1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
|
# orm/events.py
# Copyright (C) 2005-2021 the SQLAlchemy authors and contributors
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: https://www.opensource.org/licenses/mit-license.php
"""ORM event interfaces.
"""
import weakref
from . import instrumentation
from . import interfaces
from . import mapperlib
from .attributes import QueryableAttribute
from .base import _mapper_or_none
from .query import Query
from .scoping import scoped_session
from .session import Session
from .session import sessionmaker
from .. import event
from .. import exc
from .. import util
from ..util.compat import inspect_getfullargspec
class InstrumentationEvents(event.Events):
"""Events related to class instrumentation events.
The listeners here support being established against
any new style class, that is any object that is a subclass
of 'type'. Events will then be fired off for events
against that class. If the "propagate=True" flag is passed
to event.listen(), the event will fire off for subclasses
of that class as well.
The Python ``type`` builtin is also accepted as a target,
which when used has the effect of events being emitted
for all classes.
Note the "propagate" flag here is defaulted to ``True``,
unlike the other class level events where it defaults
to ``False``. This means that new subclasses will also
be the subject of these events, when a listener
is established on a superclass.
"""
_target_class_doc = "SomeBaseClass"
_dispatch_target = instrumentation.InstrumentationFactory
@classmethod
def _accept_with(cls, target):
if isinstance(target, type):
return _InstrumentationEventsHold(target)
else:
return None
@classmethod
def _listen(cls, event_key, propagate=True, **kw):
target, identifier, fn = (
event_key.dispatch_target,
event_key.identifier,
event_key._listen_fn,
)
def listen(target_cls, *arg):
listen_cls = target()
# if weakref were collected, however this is not something
# that normally happens. it was occurring during test teardown
# between mapper/registry/instrumentation_manager, however this
# interaction was changed to not rely upon the event system.
if listen_cls is None:
return None
if propagate and issubclass(target_cls, listen_cls):
return fn(target_cls, *arg)
elif not propagate and target_cls is listen_cls:
return fn(target_cls, *arg)
def remove(ref):
key = event.registry._EventKey(
None,
identifier,
listen,
instrumentation._instrumentation_factory,
)
getattr(
instrumentation._instrumentation_factory.dispatch, identifier
).remove(key)
target = weakref.ref(target.class_, remove)
event_key.with_dispatch_target(
instrumentation._instrumentation_factory
).with_wrapper(listen).base_listen(**kw)
@classmethod
def _clear(cls):
super(InstrumentationEvents, cls)._clear()
instrumentation._instrumentation_factory.dispatch._clear()
def class_instrument(self, cls):
"""Called after the given class is instrumented.
To get at the :class:`.ClassManager`, use
:func:`.manager_of_class`.
"""
def class_uninstrument(self, cls):
"""Called before the given class is uninstrumented.
To get at the :class:`.ClassManager`, use
:func:`.manager_of_class`.
"""
def attribute_instrument(self, cls, key, inst):
"""Called when an attribute is instrumented."""
class _InstrumentationEventsHold:
"""temporary marker object used to transfer from _accept_with() to
_listen() on the InstrumentationEvents class.
"""
def __init__(self, class_):
self.class_ = class_
dispatch = event.dispatcher(InstrumentationEvents)
class InstanceEvents(event.Events):
"""Define events specific to object lifecycle.
e.g.::
from sqlalchemy import event
def my_load_listener(target, context):
print("on load!")
event.listen(SomeClass, 'load', my_load_listener)
Available targets include:
* mapped classes
* unmapped superclasses of mapped or to-be-mapped classes
(using the ``propagate=True`` flag)
* :class:`_orm.Mapper` objects
* the :class:`_orm.Mapper` class itself and the :func:`.mapper`
function indicate listening for all mappers.
Instance events are closely related to mapper events, but
are more specific to the instance and its instrumentation,
rather than its system of persistence.
When using :class:`.InstanceEvents`, several modifiers are
available to the :func:`.event.listen` function.
