -qed - -lemma power_gt1: - "1 < a \<Longrightarrow> 1 < a ^ Suc n" - by (simp add: power_gt1_lemma) - -lemma one_less_power [simp]: - "1 < a \<Longrightarrow> 0 < n \<Longrightarrow> 1 < a ^ n" - by (cases n) (simp_all add: power_gt1_lemma) - -lemma power_le_imp_le_exp: - assumes gt1: "1 < a" - shows "a ^ m \<le> a ^ n \<Longrightarrow> m \<le> n" -proof (induct m arbitrary: n) - case 0 - show ?case by simp -next - case (Suc m) - show ?case - proof (cases n) - case 0 - with Suc.prems Suc.hyps have "a * a ^ m \<le> 1" by simp - with gt1 show ?thesis - by (force simp only: power_gt1_lemma - not_less [symmetric]) - next - case (Suc n) - with Suc.prems Suc.hyps show ?thesis - by (force dest: mult_left_le_imp_le - simp add: less_trans [OF zero_less_one gt1]) - qed -qed - -text{*Surely we can strengthen this? It holds for @{text "0<a<1"} too.*} -lemma power_inject_exp [simp]: - "1 < a \<Longrightarrow> a ^ m = a ^ n \<longleftrightarrow> m = n" - by (force simp add: order_antisym power_le_imp_le_exp) - -text{*Can relax the first premise to @{term "0<a"} in the case of the -natural numbers.*} -lemma power_less_imp_less_exp: - "1 < a \<Longrightarrow> a ^ m < a ^ n \<Longrightarrow> m < n" - by (simp add: order_less_le [of m n] less_le [of "a^m" "a^n"] - power_le_imp_le_exp) - -lemma power_strict_mono [rule_format]: - "a < b \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 < n \<longrightarrow> a ^ n < b ^ n" - by (induct n) - (auto simp add: mult_strict_mono le_less_trans [of 0 a b]) - -text{*Lemma for @{text power_strict_decreasing}*} -lemma power_Suc_less: - "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a * a ^ n < a ^ n" - by (induct n) - (auto simp add: mult_strict_left_mono) - -lemma power_strict_decreasing [rule_format]: - "n < N \<Longrightarrow> 0 < a \<Longrightarrow> a < 1 \<longrightarrow> a ^ N < a ^ n" -proof (induct N) - case 0 then show ?case by simp -next - case (Suc N) then show ?case - apply (auto simp add: power_Suc_less less_Suc_eq) - apply (subgoal_tac "a * a^N < 1 * a^n") - apply simp - apply (rule mult_strict_mono) apply auto - done -qed - -text{*Proof resembles that of @{text power_strict_decreasing}*} -lemma power_decreasing [rule_format]: - "n \<le> N \<Longrightarrow> 0 \<le> a \<Longrightarrow> a \<le> 1 \<longrightarrow> a ^ N \<le> a ^ n" -proof (induct N) - case 0 then show ?case by simp -next - case (Suc N) then show ?case - apply (auto simp add: le_Suc_eq) - apply (subgoal_tac "a * a^N \<le> 1 * a^n", simp) - apply (rule mult_mono) apply auto - done -qed - -lemma power_Suc_less_one: - "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a ^ Suc n < 1" - using power_strict_decreasing [of 0 "Suc n" a] by simp - -text{*Proof again resembles that of @{text power_strict_decreasing}*} -lemma power_increasing [rule_format]: - "n \<le> N \<Longrightarrow> 1 \<le> a \<Longrightarrow> a ^ n \<le> a ^ N" -proof (induct N) - case 0 then show ?case by simp -next - case (Suc N) then show ?case - apply (auto simp add: le_Suc_eq) - apply (subgoal_tac "1 * a^n \<le> a * a^N", simp) - apply (rule mult_mono) apply (auto simp add: order_trans [OF zero_le_one]) - done -qed - -text{*Lemma for @{text power_strict_increasing}*} -lemma power_less_power_Suc: - "1 < a \<Longrightarrow> a ^ n < a * a ^ n" - by (induct n) (auto simp add: mult_strict_left_mono less_trans [OF zero_less_one]) - -lemma power_strict_increasing [rule_format]: - "n < N \<Longrightarrow> 1 < a \<longrightarrow> a ^ n < a ^ N" -proof (induct N) - case 0 then show ?case by simp -next - case (Suc N) then show ?case - apply (auto simp add: power_less_power_Suc less_Suc_eq) - apply (subgoal_tac "1 * a^n < a * a^N", simp) - apply (rule mult_strict_mono) apply (auto simp add: less_trans [OF zero_less_one] less_imp_le) - done -qed - -lemma power_increasing_iff [simp]: - "1 < b \<Longrightarrow> b ^ x \<le> b ^ y \<longleftrightarrow> x \<le> y" - by (blast intro: power_le_imp_le_exp power_increasing less_imp_le) - -lemma power_strict_increasing_iff [simp]: - "1 < b \<Longrightarrow> b ^ x < b ^ y \<longleftrightarrow> x < y" -by (blast intro: power_less_imp_less_exp power_strict_increasing) - -lemma power_le_imp_le_base: - assumes le: "a ^ Suc n \<le> b ^ Suc n" - and ynonneg: "0 \<le> b" - shows "a \<le> b" -proof (rule ccontr) - assume "~ a \<le> b" - then have "b < a" by (simp only: linorder_not_le) - then have "b ^ Suc n < a ^ Suc n" - by (simp only: assms power_strict_mono) - from le and this show False - by (simp add: linorder_not_less [symmetric]) -qed - -lemma power_less_imp_less_base: - assumes less: "a ^ n < b ^ n" - assumes nonneg: "0 \<le> b" - shows "a < b" -proof (rule contrapos_pp [OF less]) - assume "~ a < b" - hence "b \<le> a" by (simp only: linorder_not_less) - hence "b ^ n \<le> a ^ n" using nonneg by (rule power_mono) - thus "\<not> a ^ n < b ^ n" by (simp only: linorder_not_less) -qed - -lemma power_inject_base: - "a ^ Suc n = b ^ Suc n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a = b" -by (blast intro: power_le_imp_le_base antisym eq_refl sym) - -lemma power_eq_imp_eq_base: - "a ^ n = b ^ n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 < n \<Longrightarrow> a = b" - by (cases n) (simp_all del: power_Suc, rule power_inject_base) - -lemma power2_le_imp_le: - "x\<^sup>2 \<le> y\<^sup>2 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x \<le> y" - unfolding numeral_2_eq_2 by (rule power_le_imp_le_base) - -lemma power2_less_imp_less: - "x\<^sup>2 < y\<^sup>2 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x < y" - by (rule power_less_imp_less_base) - -lemma power2_eq_imp_eq: - "x\<^sup>2 = y\<^sup>2 \<Longrightarrow> 0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> x = y" - unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base) simp - -end - -context linordered_ring_strict -begin - -lemma sum_squares_eq_zero_iff: - "x * x + y * y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" - by (simp add: add_nonneg_eq_0_iff) - -lemma sum_squares_le_zero_iff: - "x * x + y * y \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0" - by (simp add: le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff) - -lemma sum_squares_gt_zero_iff: - "0 < x * x + y * y \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0" - by (simp add: not_le [symmetric] sum_squares_le_zero_iff) - -end - -context linordered_idom -begin - -lemma power_abs: - "abs (a ^ n) = abs a ^ n" - by (induct n) (auto simp add: abs_mult) - -lemma abs_power_minus [simp]: - "abs ((-a) ^ n) = abs (a ^ n)" - by (simp add: power_abs) - -lemma