1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
|
"""
Purpose: Linear Algebra Parser
Based on: SimpleCalc.py example (author Paul McGuire) in pyparsing-1.3.3
Author: Mike Ellis
Copyright: Ellis & Grant, Inc. 2005
License: You may freely use, modify, and distribute this software.
Warranty: THIS SOFTWARE HAS NO WARRANTY WHATSOEVER. USE AT YOUR OWN RISK.
Notes: Parses infix linear algebra (LA) notation for vectors, matrices, and scalars.
Output is C code function calls. The parser can be run as an interactive
interpreter or included as module to use for in-place substitution into C files
containing LA equations.
Supported operations are:
OPERATION: INPUT OUTPUT
Scalar addition: "a = b+c" "a=(b+c)"
Scalar subtraction: "a = b-c" "a=(b-c)"
Scalar multiplication: "a = b*c" "a=b*c"
Scalar division: "a = b/c" "a=b/c"
Scalar exponentiation: "a = b^c" "a=pow(b,c)"
Vector scaling: "V3_a = V3_b * c" "vCopy(a,vScale(b,c))"
Vector addition: "V3_a = V3_b + V3_c" "vCopy(a,vAdd(b,c))"
Vector subtraction: "V3_a = V3_b - V3_c" "vCopy(a,vSubtract(b,c))"
Vector dot product: "a = V3_b * V3_c" "a=vDot(b,c)"
Vector outer product: "M3_a = V3_b @ V3_c" "a=vOuterProduct(b,c)"
Vector magn. squared: "a = V3_b^Mag2" "a=vMagnitude2(b)"
Vector magnitude: "a = V3_b^Mag" "a=sqrt(vMagnitude2(b))"
Matrix scaling: "M3_a = M3_b * c" "mCopy(a,mScale(b,c))"
Matrix addition: "M3_a = M3_b + M3_c" "mCopy(a,mAdd(b,c))"
Matrix subtraction: "M3_a = M3_b - M3_c" "mCopy(a,mSubtract(b,c))"
Matrix multiplication: "M3_a = M3_b * M3_c" "mCopy(a,mMultiply(b,c))"
Matrix by vector mult.: "V3_a = M3_b * V3_c" "vCopy(a,mvMultiply(b,c))"
Matrix inversion: "M3_a = M3_b^-1" "mCopy(a,mInverse(b))"
Matrix transpose: "M3_a = M3_b^T" "mCopy(a,mTranspose(b))"
Matrix determinant: "a = M3_b^Det" "a=mDeterminant(b)"
The parser requires the expression to be an equation. Each non-scalar variable
must be prefixed with a type tag, 'M3_' for 3x3 matrices and 'V3_' for 3-vectors.
For proper compilation of the C code, the variables need to be declared without
the prefix as float[3] for vectors and float[3][3] for matrices. The operations do
not modify any variables on the right-hand side of the equation.
Equations may include nested expressions within parentheses. The allowed binary
operators are '+-*/^' for scalars, and '+-*^@' for vectors and matrices with the
meanings defined in the table above.
Specifying an improper combination of operands, e.g. adding a vector to a matrix,
is detected by the parser and results in a Python TypeError Exception. The usual cause
of this is omitting one or more tag prefixes. The parser knows nothing about a
a variable's C declaration and relies entirely on the type tags. Errors in C
declarations are not caught until compile time.
Usage: To process LA equations embedded in source files, import this module and
pass input and output file objects to the fprocess() function. You can
can also invoke the parser from the command line, e.g. 'python LAparser.py',
to run a small test suite and enter an interactive loop where you can enter
LA equations and see the resulting C code.