:param propagate=False: When True, the event listener should
be applied to all inheriting classes as well as the
class which is the target of this listener.
:param raw=False: When True, the "target" argument passed
to applicable event listener functions will be the
instance's :class:`.InstanceState` management
object, rather than the mapped instance itself.
:param restore_load_context=False: Applies to the
:meth:`.InstanceEvents.load` and :meth:`.InstanceEvents.refresh`
events. Restores the loader context of the object when the event
hook is complete, so that ongoing eager load operations continue
to target the object appropriately. A warning is emitted if the
object is moved to a new loader context from within one of these
events if this flag is not set.
.. versionadded:: 1.3.14
"""
_target_class_doc = "SomeClass"
_dispatch_target = instrumentation.ClassManager
@classmethod
def _new_classmanager_instance(cls, class_, classmanager):
_InstanceEventsHold.populate(class_, classmanager)
@classmethod
@util.preload_module("sqlalchemy.orm")
def _accept_with(cls, target):
orm = util.preloaded.orm
if isinstance(target, instrumentation.ClassManager):
return target
elif isinstance(target, mapperlib.Mapper):
return target.class_manager
elif target is orm.mapper:
return instrumentation.ClassManager
elif isinstance(target, type):
if issubclass(target, mapperlib.Mapper):
return instrumentation.ClassManager
else:
manager = instrumentation.manager_of_class(target)
if manager:
return manager
else:
return _InstanceEventsHold(target)
return None
@classmethod
def _listen(
cls,
event_key,
raw=False,
propagate=False,
restore_load_context=False,
**kw
):
target, fn = (event_key.dispatch_target, event_key._listen_fn)
if not raw or restore_load_context:
def wrap(state, *arg, **kw):
if not raw:
target = state.obj()
else:
target = state
if restore_load_context:
runid = state.runid
try:
return fn(target, *arg, **kw)
finally:
if restore_load_context:
state.runid = runid
event_key = event_key.with_wrapper(wrap)
event_key.base_listen(propagate=propagate, **kw)
if propagate:
for mgr in target.subclass_managers(True):
event_key.with_dispatch_target(mgr).base_listen(propagate=True)
@classmethod
def _clear(cls):
super(InstanceEvents, cls)._clear()
_InstanceEventsHold._clear()
def first_init(self, manager, cls):
"""Called when the first instance of a particular mapping is called.
This event is called when the ``__init__`` method of a class
is called the first time for that particular class. The event
invokes before ``__init__`` actually proceeds as well as before
the :meth:`.InstanceEvents.init` event is invoked.
"""
def init(self, target, args, kwargs):
"""Receive an instance when its constructor is called.
This method is only called during a userland construction of
an object, in conjunction with the object's constructor, e.g.
its ``__init__`` method. It is not called when an object is
loaded from the database; see the :meth:`.InstanceEvents.load`
event in order to intercept a database load.
The event is called before the actual ``__init__`` constructor
of the object is called. The ``kwargs`` dictionary may be
modified in-place in order to affect what is passed to
``__init__``.
:param target: the mapped instance. If
the event is configured with ``raw=True``, this will
instead be the :class:`.InstanceState` state-management
object associated with the instance.
:param args: positional arguments passed to the ``__init__`` method.
This is passed as a tuple and is currently immutable.
:param kwargs: keyword arguments passed to the ``__init__`` method.
This structure *can* be altered in place.
.. seealso::
:meth:`.InstanceEvents.init_failure`
:meth:`.InstanceEvents.load`
"""
def init_failure(self, target, args, kwargs):
"""Receive an instance when its constructor has been called,
and raised an exception.
This method is only called during a userland construction of
an object, in conjunction with the object's constructor, e.g.
its ``__init__`` method. It is not called when an object is loaded
from the database.
The event is invoked after an exception raised by the ``__init__``
method is caught. After the event
is invoked, the original exception is re-raised outwards, so that
the construction of the object still raises an exception. The
actual exception and stack trace raised should be present in
``sys.exc_info()``.