zero_less_power_abs_iff [simp, no_atp]: - "0 < abs a ^ n \<longleftrightarrow> a \<noteq> 0 \<or> n = 0" -proof (induct n) - case 0 show ?case by simp -next - case (Suc n) show ?case by (auto simp add: Suc zero_less_mult_iff) -qed - -lemma zero_le_power_abs [simp]: - "0 \<le> abs a ^ n" - by (rule zero_le_power [OF abs_ge_zero]) - -lemma zero_le_power2 [simp]: - "0 \<le> a\<^sup>2" - by (simp add: power2_eq_square) - -lemma zero_less_power2 [simp]: - "0 < a\<^sup>2 \<longleftrightarrow> a \<noteq> 0" - by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff) - -lemma power2_less_0 [simp]: - "\<not> a\<^sup>2 < 0" - by (force simp add: power2_eq_square mult_less_0_iff) - -lemma abs_power2 [simp]: - "abs (a\<^sup>2) = a\<^sup>2" - by (simp add: power2_eq_square abs_mult abs_mult_self) - -lemma power2_abs [simp]: - "(abs a)\<^sup>2 = a\<^sup>2" - by (simp add: power2_eq_square abs_mult_self) - -lemma odd_power_less_zero: - "a < 0 \<Longrightarrow> a ^ Suc (2*n) < 0" -proof (induct n) - case 0 - then show ?case by simp -next - case (Suc n) - have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)" - by (simp add: mult_ac power_add power2_eq_square) - thus ?case - by (simp del: power_Suc add: Suc mult_less_0_iff mult_neg_neg) -qed - -lemma odd_0_le_power_imp_0_le: - "0 \<le> a ^ Suc (2*n) \<Longrightarrow> 0 \<le> a" - using odd_power_less_zero [of a n] - by (force simp add: linorder_not_less [symmetric]) - -lemma zero_le_even_power'[simp]: - "0 \<le> a ^ (2*n)" -proof (induct n) - case 0 - show ?case by simp -next - case (Suc n) - have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)" - by (simp add: mult_ac power_add power2_eq_square) - thus ?case - by (simp add: Suc zero_le_mult_iff) -qed - -lemma sum_power2_ge_zero: - "0 \<le> x\<^sup>2 + y\<^sup>2" - by (intro add_nonneg_nonneg zero_le_power2) - -lemma not_sum_power2_lt_zero: - "\<not> x\<^sup>2 + y\<^sup>2 < 0" - unfolding not_less by (rule sum_power2_ge_zero) - -lemma sum_power2_eq_zero_iff: - "x\<^sup>2 + y\<^sup>2 = 0 \<longleftrightarrow> x = 0 \<and> y = 0" - unfolding power2_eq_square by (simp add: add_nonneg_eq_0_iff) - -lemma sum_power2_le_zero_iff: - "x\<^sup>2 + y\<^sup>2 \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0" - by (simp add: le_less sum_power2_eq_zero_iff not_sum_power2_lt_zero) - -lemma sum_power2_gt_zero_iff: - "0 < x\<^sup>2 + y\<^sup>2 \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0" - unfolding not_le [symmetric] by (simp add: sum_power2_le_zero_iff) - -end - - -subsection {* Miscellaneous rules *} - -lemma power_eq_if: "p ^ m = (if m=0 then 1 else p * (p ^ (m - 1)))" - unfolding One_nat_def by (cases m) simp_all - -lemma power2_sum: - fixes x y :: "'a::comm_semiring_1" - shows "(x + y)\<^sup>2 = x\<^sup>2 + y\<^sup>2 + 2 * x * y" - by (simp add: algebra_simps power2_eq_square mult_2_right) - -lemma power2_diff: - fixes x y :: "'a::comm_ring_1" - shows "(x - y)\<^sup>2 = x\<^sup>2 + y\<^sup>2 - 2 * x * y" - by (simp add: ring_distribs power2_eq_square mult_2) (rule mult_commute) - -lemma power_0_Suc [simp]: - "(0::'a::{power, semiring_0}) ^ Suc n = 0" - by simp - -text{*It looks plausible as a simprule, but its effect can be strange.