1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
|
# Copyright (C) 2013-2023 the SQLAlchemy authors and contributors
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: https://www.opensource.org/licenses/mit-license.php
from __future__ import annotations
import dataclasses
from datetime import date
from datetime import datetime
from datetime import timedelta
from decimal import Decimal
from typing import Any
from typing import cast
from typing import Generic
from typing import Optional
from typing import overload
from typing import Tuple
from typing import Type
from typing import TYPE_CHECKING
from typing import TypeVar
from typing import Union
from ... import types as sqltypes
from ...util import py310
from ...util.typing import Literal
if TYPE_CHECKING:
from ...sql.elements import ColumnElement
from ...sql.type_api import _TE
from ...sql.type_api import TypeEngine
from ...sql.type_api import TypeEngineMixin
_T = TypeVar("_T", bound=Any)
_BoundsType = Literal["()", "[)", "(]", "[]"]
if py310:
dc_slots = {"slots": True}
dc_kwonly = {"kw_only": True}
else:
dc_slots = {}
dc_kwonly = {}
@dataclasses.dataclass(frozen=True, **dc_slots)
class Range(Generic[_T]):
"""Represent a PostgreSQL range.
E.g.::
r = Range(10, 50, bounds="()")
The calling style is similar to that of psycopg and psycopg2, in part
to allow easier migration from previous SQLAlchemy versions that used
these objects directly.
:param lower: Lower bound value, or None
:param upper: Upper bound value, or None
:param bounds: keyword-only, optional string value that is one of
``"()"``, ``"[)"``, ``"(]"``, ``"[]"``. Defaults to ``"[)"``.
:param empty: keyword-only, optional bool indicating this is an "empty"
range
.. versionadded:: 2.0
"""
lower: Optional[_T] = None
"""the lower bound"""
upper: Optional[_T] = None
"""the upper bound"""
if TYPE_CHECKING:
bounds: _BoundsType = dataclasses.field(default="[)")
empty: bool = dataclasses.field(default=False)
else:
bounds: _BoundsType = dataclasses.field(default="[)", **dc_kwonly)
empty: bool = dataclasses.field(default=False, **dc_kwonly)
if not py310:
def __init__(
self,
lower: Optional[_T] = None,
upper: Optional[_T] = None,
*,
bounds: _BoundsType = "[)",
empty: bool = False,
):
# no __slots__ either so we can update dict
self.__dict__.update(
{
"lower": lower,
"upper": upper,
"bounds": bounds,
"empty": empty,
}
)
def __bool__(self) -> bool:
return not self.empty
@property
def isempty(self) -> bool:
"A synonym for the 'empty' attribute."
return self.empty
@property
def is_empty(self) -> bool:
"A synonym for the 'empty' attribute."
return self.empty
@property
def lower_inc(self) -> bool:
"""Return True if the lower bound is inclusive."""
return self.bounds[0] == "["
@property
def lower_inf(self) -> bool:
"""Return True if this range is non-empty and lower bound is
infinite."""
return not self.empty and self.lower is None
@property
def upper_inc(self) -> bool:
"""Return True if the upper bound is inclusive."""
return self.bounds[1] == "]"
@property
def upper_inf(self) -> bool:
"""Return True if this range is non-empty and the upper bound is
infinite."""
return not self.empty and self.upper is None
@property
def __sa_type_engine__(self) -> AbstractRange[Range[_T]]:
return AbstractRange()
def _contains_value(self, value: _T) -> bool:
"""Return True if this range contains the given value."""
if self.empty:
return False
if self.lower is None:
return self.upper is None or (
value < self.upper
if self.bounds[1] == ")"
else value <= self.upper
)
if self.upper is None:
return ( # type: ignore
value > self.lower
if self.bounds[0] == "("
else value >= self.lower
)
return ( # type: ignore
value > self.lower
if self.bounds[0] == "("
else value >= self.lower
) and (
value < self.upper
if self.bounds[1] == ")"
else value <= self.upper
)
def _get_discrete_step(self) -> Any:
"Determine the “step” for this range, if it is a discrete one."
