1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
|
# engine/result.py
# Copyright (C) 2005-2020 the SQLAlchemy authors and contributors
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php
"""Define generic result set constructs."""
import functools
import itertools
import operator
from .row import _baserow_usecext
from .row import Row
from .. import exc
from .. import util
from ..sql.base import _generative
from ..sql.base import HasMemoized
from ..sql.base import InPlaceGenerative
from ..util import collections_abc
if _baserow_usecext:
from sqlalchemy.cresultproxy import tuplegetter
_row_as_tuple = tuplegetter
else:
def tuplegetter(*indexes):
it = operator.itemgetter(*indexes)
if len(indexes) > 1:
return it
else:
return lambda row: (it(row),)
def _row_as_tuple(*indexes):
getters = [
operator.methodcaller("_get_by_key_impl_mapping", index)
for index in indexes
]
return lambda rec: tuple(getter(rec) for getter in getters)
class ResultMetaData(object):
"""Base for metadata about result rows."""
__slots__ = ()
_tuplefilter = None
_translated_indexes = None
_unique_filters = None
@property
def keys(self):
return RMKeyView(self)
def _for_freeze(self):
raise NotImplementedError()
def _key_fallback(self, key, err, raiseerr=True):
assert raiseerr
if isinstance(key, int):
util.raise_(IndexError(key), replace_context=err)
else:
util.raise_(KeyError(key), replace_context=err)
def _warn_for_nonint(self, key):
raise TypeError(
"TypeError: tuple indices must be integers or slices, not %s"
% type(key).__name__
)
def _index_for_key(self, keys, raiseerr):
raise NotImplementedError()
def _metadata_for_keys(self, key):
raise NotImplementedError()
def _reduce(self, keys):
raise NotImplementedError()
def _getter(self, key, raiseerr=True):
index = self._index_for_key(key, raiseerr)
if index is not None:
return operator.methodcaller("_get_by_key_impl_mapping", index)
else:
return None
def _row_as_tuple_getter(self, keys):
indexes = list(self._indexes_for_keys(keys))
return _row_as_tuple(*indexes)
class RMKeyView(collections_abc.KeysView):
__slots__ = ("_parent", "_keys")
def __init__(self, parent):
self._parent = parent
self._keys = [k for k in parent._keys if k is not None]
def __len__(self):
return len(self._keys)
def __repr__(self):
return "{0.__class__.__name__}({0._keys!r})".format(self)
def __iter__(self):
return iter(self._keys)
def __contains__(self, item):
if not _baserow_usecext and isinstance(item, int):
return False
# note this also includes special key fallback behaviors
# which also don't seem to be tested in test_resultset right now
return self._parent._has_key(item)
def __eq__(self, other):
return list(other) == list(self)
def __ne__(self, other):
return list(other) != list(self)
class SimpleResultMetaData(ResultMetaData):
"""result metadata for in-memory collections."""
__slots__ = (
"_keys",
"_keymap",
"_processors",
"_tuplefilter",
"_translated_indexes",
"_unique_filters",
)
def __init__(
self,
keys,
extra=None,
_processors=None,
_tuplefilter=None,
_translated_indexes=None,
_unique_filters=None,
):
self._keys = list(keys)
self._tuplefilter = _tuplefilter
self._translated_indexes = _translated_indexes
self._unique_filters = _unique_filters
len_keys = len(self._keys)
if extra:
recs_names = [
(
(index, name, index - len_keys) + extras,
(index, name, extras),
)
for index, (name, extras) in enumerate(zip(self._keys, extra))
]
else:
recs_names = [
((index, name, index - len_keys), (index, name, ()))
for index, name in enumerate(self._keys)
]
self._keymap = {key: rec for keys, rec in recs_names for key in keys}
if _processors is None:
self._processors = [None] * len_keys
else:
self._processors = _processors
def _for_freeze(self):
unique_filters = self._unique_filters
if unique_filters and self._tuplefilter:
unique_filters = self._tuplefilter(unique_filters)