"""
import re, sys
from pyparsing import (
Word,
alphas,
ParseException,
Literal,
CaselessLiteral,
Combine,
Optional,
nums,
Forward,
ZeroOrMore,
StringEnd,
alphanums,
)
# Debugging flag can be set to either "debug_flag=True" or "debug_flag=False"
debug_flag = False
# ----------------------------------------------------------------------------
# Variables that hold intermediate parsing results and a couple of
# helper functions.
exprStack = [] # Holds operators and operands parsed from input.
targetvar = None # Holds variable name to left of '=' sign in LA equation.
def _pushFirst(str, loc, toks):
if debug_flag:
print("pushing ", toks[0], "str is ", str)
exprStack.append(toks[0])
def _assignVar(str, loc, toks):
global targetvar
targetvar = toks[0]
# -----------------------------------------------------------------------------
# The following statements define the grammar for the parser.
point = Literal(".")
e = CaselessLiteral("E")
plusorminus = Literal("+") | Literal("-")
number = Word(nums)
integer = Combine(Optional(plusorminus) + number)
floatnumber = Combine(
integer + Optional(point + Optional(number)) + Optional(e + integer)
)
lbracket = Literal("[")
rbracket = Literal("]")
ident = Forward()
## The definition below treats array accesses as identifiers. This means your expressions
## can include references to array elements, rows and columns, e.g., a = b[i] + 5.
## Expressions within []'s are not presently supported, so a = b[i+1] will raise
## a ParseException.
ident = Combine(
Word(alphas + "-", alphanums + "_")
+ ZeroOrMore(lbracket + (Word(alphas + "-", alphanums + "_") | integer) + rbracket)
)
plus = Literal("+")
minus = Literal("-")
mult = Literal("*")
div = Literal("/")
outer = Literal("@")
lpar = Literal("(").suppress()
rpar = Literal(")").suppress()
addop = plus | minus
multop = mult | div | outer
expop = Literal("^")
assignop = Literal("=")
expr = Forward()
atom = (e | floatnumber | integer | ident).setParseAction(_pushFirst) | (
lpar + expr.suppress() + rpar
)
factor = Forward()
factor << atom + ZeroOrMore((expop + factor).setParseAction(_pushFirst))
term = factor + ZeroOrMore((multop + factor).setParseAction(_pushFirst))
expr << term + ZeroOrMore((addop + term).setParseAction(_pushFirst))
equation = (ident + assignop).setParseAction(_assignVar) + expr + StringEnd()
# End of grammar definition
# -----------------------------------------------------------------------------
## The following are helper variables and functions used by the Binary Infix Operator
## Functions described below.
vprefix = "V3_"
vplen = len(vprefix)
mprefix = "M3_"
mplen = len(mprefix)
## We don't support unary negation for vectors and matrices
class UnaryUnsupportedError(Exception):
pass
def _isvec(ident):
if ident[0] == "-" and ident[1 : vplen + 1] == vprefix:
raise UnaryUnsupportedError
else:
return ident[0:vplen] == vprefix
def _ismat(ident):
if ident[0] == "-" and ident[1 : mplen + 1] == mprefix:
raise UnaryUnsupportedError
else:
return ident[0:mplen] == mprefix
def _isscalar(ident):
return not (_isvec(ident) or _ismat(ident))