:param target: the mapped instance. If
the event is configured with ``raw=True``, this will
instead be the :class:`.InstanceState` state-management
object associated with the instance.
:param args: positional arguments that were passed to the ``__init__``
method.
:param kwargs: keyword arguments that were passed to the ``__init__``
method.
.. seealso::
:meth:`.InstanceEvents.init`
:meth:`.InstanceEvents.load`
"""
def load(self, target, context):
"""Receive an object instance after it has been created via
``__new__``, and after initial attribute population has
occurred.
This typically occurs when the instance is created based on
incoming result rows, and is only called once for that
instance's lifetime.
.. warning::
During a result-row load, this event is invoked when the
first row received for this instance is processed. When using
eager loading with collection-oriented attributes, the additional
rows that are to be loaded / processed in order to load subsequent
collection items have not occurred yet. This has the effect
both that collections will not be fully loaded, as well as that
if an operation occurs within this event handler that emits
another database load operation for the object, the "loading
context" for the object can change and interfere with the
existing eager loaders still in progress.
Examples of what can cause the "loading context" to change within
the event handler include, but are not necessarily limited to:
* accessing deferred attributes that weren't part of the row,
will trigger an "undefer" operation and refresh the object
* accessing attributes on a joined-inheritance subclass that
weren't part of the row, will trigger a refresh operation.
As of SQLAlchemy 1.3.14, a warning is emitted when this occurs. The
:paramref:`.InstanceEvents.restore_load_context` option may be
used on the event to prevent this warning; this will ensure that
the existing loading context is maintained for the object after the
event is called::
@event.listens_for(
SomeClass, "load", restore_load_context=True)
def on_load(instance, context):
instance.some_unloaded_attribute
.. versionchanged:: 1.3.14 Added
:paramref:`.InstanceEvents.restore_load_context`
and :paramref:`.SessionEvents.restore_load_context` flags which
apply to "on load" events, which will ensure that the loading
context for an object is restored when the event hook is
complete; a warning is emitted if the load context of the object
changes without this flag being set.
The :meth:`.InstanceEvents.load` event is also available in a
class-method decorator format called :func:`_orm.reconstructor`.
:param target: the mapped instance. If
the event is configured with ``raw=True``, this will
instead be the :class:`.InstanceState` state-management
object associated with the instance.
:param context: the :class:`.QueryContext` corresponding to the
current :class:`_query.Query` in progress. This argument may be
``None`` if the load does not correspond to a :class:`_query.Query`,
such as during :meth:`.Session.merge`.
.. seealso::
:meth:`.InstanceEvents.init`
:meth:`.InstanceEvents.refresh`
:meth:`.SessionEvents.loaded_as_persistent`
:ref:`mapping_constructors`
"""
def refresh(self, target, context, attrs):
"""Receive an object instance after one or more attributes have
been refreshed from a query.
Contrast this to the :meth:`.InstanceEvents.load` method, which
is invoked when the object is first loaded from a query.
.. note:: This event is invoked within the loader process before
eager loaders may have been completed, and the object's state may
not be complete. Additionally, invoking row-level refresh
operations on the object will place the object into a new loader
context, interfering with the existing load context. See the note
on :meth:`.InstanceEvents.load` for background on making use of the
:paramref:`.InstanceEvents.restore_load_context` parameter, in
order to resolve this scenario.
:param target: the mapped instance. If
the event is configured with ``raw=True``, this will
instead be the :class:`.InstanceState` state-management
object associated with the instance.
:param context: the :class:`.QueryContext` corresponding to the
current :class:`_query.Query` in progress.
:param attrs: sequence of attribute names which
were populated, or None if all column-mapped, non-deferred
attributes were populated.
.. seealso::
:meth:`.InstanceEvents.load`
"""
def refresh_flush(self, target, flush_context, attrs):
"""Receive an object instance after one or more attributes that
contain a column-level default or onupdate handler have been refreshed
during persistence of the object's state.
This event is the same as :meth:`.InstanceEvents.refresh` except
it is invoked within the unit of work flush process, and includes
only non-primary-key columns that have column level default or
onupdate handlers, including Python callables as well as server side
defaults and triggers which may be fetched via the RETURNING clause.