# See
# https://www.postgresql.org/docs/current/rangetypes.html#RANGETYPES-DISCRETE
# for the rationale
if isinstance(self.lower, int) or isinstance(self.upper, int):
return 1
elif isinstance(self.lower, datetime) or isinstance(
self.upper, datetime
):
# This is required, because a `isinstance(datetime.now(), date)`
# is True
return None
elif isinstance(self.lower, date) or isinstance(self.upper, date):
return timedelta(days=1)
else:
return None
def _compare_edges(
self,
value1: Optional[_T],
bound1: str,
value2: Optional[_T],
bound2: str,
only_values: bool = False,
) -> int:
"""Compare two range bounds.
Return -1, 0 or 1 respectively when `value1` is less than,
equal to or greater than `value2`.
When `only_value` is ``True``, do not consider the *inclusivity*
of the edges, just their values.
"""
value1_is_lower_bound = bound1 in {"[", "("}
value2_is_lower_bound = bound2 in {"[", "("}
# Infinite edges are equal when they are on the same side,
# otherwise a lower edge is considered less than the upper end
if value1 is value2 is None:
if value1_is_lower_bound == value2_is_lower_bound:
return 0
else:
return -1 if value1_is_lower_bound else 1
elif value1 is None:
return -1 if value1_is_lower_bound else 1
elif value2 is None:
return 1 if value2_is_lower_bound else -1
# Short path for trivial case
if bound1 == bound2 and value1 == value2:
return 0
value1_inc = bound1 in {"[", "]"}
value2_inc = bound2 in {"[", "]"}
step = self._get_discrete_step()
if step is not None:
# "Normalize" the two edges as '[)', to simplify successive
# logic when the range is discrete: otherwise we would need
# to handle the comparison between ``(0`` and ``[1`` that
# are equal when dealing with integers while for floats the
# former is lesser than the latter
if value1_is_lower_bound:
if not value1_inc:
value1 += step
value1_inc = True
else:
if value1_inc:
value1 += step
value1_inc = False
if value2_is_lower_bound:
if not value2_inc:
value2 += step
value2_inc = True
else:
if value2_inc:
value2 += step
value2_inc = False
if value1 < value2: # type: ignore
return -1
elif value1 > value2: # type: ignore
return 1
elif only_values:
return 0
else:
# Neither one is infinite but are equal, so we
# need to consider the respective inclusive/exclusive
# flag
if value1_inc and value2_inc:
return 0
elif not value1_inc and not value2_inc:
if value1_is_lower_bound == value2_is_lower_bound:
return 0
else:
return 1 if value1_is_lower_bound else -1
elif not value1_inc:
return 1 if value1_is_lower_bound else -1
elif not value2_inc:
return -1 if value2_is_lower_bound else 1
else:
return 0
def __eq__(self, other: Any) -> bool: # type: ignore[override] # noqa: E501
"""Compare this range to the `other` taking into account
bounds inclusivity, returning ``True`` if they are equal.
"""
if not isinstance(other, Range):
return NotImplemented
if self.empty and other.empty:
return True
elif self.empty != other.empty:
return False
slower = self.lower
slower_b = self.bounds[0]
olower = other.lower
olower_b = other.bounds[0]
supper = self.upper
supper_b = self.bounds[1]
oupper = other.upper
oupper_b = other.bounds[1]
return (
self._compare_edges(slower, slower_b, olower, olower_b) == 0
and self._compare_edges(supper, supper_b, oupper, oupper_b) == 0
)
def contained_by(self, other: Range[_T]) -> bool:
"Determine whether this range is a contained by `other`."
# Any range contains the empty one
if self.empty:
return True
# An empty range does not contain any range except the empty one
if other.empty:
return False
slower = self.lower
slower_b = self.bounds[0]
olower = other.lower
olower_b = other.bounds[0]
if self._compare_edges(slower, slower_b, olower, olower_b) < 0:
return False
supper = self.upper
supper_b = self.bounds[1]
oupper = other.upper
oupper_b = other.bounds[1]
if self._compare_edges(supper, supper_b, oupper, oupper_b) > 0:
return False
return True
def contains(self, value: Union[_T, Range[_T]]) -> bool:
"Determine whether this range contains `value`."
if isinstance(value, Range):
return value.contained_by(self)
else:
return self._contains_value(value)
def overlaps(self, other: Range[_T]) -> bool:
"Determine whether this range overlaps with `other`."