## Binary infix operator (BIO) functions. These are called when the stack evaluator
## pops a binary operator like '+' or '*". The stack evaluator pops the two operand, a and b,
## and calls the function that is mapped to the operator with a and b as arguments. Thus,
## 'x + y' yields a call to addfunc(x,y). Each of the BIO functions checks the prefixes of its
## arguments to determine whether the operand is scalar, vector, or matrix. This information
## is used to generate appropriate C code. For scalars, this is essentially the input string, e.g.
## 'a + b*5' as input yields 'a + b*5' as output. For vectors and matrices, the input is translated to
## nested function calls, e.g. "V3_a + V3_b*5" yields "V3_vAdd(a,vScale(b,5)". Note that prefixes are
## stripped from operands and function names within the argument list to the outer function and
## the appropriate prefix is placed on the outer function for removal later as the stack evaluation
## recurses toward the final assignment statement.
def _addfunc(a, b):
if _isscalar(a) and _isscalar(b):
return "(%s+%s)" % (a, b)
if _isvec(a) and _isvec(b):
return "%svAdd(%s,%s)" % (vprefix, a[vplen:], b[vplen:])
if _ismat(a) and _ismat(b):
return "%smAdd(%s,%s)" % (mprefix, a[mplen:], b[mplen:])
else:
raise TypeError
def _subfunc(a, b):
if _isscalar(a) and _isscalar(b):
return "(%s-%s)" % (a, b)
if _isvec(a) and _isvec(b):
return "%svSubtract(%s,%s)" % (vprefix, a[vplen:], b[vplen:])
if _ismat(a) and _ismat(b):
return "%smSubtract(%s,%s)" % (mprefix, a[mplen:], b[mplen:])
else:
raise TypeError
def _mulfunc(a, b):
if _isscalar(a) and _isscalar(b):
return "%s*%s" % (a, b)
if _isvec(a) and _isvec(b):
return "vDot(%s,%s)" % (a[vplen:], b[vplen:])
if _ismat(a) and _ismat(b):
return "%smMultiply(%s,%s)" % (mprefix, a[mplen:], b[mplen:])
if _ismat(a) and _isvec(b):
return "%smvMultiply(%s,%s)" % (vprefix, a[mplen:], b[vplen:])
if _ismat(a) and _isscalar(b):
return "%smScale(%s,%s)" % (mprefix, a[mplen:], b)
if _isvec(a) and _isscalar(b):
return "%svScale(%s,%s)" % (vprefix, a[mplen:], b)
else:
raise TypeError
def _outermulfunc(a, b):
## The '@' operator is used for the vector outer product.
if _isvec(a) and _isvec(b):
return "%svOuterProduct(%s,%s)" % (mprefix, a[vplen:], b[vplen:])
else:
raise TypeError
def _divfunc(a, b):
## The '/' operator is used only for scalar division
if _isscalar(a) and _isscalar(b):
return "%s/%s" % (a, b)
else:
raise TypeError
def _expfunc(a, b):
## The '^' operator is used for exponentiation on scalars and
## as a marker for unary operations on vectors and matrices.
if _isscalar(a) and _isscalar(b):
return "pow(%s,%s)" % (str(a), str(b))
if _ismat(a) and b == "-1":
return "%smInverse(%s)" % (mprefix, a[mplen:])
if _ismat(a) and b == "T":
return "%smTranspose(%s)" % (mprefix, a[mplen:])
if _ismat(a) and b == "Det":
return "mDeterminant(%s)" % (a[mplen:])
if _isvec(a) and b == "Mag":
return "sqrt(vMagnitude2(%s))" % (a[vplen:])
if _isvec(a) and b == "Mag2":
return "vMagnitude2(%s)" % (a[vplen:])
else:
raise TypeError
def _assignfunc(a, b):
## The '=' operator is used for assignment
if _isscalar(a) and _isscalar(b):
return "%s=%s" % (a, b)
if _isvec(a) and _isvec(b):
return "vCopy(%s,%s)" % (a[vplen:], b[vplen:])
if _ismat(a) and _ismat(b):
return "mCopy(%s,%s)" % (a[mplen:], b[mplen:])
else:
raise TypeError
## End of BIO func definitions
##----------------------------------------------------------------------------
# Map operator symbols to corresponding BIO funcs
opn = {
"+": (_addfunc),
"-": (_subfunc),
"*": (_mulfunc),
"@": (_outermulfunc),
"/": (_divfunc),
"^": (_expfunc),
}
##----------------------------------------------------------------------------
# Recursive function that evaluates the expression stack
def _evaluateStack(s):
op = s.pop()
if op in "+-*/@^":
op2 = _evaluateStack(s)
op1 = _evaluateStack(s)
result = opn[op](op1, op2)
if debug_flag:
print(result)
return result
else:
return op
##----------------------------------------------------------------------------
# The parse function that invokes all of the above.
def parse(input_string):
"""
Accepts an input string containing an LA equation, e.g.,
"M3_mymatrix = M3_anothermatrix^-1" returns C code function
calls that implement the expression.