.. note::
While the :meth:`.InstanceEvents.refresh_flush` event is triggered
for an object that was INSERTed as well as for an object that was
UPDATEd, the event is geared primarily towards the UPDATE process;
it is mostly an internal artifact that INSERT actions can also
trigger this event, and note that **primary key columns for an
INSERTed row are explicitly omitted** from this event. In order to
intercept the newly INSERTed state of an object, the
:meth:`.SessionEvents.pending_to_persistent` and
:meth:`.MapperEvents.after_insert` are better choices.
.. versionadded:: 1.0.5
:param target: the mapped instance. If
the event is configured with ``raw=True``, this will
instead be the :class:`.InstanceState` state-management
object associated with the instance.
:param flush_context: Internal :class:`.UOWTransaction` object
which handles the details of the flush.
:param attrs: sequence of attribute names which
were populated.
.. seealso::
:ref:`orm_server_defaults`
:ref:`metadata_defaults_toplevel`
"""
def expire(self, target, attrs):
"""Receive an object instance after its attributes or some subset
have been expired.
'keys' is a list of attribute names. If None, the entire
state was expired.
:param target: the mapped instance. If
the event is configured with ``raw=True``, this will
instead be the :class:`.InstanceState` state-management
object associated with the instance.
:param attrs: sequence of attribute
names which were expired, or None if all attributes were
expired.
"""
def pickle(self, target, state_dict):
"""Receive an object instance when its associated state is
being pickled.
:param target: the mapped instance. If
the event is configured with ``raw=True``, this will
instead be the :class:`.InstanceState` state-management
object associated with the instance.
:param state_dict: the dictionary returned by
:class:`.InstanceState.__getstate__`, containing the state
to be pickled.
"""
def unpickle(self, target, state_dict):
"""Receive an object instance after its associated state has
been unpickled.
:param target: the mapped instance. If
the event is configured with ``raw=True``, this will
instead be the :class:`.InstanceState` state-management
object associated with the instance.
:param state_dict: the dictionary sent to
:class:`.InstanceState.__setstate__`, containing the state
dictionary which was pickled.
"""
class _EventsHold(event.RefCollection):
"""Hold onto listeners against unmapped, uninstrumented classes.
Establish _listen() for that class' mapper/instrumentation when
those objects are created for that class.
"""
def __init__(self, class_):
self.class_ = class_
@classmethod
def _clear(cls):
cls.all_holds.clear()
class HoldEvents:
_dispatch_target = None
@classmethod
def _listen(
cls, event_key, raw=False, propagate=False, retval=False, **kw
):
target = event_key.dispatch_target
if target.class_ in target.all_holds:
collection = target.all_holds[target.class_]
else:
collection = target.all_holds[target.class_] = {}
event.registry._stored_in_collection(event_key, target)
collection[event_key._key] = (
event_key,
raw,
propagate,
retval,
kw,
)
if propagate:
stack = list(target.class_.__subclasses__())
while stack:
subclass = stack.pop(0)
stack.extend(subclass.__subclasses__())
subject = target.resolve(subclass)
if subject is not None:
# we are already going through __subclasses__()
# so leave generic propagate flag False
event_key.with_dispatch_target(subject).listen(
raw=raw, propagate=False, retval=retval, **kw
)
def remove(self, event_key):
target = event_key.dispatch_target
if isinstance(target, _EventsHold):
collection = target.all_holds[target.class_]
del collection[event_key._key]
@classmethod
def populate(cls, class_, subject):
for subclass in class_.__mro__:
if subclass in cls.all_holds:
collection = cls.all_holds[subclass]
for (
event_key,
raw,
propagate,
retval,
kw,
) in collection.values():
if propagate or subclass is class_:
# since we can't be sure in what order different
# classes in a hierarchy are triggered with
# populate(), we rely upon _EventsHold for all event
# assignment, instead of using the generic propagate
# flag.
event_key.with_dispatch_target(subject).listen(
raw=raw, propagate=False, retval=retval, **kw
)
class _InstanceEventsHold(_EventsHold):
all_holds = weakref.WeakKeyDictionary()
def resolve(self, class_):
return instrumentation.manager_of_class(class_)
class HoldInstanceEvents(_EventsHold.HoldEvents, InstanceEvents):
pass
dispatch = event.dispatcher(HoldInstanceEvents)
class MapperEvents(event.Events):
"""Define events specific to mappings.