# Empty ranges never overlap with any other range
if self.empty or other.empty:
return False
slower = self.lower
slower_b = self.bounds[0]
supper = self.upper
supper_b = self.bounds[1]
olower = other.lower
olower_b = other.bounds[0]
oupper = other.upper
oupper_b = other.bounds[1]
# Check whether this lower bound is contained in the other range
if (
self._compare_edges(slower, slower_b, olower, olower_b) >= 0
and self._compare_edges(slower, slower_b, oupper, oupper_b) <= 0
):
return True
# Check whether other lower bound is contained in this range
if (
self._compare_edges(olower, olower_b, slower, slower_b) >= 0
and self._compare_edges(olower, olower_b, supper, supper_b) <= 0
):
return True
return False
def strictly_left_of(self, other: Range[_T]) -> bool:
"Determine whether this range is completely to the left of `other`."
# Empty ranges are neither to left nor to the right of any other range
if self.empty or other.empty:
return False
supper = self.upper
supper_b = self.bounds[1]
olower = other.lower
olower_b = other.bounds[0]
# Check whether this upper edge is less than other's lower end
return self._compare_edges(supper, supper_b, olower, olower_b) < 0
__lshift__ = strictly_left_of
def strictly_right_of(self, other: Range[_T]) -> bool:
"Determine whether this range is completely to the right of `other`."
# Empty ranges are neither to left nor to the right of any other range
if self.empty or other.empty:
return False
slower = self.lower
slower_b = self.bounds[0]
oupper = other.upper
oupper_b = other.bounds[1]
# Check whether this lower edge is greater than other's upper end
return self._compare_edges(slower, slower_b, oupper, oupper_b) > 0
__rshift__ = strictly_right_of
def not_extend_left_of(self, other: Range[_T]) -> bool:
"Determine whether this does not extend to the left of `other`."
# Empty ranges are neither to left nor to the right of any other range
if self.empty or other.empty:
return False
slower = self.lower
slower_b = self.bounds[0]
olower = other.lower
olower_b = other.bounds[0]
# Check whether this lower edge is not less than other's lower end
return self._compare_edges(slower, slower_b, olower, olower_b) >= 0
def not_extend_right_of(self, other: Range[_T]) -> bool:
"Determine whether this does not extend to the right of `other`."
# Empty ranges are neither to left nor to the right of any other range
if self.empty or other.empty:
return False
supper = self.upper
supper_b = self.bounds[1]
oupper = other.upper
oupper_b = other.bounds[1]
# Check whether this upper edge is not greater than other's upper end
return self._compare_edges(supper, supper_b, oupper, oupper_b) <= 0
def _upper_edge_adjacent_to_lower(
self,
value1: Optional[_T],
bound1: str,
value2: Optional[_T],
bound2: str,
) -> bool:
"""Determine whether an upper bound is immediately successive to a
lower bound."""
# Since we need a peculiar way to handle the bounds inclusivity,
# just do a comparison by value here
res = self._compare_edges(value1, bound1, value2, bound2, True)
if res == -1:
step = self._get_discrete_step()
if step is None:
return False
if bound1 == "]":
if bound2 == "[":
return value1 == value2 - step # type: ignore
else:
return value1 == value2
else:
if bound2 == "[":
return value1 == value2
else:
return value1 == value2 - step # type: ignore
elif res == 0:
# Cover cases like [0,0] -|- [1,] and [0,2) -|- (1,3]
if (
bound1 == "]"
and bound2 == "["
or bound1 == ")"
and bound2 == "("
):
step = self._get_discrete_step()
if step is not None:
return True
return (
bound1 == ")"
and bound2 == "["
or bound1 == "]"
and bound2 == "("
)
else:
return False
def adjacent_to(self, other: Range[_T]) -> bool:
"Determine whether this range is adjacent to the `other`."
# Empty ranges are not adjacent to any other range
if self.empty or other.empty:
return False
slower = self.lower
slower_b = self.bounds[0]
supper = self.upper
supper_b = self.bounds[1]
olower = other.lower
olower_b = other.bounds[0]
oupper = other.upper
oupper_b = other.bounds[1]
return self._upper_edge_adjacent_to_lower(
supper, supper_b, olower, olower_b
) or self._upper_edge_adjacent_to_lower(
oupper, oupper_b, slower, slower_b
)
def union(self, other: Range[_T]) -> Range[_T]:
"""Compute the union of this range with the `other`.
This raises a ``ValueError`` exception if the two ranges are
"disjunct", that is neither adjacent nor overlapping.