"""
global exprStack
global targetvar
# Start with a blank exprStack and a blank targetvar
exprStack = []
targetvar = None
if input_string != "":
# try parsing the input string
try:
L = equation.parseString(input_string)
except ParseException as err:
print("Parse Failure", file=sys.stderr)
print(err.line, file=sys.stderr)
print(" " * (err.column - 1) + "^", file=sys.stderr)
print(err, file=sys.stderr)
raise
# show result of parsing the input string
if debug_flag:
print(input_string, "->", L)
print("exprStack=", exprStack)
# Evaluate the stack of parsed operands, emitting C code.
try:
result = _evaluateStack(exprStack)
except TypeError:
print(
"Unsupported operation on right side of '%s'.\nCheck for missing or incorrect tags on non-scalar operands."
% input_string,
file=sys.stderr,
)
raise
except UnaryUnsupportedError:
print(
"Unary negation is not supported for vectors and matrices: '%s'"
% input_string,
file=sys.stderr,
)
raise
# Create final assignment and print it.
if debug_flag:
print("var=", targetvar)
if targetvar != None:
try:
result = _assignfunc(targetvar, result)
except TypeError:
print(
"Left side tag does not match right side of '%s'" % input_string,
file=sys.stderr,
)
raise
except UnaryUnsupportedError:
print(
"Unary negation is not supported for vectors and matrices: '%s'"
% input_string,
file=sys.stderr,
)
raise
return result
else:
print("Empty left side in '%s'" % input_string, file=sys.stderr)
raise TypeError
##-----------------------------------------------------------------------------------
def fprocess(infilep, outfilep):
"""
Scans an input file for LA equations between double square brackets,
e.g. [[ M3_mymatrix = M3_anothermatrix^-1 ]], and replaces the expression
with a comment containing the equation followed by nested function calls
that implement the equation as C code. A trailing semi-colon is appended.
The equation within [[ ]] should NOT end with a semicolon as that will raise
a ParseException. However, it is ok to have a semicolon after the right brackets.
Other text in the file is unaltered.
The arguments are file objects (NOT file names) opened for reading and
writing, respectively.
"""
pattern = r"\[\[\s*(.*?)\s*\]\]"
eqn = re.compile(pattern, re.DOTALL)
s = infilep.read()
def parser(mo):
ccode = parse(mo.group(1))
return "/* %s */\n%s;\nLAParserBufferReset();\n" % (mo.group(1), ccode)
content = eqn.sub(parser, s)
outfilep.write(content)
##-----------------------------------------------------------------------------------
def test():
"""
Tests the parsing of various supported expressions. Raises
an AssertError if the output is not what is expected. Prints the
input, expected output, and actual output for all tests.
"""
print("Testing LAParser")
testcases = [
("Scalar addition", "a = b+c", "a=(b+c)"),
("Vector addition", "V3_a = V3_b + V3_c", "vCopy(a,vAdd(b,c))"),
("Vector addition", "V3_a=V3_b+V3_c", "vCopy(a,vAdd(b,c))"),
("Matrix addition", "M3_a = M3_b + M3_c", "mCopy(a,mAdd(b,c))"),
("Matrix addition", "M3_a=M3_b+M3_c", "mCopy(a,mAdd(b,c))"),
("Scalar subtraction", "a = b-c", "a=(b-c)"),
("Vector subtraction", "V3_a = V3_b - V3_c", "vCopy(a,vSubtract(b,c))"),
("Matrix subtraction", "M3_a = M3_b - M3_c", "mCopy(a,mSubtract(b,c))"),
("Scalar multiplication", "a = b*c", "a=b*c"),
("Scalar division", "a = b/c", "a=b/c"),
("Vector multiplication (dot product)", "a = V3_b * V3_c", "a=vDot(b,c)"),
(
"Vector multiplication (outer product)",
"M3_a = V3_b @ V3_c",
"mCopy(a,vOuterProduct(b,c))",
),
("Matrix multiplication", "M3_a = M3_b * M3_c", "mCopy(a,mMultiply(b,c))"),
