diff options
author | Matth?us G. Chajdas <dev@anteru.net> | 2019-11-10 13:56:53 +0100 |
---|---|---|
committer | Matth?us G. Chajdas <dev@anteru.net> | 2019-11-10 13:56:53 +0100 |
commit | 1dd3124a9770e11b6684e5dd1e6bc15a0aa3bc67 (patch) | |
tree | 87a171383266dd1f64196589af081bc2f8e497c3 /tests/examplefiles/test.agda | |
parent | f1c080e184dc1bbc36eaa7cd729ff3a499de568a (diff) | |
download | pygments-master.tar.gz |
Diffstat (limited to 'tests/examplefiles/test.agda')
-rw-r--r-- | tests/examplefiles/test.agda | 109 |
1 files changed, 0 insertions, 109 deletions
diff --git a/tests/examplefiles/test.agda b/tests/examplefiles/test.agda deleted file mode 100644 index f6cea91c..00000000 --- a/tests/examplefiles/test.agda +++ /dev/null @@ -1,109 +0,0 @@ --- An Agda example file - -module test where - -open import Coinduction -open import Data.Bool -open import {- pointless comment between import and module name -} Data.Char -open import Data.Nat -open import Data.Nat.Properties -open import Data.String -open import Data.List hiding ([_]) -open import Data.Vec hiding ([_]) -open import Relation.Nullary.Core -open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; trans; inspect; [_]) - renaming (setoid to setiod) - -open SemiringSolver - -{- this is a {- nested -} comment -} - -postulate pierce : {A B : Set} → ((A → B) → A) → A - -instance - someBool : Bool - someBool = true - --- Factorial -_! : ℕ → ℕ -0 ! = 1 -(suc n) ! = (suc n) * n ! - --- The binomial coefficient -_choose_ : ℕ → ℕ → ℕ -_ choose 0 = 1 -0 choose _ = 0 -(suc n) choose (suc m) = (n choose m) + (n choose (suc m)) -- Pascal's rule - -choose-too-many : ∀ n m → n ≤ m → n choose (suc m) ≡ 0 -choose-too-many .0 m z≤n = refl -choose-too-many (suc n) (suc m) (s≤s le) with n choose (suc m) | choose-too-many n m le | n choose (suc (suc m)) | choose-too-many n (suc m) (≤-step le) -... | .0 | refl | .0 | refl = refl - -_++'_ : ∀ {a n m} {A : Set a} → Vec A n → Vec A m → Vec A (m + n) -_++'_ {_} {n} {m} v₁ v₂ rewrite solve 2 (λ a b → b :+ a := a :+ b) refl n m = v₁ Data.Vec.++ v₂ - -++'-test : (1 ∷ 2 ∷ 3 ∷ []) ++' (4 ∷ 5 ∷ []) ≡ (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ []) -++'-test = refl - -data Coℕ : Set where - co0 : Coℕ - cosuc : ∞ Coℕ → Coℕ - -nanana : Coℕ -nanana = let two = ♯ cosuc (♯ (cosuc (♯ co0))) in cosuc two - -abstract - data VacuumCleaner : Set where - Roomba : VacuumCleaner - -pointlessLemmaAboutBoolFunctions : (f : Bool → Bool) → f (f (f true)) ≡ f true -pointlessLemmaAboutBoolFunctions f with f true | inspect f true -... | true | [ eq₁ ] = trans (cong f eq₁) eq₁ -... | false | [ eq₁ ] with f false | inspect f false -... | true | _ = eq₁ -... | false | [ eq₂ ] = eq₂ - -mutual - isEven : ℕ → Bool - isEven 0 = true - isEven (suc n) = not (isOdd n) - - isOdd : ℕ → Bool - isOdd 0 = false - isOdd (suc n) = not (isEven n) - -foo : String -foo = "Hello World!" - -nl : Char -nl = '\n' - -private - intersperseString : Char → List String → String - intersperseString c [] = "" - intersperseString c (x ∷ xs) = Data.List.foldl (λ a b → a Data.String.++ Data.String.fromList (c ∷ []) Data.String.++ b) x xs - -baz : String -baz = intersperseString nl (Data.List.replicate 5 foo) - -postulate - Float : Set - -{-# BUILTIN FLOAT Float #-} - -pi : Float -pi = 3.141593 - --- Astronomical unit -au : Float -au = 1.496e11 -- m - -plusFloat : Float → Float → Float -plusFloat a b = {! !} - -record Subset (A : Set) (P : A → Set) : Set where - constructor _#_ - field - elem : A - .proof : P elem |