"""
# Empty ranges are "additive identities"
if self.empty:
return other
if other.empty:
return self
if not self.overlaps(other) and not self.adjacent_to(other):
raise ValueError(
"Adding non-overlapping and non-adjacent"
" ranges is not implemented"
)
slower = self.lower
slower_b = self.bounds[0]
supper = self.upper
supper_b = self.bounds[1]
olower = other.lower
olower_b = other.bounds[0]
oupper = other.upper
oupper_b = other.bounds[1]
if self._compare_edges(slower, slower_b, olower, olower_b) < 0:
rlower = slower
rlower_b = slower_b
else:
rlower = olower
rlower_b = olower_b
if self._compare_edges(supper, supper_b, oupper, oupper_b) > 0:
rupper = supper
rupper_b = supper_b
else:
rupper = oupper
rupper_b = oupper_b
return Range(
rlower, rupper, bounds=cast(_BoundsType, rlower_b + rupper_b)
)
def __add__(self, other: Range[_T]) -> Range[_T]:
return self.union(other)
def difference(self, other: Range[_T]) -> Range[_T]:
"""Compute the difference between this range and the `other`.
This raises a ``ValueError`` exception if the two ranges are
"disjunct", that is neither adjacent nor overlapping.
"""
# Subtracting an empty range is a no-op
if self.empty or other.empty:
return self
slower = self.lower
slower_b = self.bounds[0]
supper = self.upper
supper_b = self.bounds[1]
olower = other.lower
olower_b = other.bounds[0]
oupper = other.upper
oupper_b = other.bounds[1]
sl_vs_ol = self._compare_edges(slower, slower_b, olower, olower_b)
su_vs_ou = self._compare_edges(supper, supper_b, oupper, oupper_b)
if sl_vs_ol < 0 and su_vs_ou > 0:
raise ValueError(
"Subtracting a strictly inner range is not implemented"
)
sl_vs_ou = self._compare_edges(slower, slower_b, oupper, oupper_b)
su_vs_ol = self._compare_edges(supper, supper_b, olower, olower_b)
# If the ranges do not overlap, result is simply the first
if sl_vs_ou > 0 or su_vs_ol < 0:
return self
# If this range is completely contained by the other, result is empty
if sl_vs_ol >= 0 and su_vs_ou <= 0:
return Range(None, None, empty=True)
# If this range extends to the left of the other and ends in its
# middle
if sl_vs_ol <= 0 and su_vs_ol >= 0 and su_vs_ou <= 0:
rupper_b = ")" if olower_b == "[" else "]"
if (
slower_b != "["
and rupper_b != "]"
and self._compare_edges(slower, slower_b, olower, rupper_b)
== 0
):
return Range(None, None, empty=True)
else:
return Range(
slower,
olower,
bounds=cast(_BoundsType, slower_b + rupper_b),
)
# If this range starts in the middle of the other and extends to its
# right
if sl_vs_ol >= 0 and su_vs_ou >= 0 and sl_vs_ou <= 0:
rlower_b = "(" if oupper_b == "]" else "["
if (
rlower_b != "["
and supper_b != "]"
and self._compare_edges(oupper, rlower_b, supper, supper_b)
== 0
):
return Range(None, None, empty=True)
else:
return Range(
oupper,
supper,
bounds=cast(_BoundsType, rlower_b + supper_b),
)
assert False, f"Unhandled case computing {self} - {other}"
def __sub__(self, other: Range[_T]) -> Range[_T]:
return self.difference(other)
def intersection(self, other: Range[_T]) -> Range[_T]:
"""Compute the intersection of this range with the `other`.
.. versionadded:: 2.0.10
"""
if self.empty or other.empty or not self.overlaps(other):
return Range(None, None, empty=True)
slower = self.lower
slower_b = self.bounds[0]
supper = self.upper
supper_b = self.bounds[1]
olower = other.lower
olower_b = other.bounds[0]
oupper = other.upper
oupper_b = other.bounds[1]
if self._compare_edges(slower, slower_b, olower, olower_b) < 0:
rlower = olower
rlower_b = olower_b
else:
rlower = slower
rlower_b = slower_b
if self._compare_edges(supper, supper_b, oupper, oupper_b) > 0:
rupper = oupper
rupper_b = oupper_b
else:
rupper = supper
rupper_b = supper_b
return Range(
rlower,
rupper,
bounds=cast(_BoundsType, rlower_b + rupper_b),
)
def __mul__(self, other: Range[_T]) -> Range[_T]:
return self.intersection(other)
def __str__(self) -> str:
return self._stringify()
def _stringify(self) -> str:
if self.empty:
return "empty"
l, r = self.lower, self.upper
l = "" if l is None else l # type: ignore
r = "" if r is None else r # type: ignore
b0, b1 = cast("Tuple[str, str]", self.bounds)
return f"{b0}{l},{r}{b1}"
class AbstractRange(sqltypes.TypeEngine[Range[_T]]):
"""
Base for PostgreSQL RANGE types.