# TODO: are we freezing the result with or without uniqueness
# applied?
return SimpleResultMetaData(
self._keys,
extra=[self._keymap[key][2] for key in self._keys],
_unique_filters=unique_filters,
)
def __getstate__(self):
return {
"_keys": self._keys,
"_translated_indexes": self._translated_indexes,
}
def __setstate__(self, state):
if state["_translated_indexes"]:
_translated_indexes = state["_translated_indexes"]
_tuplefilter = tuplegetter(*_translated_indexes)
else:
_translated_indexes = _tuplefilter = None
self.__init__(
state["_keys"],
_translated_indexes=_translated_indexes,
_tuplefilter=_tuplefilter,
)
def _contains(self, value, row):
return value in row._data
def _index_for_key(self, key, raiseerr=True):
try:
rec = self._keymap[key]
except KeyError as ke:
rec = self._key_fallback(key, ke, raiseerr)
return rec[0]
def _indexes_for_keys(self, keys):
for rec in self._metadata_for_keys(keys):
yield rec[0]
def _metadata_for_keys(self, keys):
for key in keys:
try:
rec = self._keymap[key]
except KeyError as ke:
rec = self._key_fallback(key, ke, True)
yield rec
def _reduce(self, keys):
try:
metadata_for_keys = [self._keymap[key] for key in keys]
except KeyError as ke:
self._key_fallback(ke.args[0], ke, True)
indexes, new_keys, extra = zip(*metadata_for_keys)
if self._translated_indexes:
indexes = [self._translated_indexes[idx] for idx in indexes]
tup = tuplegetter(*indexes)
new_metadata = SimpleResultMetaData(
new_keys,
extra=extra,
_tuplefilter=tup,
_translated_indexes=indexes,
_processors=self._processors,
_unique_filters=self._unique_filters,
)
return new_metadata
def result_tuple(fields, extra=None):
parent = SimpleResultMetaData(fields, extra)
return functools.partial(Row, parent, parent._processors, parent._keymap)
# a symbol that indicates to internal Result methods that
# "no row is returned". We can't use None for those cases where a scalar
# filter is applied to rows.
_NO_ROW = util.symbol("NO_ROW")
class Result(InPlaceGenerative):
"""Represent a set of database results.
.. versionadded:: 1.4 The :class:`.Result` object provides a completely
updated usage model and calling facade for SQLAlchemy Core and
SQLAlchemy ORM. In Core, it forms the basis of the
:class:`.CursorResult` object which replaces the previous
:class:`.ResultProxy` interface.
"""
_process_row = Row
_row_logging_fn = None
_column_slice_filter = None
_post_creational_filter = None
_unique_filter_state = None
_no_scalar_onerow = False
_yield_per = None
def __init__(self, cursor_metadata):
self._metadata = cursor_metadata
def _soft_close(self, hard=False):
raise NotImplementedError()
def keys(self):
"""Return an iterable view which yields the string keys that would
be represented by each :class:`.Row`.
The view also can be tested for key containment using the Python
``in`` operator, which will test both for the string keys represented
in the view, as well as for alternate keys such as column objects.
.. versionchanged:: 1.4 a key view object is returned rather than a
plain list.
"""
return self._metadata.keys
@_generative
def yield_per(self, num):
"""Configure the row-fetching strategy to fetch num rows at a time.
This impacts the underlying behavior of the result when iterating over
the result object, or otherwise making use of methods such as
:meth:`_engine.Result.fetchone` that return one row at a time. Data
from the underlying cursor or other data source will be buffered up to
this many rows in memory, and the buffered collection will then be
yielded out one row at at time or as many rows are requested. Each time
the buffer clears, it will be refreshed to this many rows or as many
rows remain if fewer remain.
The :meth:`_engine.Result.yield_per` method is generally used in
conjunction with the
:paramref:`_engine.Connection.execution_options.stream_results`
execution option, which will allow the database dialect in use to make
use of a server side cursor, if the DBAPI supports it.
Most DBAPIs do not use server side cursors by default, which means all
rows will be fetched upfront from the database regardless of the
:meth:`_engine.Result.yield_per` setting. However,
:meth:`_engine.Result.yield_per` may still be useful in that it batches
the SQLAlchemy-side processing of the raw data from the database, and
additionally when used for ORM scenarios will batch the conversion of
database rows into ORM entity rows.
.. versionadded:: 1.4
:param num: number of rows to fetch each time the buffer is refilled.
If set to a value below 1, fetches all rows for the next buffer.
"""
self._yield_per = num
@_generative
def unique(self, strategy=None):
"""Apply unique filtering to the objects returned by this
:class:`_engine.Result`.
When this filter is applied with no arguments, the rows or objects
returned will filtered such that each row is returned uniquely. The
algorithm used to determine this uniqueness is by default the Python
hashing identity of the whole tuple. In some cases a specialized
per-entity hashing scheme may be used, such as when using the ORM, a
scheme is applied which works against the primary key identity of
returned objects.