e.g.::
from sqlalchemy import event
def my_before_insert_listener(mapper, connection, target):
# execute a stored procedure upon INSERT,
# apply the value to the row to be inserted
target.calculated_value = connection.execute(
text("select my_special_function(%d)" % target.special_number)
).scalar()
# associate the listener function with SomeClass,
# to execute during the "before_insert" hook
event.listen(
SomeClass, 'before_insert', my_before_insert_listener)
Available targets include:
* mapped classes
* unmapped superclasses of mapped or to-be-mapped classes
(using the ``propagate=True`` flag)
* :class:`_orm.Mapper` objects
* the :class:`_orm.Mapper` class itself and the :func:`.mapper`
function indicate listening for all mappers.
Mapper events provide hooks into critical sections of the
mapper, including those related to object instrumentation,
object loading, and object persistence. In particular, the
persistence methods :meth:`~.MapperEvents.before_insert`,
and :meth:`~.MapperEvents.before_update` are popular
places to augment the state being persisted - however, these
methods operate with several significant restrictions. The
user is encouraged to evaluate the
:meth:`.SessionEvents.before_flush` and
:meth:`.SessionEvents.after_flush` methods as more
flexible and user-friendly hooks in which to apply
additional database state during a flush.
When using :class:`.MapperEvents`, several modifiers are
available to the :func:`.event.listen` function.
:param propagate=False: When True, the event listener should
be applied to all inheriting mappers and/or the mappers of
inheriting classes, as well as any
mapper which is the target of this listener.
:param raw=False: When True, the "target" argument passed
to applicable event listener functions will be the
instance's :class:`.InstanceState` management
object, rather than the mapped instance itself.
:param retval=False: when True, the user-defined event function
must have a return value, the purpose of which is either to
control subsequent event propagation, or to otherwise alter
the operation in progress by the mapper. Possible return
values are:
* ``sqlalchemy.orm.interfaces.EXT_CONTINUE`` - continue event
processing normally.
* ``sqlalchemy.orm.interfaces.EXT_STOP`` - cancel all subsequent
event handlers in the chain.
* other values - the return value specified by specific listeners.
"""
_target_class_doc = "SomeClass"
_dispatch_target = mapperlib.Mapper
@classmethod
def _new_mapper_instance(cls, class_, mapper):
_MapperEventsHold.populate(class_, mapper)
@classmethod
@util.preload_module("sqlalchemy.orm")
def _accept_with(cls, target):
orm = util.preloaded.orm
if target is orm.mapper:
return mapperlib.Mapper
elif isinstance(target, type):
if issubclass(target, mapperlib.Mapper):
return target
else:
mapper = _mapper_or_none(target)
if mapper is not None:
return mapper
else:
return _MapperEventsHold(target)
else:
return target
@classmethod
def _listen(
cls, event_key, raw=False, retval=False, propagate=False, **kw
):
target, identifier, fn = (
event_key.dispatch_target,
event_key.identifier,
event_key._listen_fn,
)
if (
identifier in ("before_configured", "after_configured")
and target is not mapperlib.Mapper
):
util.warn(
"'before_configured' and 'after_configured' ORM events "
"only invoke with the mapper() function or Mapper class "
"as the target."