.. seealso::
`PostgreSQL range functions <https://www.postgresql.org/docs/current/static/functions-range.html>`_
""" # noqa: E501
render_bind_cast = True
__abstract__ = True
@overload
def adapt(self, cls: Type[_TE], **kw: Any) -> _TE:
...
@overload
def adapt(self, cls: Type[TypeEngineMixin], **kw: Any) -> TypeEngine[Any]:
...
def adapt(
self,
cls: Type[Union[TypeEngine[Any], TypeEngineMixin]],
**kw: Any,
) -> TypeEngine[Any]:
"""Dynamically adapt a range type to an abstract impl.
For example ``INT4RANGE().adapt(_Psycopg2NumericRange)`` should
produce a type that will have ``_Psycopg2NumericRange`` behaviors
and also render as ``INT4RANGE`` in SQL and DDL.
"""
if issubclass(cls, AbstractRangeImpl) and cls is not self.__class__:
# two ways to do this are: 1. create a new type on the fly
# or 2. have AbstractRangeImpl(visit_name) constructor and a
# visit_abstract_range_impl() method in the PG compiler.
# I'm choosing #1 as the resulting type object
# will then make use of the same mechanics
# as if we had made all these sub-types explicitly, and will
# also look more obvious under pdb etc.
# The adapt() operation here is cached per type-class-per-dialect,
# so is not much of a performance concern
visit_name = self.__visit_name__
return type( # type: ignore
f"{visit_name}RangeImpl",
(cls, self.__class__),
{"__visit_name__": visit_name},
)()
else:
return super().adapt(cls)
def _resolve_for_literal(self, value: Any) -> Any:
spec = value.lower if value.lower is not None else value.upper
if isinstance(spec, int):
return INT8RANGE()
elif isinstance(spec, (Decimal, float)):
return NUMRANGE()
elif isinstance(spec, datetime):
return TSRANGE() if not spec.tzinfo else TSTZRANGE()
elif isinstance(spec, date):
return DATERANGE()
else:
# empty Range, SQL datatype can't be determined here
return sqltypes.NULLTYPE
class comparator_factory(sqltypes.Concatenable.Comparator[Range[Any]]):
"""Define comparison operations for range types."""
def __ne__(self, other: Any) -> ColumnElement[bool]: # type: ignore[override] # noqa: E501
"Boolean expression. Returns true if two ranges are not equal"
if other is None:
return super().__ne__(other) # type: ignore
else:
return self.expr.op("<>", is_comparison=True)(other) # type: ignore # noqa: E501
def contains(self, other: Any, **kw: Any) -> ColumnElement[bool]:
"""Boolean expression. Returns true if the right hand operand,
which can be an element or a range, is contained within the
column.
kwargs may be ignored by this operator but are required for API
conformance.
"""
return self.expr.op("@>", is_comparison=True)(other) # type: ignore # noqa: E501
def contained_by(self, other: Any) -> ColumnElement[bool]:
"""Boolean expression. Returns true if the column is contained
within the right hand operand.
"""
return self.expr.op("<@", is_comparison=True)(other) # type: ignore # noqa: E501
def overlaps(self, other: Any) -> ColumnElement[bool]:
"""Boolean expression. Returns true if the column overlaps
(has points in common with) the right hand operand.
"""
return self.expr.op("&&", is_comparison=True)(other) # type: ignore # noqa: E501
def strictly_left_of(self, other: Any) -> ColumnElement[bool]:
"""Boolean expression. Returns true if the column is strictly
left of the right hand operand.
"""
return self.expr.op("<<", is_comparison=True)(other) # type: ignore # noqa: E501
__lshift__ = strictly_left_of
def strictly_right_of(self, other: Any) -> ColumnElement[bool]:
"""Boolean expression. Returns true if the column is strictly
right of the right hand operand.