The unique filter is applied **after all other filters**, which means
if the columns returned have been refined using a method such as the
:meth:`_engine.Result.columns` or :meth:`_engine.Result.scalars`
method, the uniquing is applied to **only the column or columns
returned**. This occurs regardless of the order in which these
methods have been called upon the :class:`_engine.Result` object.
The unique filter also changes the calculus used for methods like
:meth:`_engine.Result.fetchmany` and :meth:`_engine.Result.partitions`.
When using :meth:`_engine.Result.unique`, these methods will continue
to yield the number of rows or objects requested, after uniquing
has been applied. However, this necessarily impacts the buffering
behavior of the underlying cursor or datasource, such that multiple
underlying calls to ``cursor.fetchmany()`` may be necessary in order
to accumulate enough objects in order to provide a unique collection
of the requested size.
:param strategy: a callable that will be applied to rows or objects
being iterated, which should return an object that represents the
unique value of the row. A Python ``set()`` is used to store
these identities. If not passed, a default uniqueness strategy
is used which may have been assembled by the source of this
:class:`_engine.Result` object.
"""
self._unique_filter_state = (set(), strategy)
@HasMemoized.memoized_attribute
def _unique_strategy(self):
uniques, strategy = self._unique_filter_state
if not strategy and self._metadata._unique_filters:
filters = self._metadata._unique_filters
if self._metadata._tuplefilter:
filters = self._metadata._tuplefilter(filters)
strategy = operator.methodcaller("_filter_on_values", filters)
return uniques, strategy
def columns(self, *col_expressions):
r"""Establish the columns that should be returned in each row.
This method may be used to limit the columns returned as well
as to reorder them. The given list of expressions are normally
a series of integers or string key names. They may also be
appropriate :class:`.ColumnElement` objects which correspond to
a given statement construct.
E.g.::
statement = select(table.c.x, table.c.y, table.c.z)
result = connection.execute(statement)
for z, y in result.columns('z', 'y'):
# ...
Example of using the column objects from the statement itself::
for z, y in result.columns(
statement.selected_columns.c.z,
statement.selected_columns.c.y
):
# ...
.. versionadded:: 1.4
:param \*col_expressions: indicates columns to be returned. Elements
may be integer row indexes, string column names, or appropriate
:class:`.ColumnElement` objects corresponding to a select construct.
:return: this :class:`_engine.Result` object with the modifications
given.
"""
return self._column_slices(col_expressions)
def partitions(self, size=None):
"""Iterate through sub-lists of rows of the size given.
Each list will be of the size given, excluding the last list to
be yielded, which may have a small number of rows. No empty
lists will be yielded.
The result object is automatically closed when the iterator
is fully consumed.
Note that the backend driver will usually buffer the entire result
ahead of time unless the
:paramref:`.Connection.execution_options.stream_results` execution
option is used indicating that the driver should not pre-buffer
results, if possible. Not all drivers support this option and
the option is silently ignored for those who do.
.. versionadded:: 1.4
:param size: indicate the maximum number of rows to be present
in each list yielded. If None, makes use of the value set by
:meth:`_engine.Result.yield_per`, if present, otherwise uses the
:meth:`_engine.Result.fetchmany` default which may be backend
specific.
:return: iterator of lists
"""
getter = self._manyrow_getter
while True:
partition = getter(self, size)
if partition:
yield partition
else:
break
def scalars(self, index=0):
"""Apply a scalars filter to returned rows.
When this filter is applied, fetching results will return Python scalar
objects from exactly one column of each row, rather than :class:`.Row`
objects or mappings.
This filter cancels out other filters that may be established such
as that of :meth:`_engine.Result.mappings`.
.. versionadded:: 1.4
:param index: integer or row key indicating the column to be fetched
from each row, defaults to ``0`` indicating the first column.
:return: this :class:`_engine.Result` object with modifications.
"""
result = self._column_slices([index])
result._post_creational_filter = operator.itemgetter(0)
result._no_scalar_onerow = True
return result
@_generative
def _column_slices(self, indexes):
self._metadata = self._metadata._reduce(indexes)
def _getter(self, key, raiseerr=True):
"""return a callable that will retrieve the given key from a
:class:`.Row`.
"""
return self._metadata._getter(key, raiseerr)
def _tuple_getter(self, keys):
"""return a callable that will retrieve the given keys from a
:class:`.Row`.