*} -lemma power_0_left: - "0 ^ n = (if n = 0 then 1 else (0::'a::{power, semiring_0}))" - by (induct n) simp_all - -lemma power_eq_0_iff [simp]: - "a ^ n = 0 \<longleftrightarrow> - a = (0::'a::{mult_zero,zero_neq_one,no_zero_divisors,power}) \<and> n \<noteq> 0" - by (induct n) - (auto simp add: no_zero_divisors elim: contrapos_pp) - -lemma (in field) power_diff: - assumes nz: "a \<noteq> 0" - shows "n \<le> m \<Longrightarrow> a ^ (m - n) = a ^ m / a ^ n" - by (induct m n rule: diff_induct) (simp_all add: nz field_power_not_zero) - -text{*Perhaps these should be simprules.*} -lemma power_inverse: - fixes a :: "'a::division_ring_inverse_zero" - shows "inverse (a ^ n) = inverse a ^ n" -apply (cases "a = 0") -apply (simp add: power_0_left) -apply (simp add: nonzero_power_inverse) -done (* TODO: reorient or rename to inverse_power *) - -lemma power_one_over: - "1 / (a::'a::{field_inverse_zero, power}) ^ n = (1 / a) ^ n" - by (simp add: divide_inverse) (rule power_inverse) - -lemma power_divide: - "(a / b) ^ n = (a::'a::field_inverse_zero) ^ n / b ^ n" -apply (cases "b = 0") -apply (simp add: power_0_left) -apply (rule nonzero_power_divide) -apply assumption -done - -text {* Simprules for comparisons where common factors can be cancelled. *} - -lemmas zero_compare_simps = - add_strict_increasing add_strict_increasing2 add_increasing - zero_le_mult_iff zero_le_divide_iff - zero_less_mult_iff zero_less_divide_iff - mult_le_0_iff divide_le_0_iff - mult_less_0_iff divide_less_0_iff - zero_le_power2 power2_less_0 - - -subsection {* Exponentiation for the Natural Numbers *} - -lemma nat_one_le_power [simp]: - "Suc 0 \<le> i \<Longrightarrow> Suc 0 \<le> i ^ n" - by (rule one_le_power [of i n, unfolded One_nat_def]) - -lemma nat_zero_less_power_iff [simp]: - "x ^ n > 0 \<longleftrightarrow> x > (0::nat) \<or> n = 0" - by (induct n) auto - -lemma nat_power_eq_Suc_0_iff [simp]: - "x ^ m = Suc 0 \<longleftrightarrow> m = 0 \<or> x = Suc 0" - by (induct m) auto - -lemma power_Suc_0 [simp]: - "Suc 0 ^ n = Suc 0" - by simp - -text{*Valid for the naturals, but what if @{text"0<i<1"}? -Premises cannot be weakened: consider the case where @{term "i=0"}, -@{term "m=1"} and @{term "n=0"}.*} -lemma nat_power_less_imp_less: - assumes nonneg: "0 < (i\<Colon>nat)" - assumes less: "i ^ m < i ^ n" - shows "m < n" -proof (cases "i = 1") - case True with less power_one [where 'a = nat] show ?thesis by simp -next - case False with nonneg have "1 < i" by auto - from power_strict_increasing_iff [OF this] less show ?thesis .. -qed - -lemma power_dvd_imp_le: - "i ^ m dvd i ^ n \<Longrightarrow> (1::nat) < i \<Longrightarrow> m \<le> n" - apply (rule power_le_imp_le_exp, assumption) - apply (erule dvd_imp_le, simp) - done - -lemma power2_nat_le_eq_le: - fixes m n :: nat - shows "m\<^sup>2 \<le> n\<^sup>2 \<longleftrightarrow> m \<le> n" - by (auto intro: power2_le_imp_le power_mono) - -lemma power2_nat_le_imp_le: - fixes m n :: nat - assumes "m\<^sup>2 \<le> n" - shows "m \<le> n" - using assms by (cases m) (simp_all add: power2_eq_square) - - - -subsection {* Code generator tweak *} - -lemma power_power_power [code]: - "power = power.power (1::'a::{power}) (op *)" - unfolding power_def power.power_def .. - -declare power.power.simps [code] - -code_identifier - code_module Power \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith - -end - |