)
if not raw or not retval:
if not raw:
meth = getattr(cls, identifier)
try:
target_index = (
inspect_getfullargspec(meth)[0].index("target") - 1
)
except ValueError:
target_index = None
def wrap(*arg, **kw):
if not raw and target_index is not None:
arg = list(arg)
arg[target_index] = arg[target_index].obj()
if not retval:
fn(*arg, **kw)
return interfaces.EXT_CONTINUE
else:
return fn(*arg, **kw)
event_key = event_key.with_wrapper(wrap)
if propagate:
for mapper in target.self_and_descendants:
event_key.with_dispatch_target(mapper).base_listen(
propagate=True, **kw
)
else:
event_key.base_listen(**kw)
@classmethod
def _clear(cls):
super(MapperEvents, cls)._clear()
_MapperEventsHold._clear()
def instrument_class(self, mapper, class_):
r"""Receive a class when the mapper is first constructed,
before instrumentation is applied to the mapped class.
This event is the earliest phase of mapper construction.
Most attributes of the mapper are not yet initialized.
This listener can either be applied to the :class:`_orm.Mapper`
class overall, or to any un-mapped class which serves as a base
for classes that will be mapped (using the ``propagate=True`` flag)::
Base = declarative_base()
@event.listens_for(Base, "instrument_class", propagate=True)
def on_new_class(mapper, cls_):
" ... "
:param mapper: the :class:`_orm.Mapper` which is the target
of this event.
:param class\_: the mapped class.
"""
def before_mapper_configured(self, mapper, class_):
"""Called right before a specific mapper is to be configured.
This event is intended to allow a specific mapper to be skipped during
the configure step, by returning the :attr:`.orm.interfaces.EXT_SKIP`
symbol which indicates to the :func:`.configure_mappers` call that this
particular mapper (or hierarchy of mappers, if ``propagate=True`` is
used) should be skipped in the current configuration run. When one or
more mappers are skipped, the he "new mappers" flag will remain set,
meaning the :func:`.configure_mappers` function will continue to be
called when mappers are used, to continue to try to configure all
available mappers.
In comparison to the other configure-level events,
:meth:`.MapperEvents.before_configured`,
:meth:`.MapperEvents.after_configured`, and
:meth:`.MapperEvents.mapper_configured`, the
:meth;`.MapperEvents.before_mapper_configured` event provides for a
meaningful return value when it is registered with the ``retval=True``
parameter.
.. versionadded:: 1.3
e.g.::
from sqlalchemy.orm import EXT_SKIP
Base = declarative_base()
DontConfigureBase = declarative_base()
@event.listens_for(
DontConfigureBase,
"before_mapper_configured", retval=True, propagate=True)
def dont_configure(mapper, cls):
return EXT_SKIP
.. seealso::
:meth:`.MapperEvents.before_configured`
:meth:`.MapperEvents.after_configured`
:meth:`.MapperEvents.mapper_configured`
"""
def mapper_configured(self, mapper, class_):
r"""Called when a specific mapper has completed its own configuration
within the scope of the :func:`.configure_mappers` call.
The :meth:`.MapperEvents.mapper_configured` event is invoked
for each mapper that is encountered when the
:func:`_orm.configure_mappers` function proceeds through the current
list of not-yet-configured mappers.
:func:`_orm.configure_mappers` is typically invoked
automatically as mappings are first used, as well as each time
new mappers have been made available and new mapper use is
detected.
When the event is called, the mapper should be in its final
state, but **not including backrefs** that may be invoked from
other mappers; they might still be pending within the
configuration operation. Bidirectional relationships that
are instead configured via the
:paramref:`.orm.relationship.back_populates` argument
*will* be fully available, since this style of relationship does not
rely upon other possibly-not-configured mappers to know that they
exist.
For an event that is guaranteed to have **all** mappers ready
to go including backrefs that are defined only on other
mappings, use the :meth:`.MapperEvents.after_configured`
event; this event invokes only after all known mappings have been
fully configured.
The :meth:`.MapperEvents.mapper_configured` event, unlike
:meth:`.MapperEvents.before_configured` or
:meth:`.MapperEvents.after_configured`,
is called for each mapper/class individually, and the mapper is
passed to the event itself. It also is called exactly once for
a particular mapper. The event is therefore useful for
configurational steps that benefit from being invoked just once
on a specific mapper basis, which don't require that "backref"
configurations are necessarily ready yet.