"""
return self._metadata._row_as_tuple_getter(keys)
@_generative
def mappings(self):
"""Apply a mappings filter to returned rows.
When this filter is applied, fetching rows will return
:class:`.RowMapping` objects instead of :class:`.Row` objects.
This filter cancels out other filters that may be established such
as that of :meth:`_engine.Result.scalars`.
.. versionadded:: 1.4
:return: this :class:`._engine.Result` object with modifications.
"""
self._post_creational_filter = operator.attrgetter("_mapping")
self._no_scalar_onerow = False
def _row_getter(self):
process_row = self._process_row
metadata = self._metadata
keymap = metadata._keymap
processors = metadata._processors
tf = metadata._tuplefilter
if tf:
processors = tf(processors)
_make_row_orig = functools.partial(
process_row, metadata, processors, keymap
)
def make_row(row):
return _make_row_orig(tf(row))
else:
make_row = functools.partial(
process_row, metadata, processors, keymap
)
fns = ()
if self._row_logging_fn:
fns = (self._row_logging_fn,)
else:
fns = ()
if self._column_slice_filter:
fns += (self._column_slice_filter,)
if fns:
_make_row = make_row
def make_row(row):
row = _make_row(row)
for fn in fns:
row = fn(row)
return row
return make_row
def _raw_row_iterator(self):
"""Return a safe iterator that yields raw row data.
This is used by the :meth:`._engine.Result.merge` method
to merge multiple compatible results together.
"""
raise NotImplementedError()
def freeze(self):
"""Return a callable object that will produce copies of this
:class:`.Result` when invoked.
This is used for result set caching. The method must be called
on the result when it has been unconsumed, and calling the method
will consume the result fully.
"""
return FrozenResult(self)
def merge(self, *others):
"""Merge this :class:`.Result` with other compatible result
objects.
The object returned is an instance of :class:`.MergedResult`,
which will be composed of iterators from the given result
objects.
The new result will use the metadata from this result object.
The subsequent result objects must be against an identical
set of result / cursor metadata, otherwise the behavior is
undefined.
"""
return MergedResult(self._metadata, (self,) + others)
@HasMemoized.memoized_attribute
def _iterator_getter(self):
make_row = self._row_getter()
post_creational_filter = self._post_creational_filter
if self._unique_filter_state:
uniques, strategy = self._unique_strategy
def iterrows(self):
for row in self._fetchiter_impl():
obj = make_row(row)
hashed = strategy(obj) if strategy else obj
if hashed in uniques:
continue
uniques.add(hashed)
if post_creational_filter:
obj = post_creational_filter(obj)
yield obj
else:
def iterrows(self):
for row in self._fetchiter_impl():
row = make_row(row)
if post_creational_filter:
row = post_creational_filter(row)
yield row
return iterrows
@HasMemoized.memoized_attribute
def _allrow_getter(self):
make_row = self._row_getter()
post_creational_filter = self._post_creational_filter
if self._unique_filter_state:
uniques, strategy = self._unique_strategy
def allrows(self):
rows = self._fetchall_impl()
rows = [
made_row
for made_row, sig_row in [
(
made_row,
strategy(made_row) if strategy else made_row,
)
for made_row in [make_row(row) for row in rows]
]
if sig_row not in uniques and not uniques.add(sig_row)
]
if post_creational_filter:
rows = [post_creational_filter(row) for row in rows]
return rows
else:
def allrows(self):
rows = self._fetchall_impl()
if post_creational_filter:
rows = [
post_creational_filter(make_row(row)) for row in rows
]
else:
rows = [make_row(row) for row in rows]
return rows
return allrows
@HasMemoized.memoized_attribute
def _onerow_getter(self):
make_row = self._row_getter()