"""
return self.expr.op(">>", is_comparison=True)(other) # type: ignore # noqa: E501
__rshift__ = strictly_right_of
def not_extend_right_of(self, other: Any) -> ColumnElement[bool]:
"""Boolean expression. Returns true if the range in the column
does not extend right of the range in the operand.
"""
return self.expr.op("&<", is_comparison=True)(other) # type: ignore # noqa: E501
def not_extend_left_of(self, other: Any) -> ColumnElement[bool]:
"""Boolean expression. Returns true if the range in the column
does not extend left of the range in the operand.
"""
return self.expr.op("&>", is_comparison=True)(other) # type: ignore # noqa: E501
def adjacent_to(self, other: Any) -> ColumnElement[bool]:
"""Boolean expression. Returns true if the range in the column
is adjacent to the range in the operand.
"""
return self.expr.op("-|-", is_comparison=True)(other) # type: ignore # noqa: E501
def union(self, other: Any) -> ColumnElement[bool]:
"""Range expression. Returns the union of the two ranges.
Will raise an exception if the resulting range is not
contiguous.
"""
return self.expr.op("+")(other) # type: ignore
__add__ = union
def difference(self, other: Any) -> ColumnElement[bool]:
"""Range expression. Returns the union of the two ranges.
Will raise an exception if the resulting range is not
contiguous.
"""
return self.expr.op("-")(other) # type: ignore
__sub__ = difference
def intersection(self, other: Any) -> ColumnElement[Range[_T]]:
"""Range expression. Returns the intersection of the two ranges.
Will raise an exception if the resulting range is not
contiguous.
"""
return self.expr.op("*")(other) # type: ignore
__mul__ = intersection
class AbstractRangeImpl(AbstractRange[Range[_T]]):
"""Marker for AbstractRange that will apply a subclass-specific
adaptation"""
class AbstractMultiRange(AbstractRange[Range[_T]]):
"""base for PostgreSQL MULTIRANGE types"""
__abstract__ = True
class AbstractMultiRangeImpl(
AbstractRangeImpl[Range[_T]], AbstractMultiRange[Range[_T]]
):
"""Marker for AbstractRange that will apply a subclass-specific
adaptation"""
class INT4RANGE(AbstractRange[Range[int]]):
"""Represent the PostgreSQL INT4RANGE type."""
__visit_name__ = "INT4RANGE"
class INT8RANGE(AbstractRange[Range[int]]):
"""Represent the PostgreSQL INT8RANGE type."""
__visit_name__ = "INT8RANGE"
class NUMRANGE(AbstractRange[Range[Decimal]]):
"""Represent the PostgreSQL NUMRANGE type."""
__visit_name__ = "NUMRANGE"
class DATERANGE(AbstractRange[Range[date]]):
"""Represent the PostgreSQL DATERANGE type."""
__visit_name__ = "DATERANGE"
class TSRANGE(AbstractRange[Range[datetime]]):
"""Represent the PostgreSQL TSRANGE type."""
__visit_name__ = "TSRANGE"
class TSTZRANGE(AbstractRange[Range[datetime]]):
"""Represent the PostgreSQL TSTZRANGE type."""
__visit_name__ = "TSTZRANGE"
class INT4MULTIRANGE(AbstractMultiRange[Range[int]]):
"""Represent the PostgreSQL INT4MULTIRANGE type."""
__visit_name__ = "INT4MULTIRANGE"
class INT8MULTIRANGE(AbstractMultiRange[Range[int]]):
"""Represent the PostgreSQL INT8MULTIRANGE type."""
__visit_name__ = "INT8MULTIRANGE"
class NUMMULTIRANGE(AbstractMultiRange[Range[Decimal]]):
"""Represent the PostgreSQL NUMMULTIRANGE type."""
__visit_name__ = "NUMMULTIRANGE"
class DATEMULTIRANGE(AbstractMultiRange[Range[date]]):
"""Represent the PostgreSQL DATEMULTIRANGE type."""
__visit_name__ = "DATEMULTIRANGE"
class TSMULTIRANGE(AbstractMultiRange[Range[datetime]]):
"""Represent the PostgreSQL TSRANGE type."""
__visit_name__ = "TSMULTIRANGE"
class TSTZMULTIRANGE(AbstractMultiRange[Range[datetime]]):
"""Represent the PostgreSQL TSTZRANGE type."""
__visit_name__ = "TSTZMULTIRANGE"
|