:param mapper: the :class:`_orm.Mapper` which is the target
of this event.
:param class\_: the mapped class.
.. seealso::
:meth:`.MapperEvents.before_configured`
:meth:`.MapperEvents.after_configured`
:meth:`.MapperEvents.before_mapper_configured`
"""
# TODO: need coverage for this event
def before_configured(self):
"""Called before a series of mappers have been configured.
The :meth:`.MapperEvents.before_configured` event is invoked
each time the :func:`_orm.configure_mappers` function is
invoked, before the function has done any of its work.
:func:`_orm.configure_mappers` is typically invoked
automatically as mappings are first used, as well as each time
new mappers have been made available and new mapper use is
detected.
This event can **only** be applied to the :class:`_orm.Mapper` class
or :func:`.mapper` function, and not to individual mappings or
mapped classes. It is only invoked for all mappings as a whole::
from sqlalchemy.orm import mapper
@event.listens_for(mapper, "before_configured")
def go():
# ...
Contrast this event to :meth:`.MapperEvents.after_configured`,
which is invoked after the series of mappers has been configured,
as well as :meth:`.MapperEvents.before_mapper_configured`
and :meth:`.MapperEvents.mapper_configured`, which are both invoked
on a per-mapper basis.
Theoretically this event is called once per
application, but is actually called any time new mappers
are to be affected by a :func:`_orm.configure_mappers`
call. If new mappings are constructed after existing ones have
already been used, this event will likely be called again. To ensure
that a particular event is only called once and no further, the
``once=True`` argument (new in 0.9.4) can be applied::
from sqlalchemy.orm import mapper
@event.listens_for(mapper, "before_configured", once=True)
def go():
# ...
.. versionadded:: 0.9.3
.. seealso::
:meth:`.MapperEvents.before_mapper_configured`
:meth:`.MapperEvents.mapper_configured`
:meth:`.MapperEvents.after_configured`
"""
def after_configured(self):
"""Called after a series of mappers have been configured.
The :meth:`.MapperEvents.after_configured` event is invoked
each time the :func:`_orm.configure_mappers` function is
invoked, after the function has completed its work.
:func:`_orm.configure_mappers` is typically invoked
automatically as mappings are first used, as well as each time
new mappers have been made available and new mapper use is
detected.
Contrast this event to the :meth:`.MapperEvents.mapper_configured`
event, which is called on a per-mapper basis while the configuration
operation proceeds; unlike that event, when this event is invoked,
all cross-configurations (e.g. backrefs) will also have been made
available for any mappers that were pending.
Also contrast to :meth:`.MapperEvents.before_configured`,
which is invoked before the series of mappers has been configured.
This event can **only** be applied to the :class:`_orm.Mapper` class
or :func:`.mapper` function, and not to individual mappings or
mapped classes. It is only invoked for all mappings as a whole::
from sqlalchemy.orm import mapper
@event.listens_for(mapper, "after_configured")
def go():
# ...
Theoretically this event is called once per
application, but is actually called any time new mappers
have been affected by a :func:`_orm.configure_mappers`
call. If new mappings are constructed after existing ones have
already been used, this event will likely be called again. To ensure
that a particular event is only called once and no further, the
``once=True`` argument (new in 0.9.4) can be applied::
from sqlalchemy.orm import mapper
@event.listens_for(mapper, "after_configured", once=True)
def go():
# ...
.. seealso::
:meth:`.MapperEvents.before_mapper_configured`
:meth:`.MapperEvents.mapper_configured`
:meth:`.MapperEvents.before_configured`
"""
def before_insert(self, mapper, connection, target):
"""Receive an object instance before an INSERT statement
is emitted corresponding to that instance.
This event is used to modify local, non-object related
attributes on the instance before an INSERT occurs, as well
as to emit additional SQL statements on the given
connection.