# TODO: this is a lot for results that are only one row.
# all of this could be in _only_one_row except for fetchone()
# and maybe __next__
post_creational_filter = self._post_creational_filter
if self._unique_filter_state:
uniques, strategy = self._unique_strategy
def onerow(self):
_onerow = self._fetchone_impl
while True:
row = _onerow()
if row is None:
return _NO_ROW
else:
obj = make_row(row)
hashed = strategy(obj) if strategy else obj
if hashed in uniques:
continue
else:
uniques.add(hashed)
if post_creational_filter:
obj = post_creational_filter(obj)
return obj
else:
def onerow(self):
row = self._fetchone_impl()
if row is None:
return _NO_ROW
else:
row = make_row(row)
if post_creational_filter:
row = post_creational_filter(row)
return row
return onerow
@HasMemoized.memoized_attribute
def _manyrow_getter(self):
make_row = self._row_getter()
post_creational_filter = self._post_creational_filter
if self._unique_filter_state:
uniques, strategy = self._unique_strategy
def filterrows(make_row, rows, strategy, uniques):
return [
made_row
for made_row, sig_row in [
(
made_row,
strategy(made_row) if strategy else made_row,
)
for made_row in [make_row(row) for row in rows]
]
if sig_row not in uniques and not uniques.add(sig_row)
]
def manyrows(self, num):
collect = []
_manyrows = self._fetchmany_impl
if num is None:
# if None is passed, we don't know the default
# manyrows number, DBAPI has this as cursor.arraysize
# different DBAPIs / fetch strategies may be different.
# do a fetch to find what the number is. if there are
# only fewer rows left, then it doesn't matter.
if self._yield_per:
num_required = num = self._yield_per
else:
rows = _manyrows(num)
num = len(rows)
collect.extend(
filterrows(make_row, rows, strategy, uniques)
)
num_required = num - len(collect)
else:
num_required = num
while num_required:
rows = _manyrows(num_required)
if not rows:
break
collect.extend(
filterrows(make_row, rows, strategy, uniques)
)
num_required = num - len(collect)
if post_creational_filter:
collect = [post_creational_filter(row) for row in collect]
return collect
else:
def manyrows(self, num):
if num is None:
num = self._yield_per
rows = self._fetchmany_impl(num)
rows = [make_row(row) for row in rows]
if post_creational_filter:
rows = [post_creational_filter(row) for row in rows]
return rows
return manyrows
def _fetchiter_impl(self):
raise NotImplementedError()
def _fetchone_impl(self):
raise NotImplementedError()
def _fetchall_impl(self):
raise NotImplementedError()
def _fetchmany_impl(self, size=None):
raise NotImplementedError()
def __iter__(self):
return self._iterator_getter(self)
def __next__(self):
row = self._onerow_getter(self)
if row is _NO_ROW:
raise StopIteration()
else:
return row
next = __next__
def fetchall(self):
"""A synonym for the :meth:`_engine.Result.all` method."""
return self._allrow_getter(self)
def fetchone(self):
"""Fetch one row.
When all rows are exhausted, returns None.
.. note:: This method is not compatible with the
:meth:`_result.Result.scalars`
filter, as there is no way to distinguish between a data value of
None and the ending value. Prefer to use iterative / collection
methods which support scalar None values.
this method is provided for backwards compatibility with
SQLAlchemy 1.x.x.
To fetch the first row of a result only, use the
:meth:`_engine.Result.first` method. To iterate through all
rows, iterate the :class:`_engine.Result` object directly.
:return: a :class:`.Row` object if no filters are applied, or None
if no rows remain.
When filters are applied, such as :meth:`_engine.Result.mappings`
or :meth:`._engine.Result.scalar`, different kinds of objects
may be returned.
"""
if self._no_scalar_onerow:
raise exc.InvalidRequestError(
"Can't use fetchone() when returning scalar values; there's "
"no way to distinguish between end of results and None"
)
row = self._onerow_getter(self)
if row is _NO_ROW:
return None
else:
return row
def fetchmany(self, size=None):
"""Fetch many rows.
When all rows are exhausted, returns an empty list.
this method is provided for backwards compatibility with
SQLAlchemy 1.x.x.
To fetch rows in groups, use the :meth:`._result.Result.partitions`
method.
:return: a list of :class:`.Row` objects if no filters are applied.
When filters are applied, such as :meth:`_engine.Result.mappings`
or :meth:`._engine.Result.scalar`, different kinds of objects
may be returned.
"""
return self._manyrow_getter(self, size)
def all(self):
"""Return all rows in a list.
Closes the result set after invocation. Subsequent invocations
will return an empty list.
.. versionadded:: 1.4
:return: a list of :class:`.Row` objects if no filters are applied.
When filters are applied, such as :meth:`_engine.Result.mappings`
or :meth:`._engine.Result.scalar`, different kinds of objects
may be returned.
"""
return self._allrow_getter(self)
def _only_one_row(self, raise_for_second_row, raise_for_none):
row = self._onerow_getter(self)
if row is _NO_ROW:
if raise_for_none:
self._soft_close(hard=True)
raise exc.NoResultFound(
"No row was found when one was required"
)
else:
return None
else:
if raise_for_second_row:
next_row = self._onerow_getter(self)
else:
next_row = _NO_ROW
self._soft_close(hard=True)
if next_row is not _NO_ROW:
raise exc.MultipleResultsFound(
"Multiple rows were found when exactly one was required"
if raise_for_none
else "Multiple rows were found when one or none "
"was required"
)
else:
return row
def first(self):
"""Fetch the first row or None if no row is present.