("Vector scaling", "V3_a = V3_b * c", "vCopy(a,vScale(b,c))"),
("Matrix scaling", "M3_a = M3_b * c", "mCopy(a,mScale(b,c))"),
(
"Matrix by vector multiplication",
"V3_a = M3_b * V3_c",
"vCopy(a,mvMultiply(b,c))",
),
("Scalar exponentiation", "a = b^c", "a=pow(b,c)"),
("Matrix inversion", "M3_a = M3_b^-1", "mCopy(a,mInverse(b))"),
("Matrix transpose", "M3_a = M3_b^T", "mCopy(a,mTranspose(b))"),
("Matrix determinant", "a = M3_b^Det", "a=mDeterminant(b)"),
("Vector magnitude squared", "a = V3_b^Mag2", "a=vMagnitude2(b)"),
("Vector magnitude", "a = V3_b^Mag", "a=sqrt(vMagnitude2(b))"),
(
"Complicated expression",
"myscalar = (M3_amatrix * V3_bvector)^Mag + 5*(-xyz[i] + 2.03^2)",
"myscalar=(sqrt(vMagnitude2(mvMultiply(amatrix,bvector)))+5*(-xyz[i]+pow(2.03,2)))",
),
(
"Complicated Multiline",
"myscalar = \n(M3_amatrix * V3_bvector)^Mag +\n 5*(xyz + 2.03^2)",
"myscalar=(sqrt(vMagnitude2(mvMultiply(amatrix,bvector)))+5*(xyz+pow(2.03,2)))",
),
]
all_passed = [True]
def post_test(test, parsed):
# copy exprStack to evaluate and clear before running next test
parsed_stack = exprStack[:]
exprStack.clear()
name, testcase, expected = next(tc for tc in testcases if tc[1] == test)
this_test_passed = False
try:
try:
result = _evaluateStack(parsed_stack)
except TypeError:
print(
"Unsupported operation on right side of '%s'.\nCheck for missing or incorrect tags on non-scalar operands."
% input_string,
file=sys.stderr,
)
raise
except UnaryUnsupportedError:
print(
"Unary negation is not supported for vectors and matrices: '%s'"
% input_string,
file=sys.stderr,
)
raise
# Create final assignment and print it.
if debug_flag:
print("var=", targetvar)
if targetvar != None:
try:
result = _assignfunc(targetvar, result)
except TypeError:
print(
"Left side tag does not match right side of '%s'"
% input_string,
file=sys.stderr,
)
raise
except UnaryUnsupportedError:
print(
"Unary negation is not supported for vectors and matrices: '%s'"
% input_string,
file=sys.stderr,
)
raise
else:
print("Empty left side in '%s'" % input_string, file=sys.stderr)
raise TypeError
parsed["result"] = result
parsed["passed"] = this_test_passed = result == expected
finally:
all_passed[0] = all_passed[0] and this_test_passed
print("\n" + name)
equation.runTests((t[1] for t in testcases), postParse=post_test)
##TODO: Write testcases with invalid expressions and test that the expected
## exceptions are raised.
print("Tests completed!")
print("PASSED" if all_passed[0] else "FAILED")
assert all_passed[0]
##----------------------------------------------------------------------------
## The following is executed only when this module is executed as
## command line script. It runs a small test suite (see above)
## and then enters an interactive loop where you
## can enter expressions and see the resulting C code as output.
if __name__ == "__main__":
import sys
if not sys.flags.interactive:
# run testcases
test()
sys.exit(0)
# input_string
input_string = ""
# Display instructions on how to use the program interactively
interactiveusage = """
Entering interactive mode:
Type in an equation to be parsed or 'quit' to exit the program.
Type 'debug on' to print parsing details as each string is processed.
Type 'debug off' to stop printing parsing details
"""
print(interactiveusage)
input_string = input("> ")
while input_string != "quit":
if input_string == "debug on":
debug_flag = True
elif input_string == "debug off":
debug_flag = False
else:
try:
print(parse(input_string))
except Exception:
pass
# obtain new input string
input_string = input("> ")
# if user types 'quit' then say goodbye
print("Good bye!")
import os
os._exit(0)
|