Closes the result set and discards remaining rows.
.. comment: A warning is emitted if additional rows remain.
:return: a :class:`.Row` object if no filters are applied, or None
if no rows remain.
When filters are applied, such as :meth:`_engine.Result.mappings`
or :meth:`._engine.Result.scalar`, different kinds of objects
may be returned.
"""
return self._only_one_row(False, False)
def one_or_none(self):
"""Return at most one result or raise an exception.
Returns ``None`` if the result has no rows.
Raises :class:`.MultipleResultsFound`
if multiple rows are returned.
.. versionadded:: 1.4
:return: The first :class:`.Row` or None if no row is available.
When filters are applied, such as :meth:`_engine.Result.mappings`
or :meth:`._engine.Result.scalar`, different kinds of objects
may be returned.
:raises: :class:`.MultipleResultsFound`
.. seealso::
:meth:`_result.Result.first`
:meth:`_result.Result.one`
"""
return self._only_one_row(True, False)
def one(self):
"""Return exactly one result or raise an exception.
Raises :class:`.NoResultFound` if the result returns no
rows, or :class:`.MultipleResultsFound` if multiple rows
would be returned.
.. versionadded:: 1.4
:return: The first :class:`.Row`.
When filters are applied, such as :meth:`_engine.Result.mappings`
or :meth:`._engine.Result.scalar`, different kinds of objects
may be returned.
:raises: :class:`.MultipleResultsFound`, :class:`.NoResultFound`
.. seealso::
:meth:`_result.Result.first`
:meth:`_result.Result.one_or_none`
"""
return self._only_one_row(True, True)
def scalar(self):
"""Fetch the first column of the first row, and close the result set.
After calling this method, the object is fully closed,
e.g. the :meth:`_engine.CursorResult.close`
method will have been called.
:return: a Python scalar value , or None if no rows remain
"""
row = self.first()
if row is not None:
return row[0]
else:
return None
class FrozenResult(object):
def __init__(self, result):
self.metadata = result._metadata._for_freeze()
self._post_creational_filter = result._post_creational_filter
result._post_creational_filter = None
self.data = result.fetchall()
def with_data(self, data):
fr = FrozenResult.__new__(FrozenResult)
fr.metadata = self.metadata
fr._post_creational_filter = self._post_creational_filter
fr.data = data
return fr
def __call__(self):
result = IteratorResult(self.metadata, iter(self.data))
result._post_creational_filter = self._post_creational_filter
return result
class IteratorResult(Result):
def __init__(self, cursor_metadata, iterator):
self._metadata = cursor_metadata
self.iterator = iterator
def _soft_close(self, **kw):
self.iterator = iter([])
def _raw_row_iterator(self):
return self.iterator
def _fetchiter_impl(self):
return self.iterator
def _fetchone_impl(self):
try:
return next(self.iterator)
except StopIteration:
self._soft_close()
return None
def _fetchall_impl(self):
try:
return list(self.iterator)
finally:
self._soft_close()
def _fetchmany_impl(self, size=None):
return list(itertools.islice(self.iterator, 0, size))
class ChunkedIteratorResult(IteratorResult):
def __init__(self, cursor_metadata, chunks):
self._metadata = cursor_metadata
self.chunks = chunks
self.iterator = itertools.chain.from_iterable(self.chunks(None))
@_generative
def yield_per(self, num):
self._yield_per = num
self.iterator = itertools.chain.from_iterable(self.chunks(num))
class MergedResult(IteratorResult):
closed = False
def __init__(self, cursor_metadata, results):
self._results = results
super(MergedResult, self).__init__(
cursor_metadata,
itertools.chain.from_iterable(
r._raw_row_iterator() for r in results
),
)
self._unique_filter_state = results[0]._unique_filter_state
self._post_creational_filter = results[0]._post_creational_filter
self._no_scalar_onerow = results[0]._no_scalar_onerow
self._yield_per = results[0]._yield_per
def close(self):
self._soft_close(hard=True)
def _soft_close(self, hard=False):
for r in self._results:
r._soft_close(hard=hard)
if hard:
self.closed = True
|