The event is often called for a batch of objects of the
same class before their INSERT statements are emitted at
once in a later step. In the extremely rare case that
this is not desirable, the :func:`.mapper` can be
configured with ``batch=False``, which will cause
batches of instances to be broken up into individual
(and more poorly performing) event->persist->event
steps.
.. warning::
Mapper-level flush events only allow **very limited operations**,
on attributes local to the row being operated upon only,
as well as allowing any SQL to be emitted on the given
:class:`_engine.Connection`. **Please read fully** the notes
at :ref:`session_persistence_mapper` for guidelines on using
these methods; generally, the :meth:`.SessionEvents.before_flush`
method should be preferred for general on-flush changes.
:param mapper: the :class:`_orm.Mapper` which is the target
of this event.
:param connection: the :class:`_engine.Connection` being used to
emit INSERT statements for this instance. This
provides a handle into the current transaction on the
target database specific to this instance.
:param target: the mapped instance being persisted. If
the event is configured with ``raw=True``, this will
instead be the :class:`.InstanceState` state-management
object associated with the instance.
:return: No return value is supported by this event.
.. seealso::
:ref:`session_persistence_events`
"""
def after_insert(self, mapper, connection, target):
"""Receive an object instance after an INSERT statement
is emitted corresponding to that instance.
This event is used to modify in-Python-only
state on the instance after an INSERT occurs, as well
as to emit additional SQL statements on the given
connection.
The event is often called for a batch of objects of the
same class after their INSERT statements have been
emitted at once in a previous step. In the extremely
rare case that this is not desirable, the
:func:`.mapper` can be configured with ``batch=False``,
which will cause batches of instances to be broken up
into individual (and more poorly performing)
event->persist->event steps.
.. warning::
Mapper-level flush events only allow **very limited operations**,
on attributes local to the row being operated upon only,
as well as allowing any SQL to be emitted on the given
:class:`_engine.Connection`. **Please read fully** the notes
at :ref:`session_persistence_mapper` for guidelines on using
these methods; generally, the :meth:`.SessionEvents.before_flush`
method should be preferred for general on-flush changes.
:param mapper: the :class:`_orm.Mapper` which is the target
of this event.
:param connection: the :class:`_engine.Connection` being used to
emit INSERT statements for this instance. This
provides a handle into the current transaction on the
target database specific to this instance.
:param target: the mapped instance being persisted. If
the event is configured with ``raw=True``, this will
instead be the :class:`.InstanceState` state-management
object associated with the instance.
:return: No return value is supported by this event.
.. seealso::
:ref:`session_persistence_events`
"""
def before_update(self, mapper, connection, target):
"""Receive an object instance before an UPDATE statement
is emitted corresponding to that instance.
This event is used to modify local, non-object related
attributes on the instance before an UPDATE occurs, as well
as to emit additional SQL statements on the given
connection.
This method is called for all instances that are
marked as "dirty", *even those which have no net changes
to their column-based attributes*. An object is marked
as dirty when any of its column-based attributes have a
"set attribute" operation called or when any of its
collections are modified. If, at update time, no
column-based attributes have any net changes, no UPDATE
statement will be issued. This means that an instance
being sent to :meth:`~.MapperEvents.before_update` is
*not* a guarantee that an UPDATE statement will be
issued, although you can affect the outcome here by
modifying attributes so that a net change in value does
exist.
To detect if the column-based attributes on the object have net
changes, and will therefore generate an UPDATE statement, use
``object_session(instance).is_modified(instance,
include_collections=False)``.
The event is often called for a batch of objects of the
same class before their UPDATE statements are emitted at
once in a later step. In the extremely rare case that
this is not desirable, the :func:`.mapper` can be
configured with ``batch=False``, which will cause
batches of instances to be broken up into individual
(and more poorly performing) event->persist->event
steps.
.. warning::
Mapper-level flush events only allow **very limited operations**,
on attributes local to the row being operated upon only,
as well as allowing any SQL to be emitted on the given
:class:`_engine.Connection`. **Please read fully** the notes
at :ref:`session_persistence_mapper` for guidelines on using
these methods; generally, the :meth:`.SessionEvents.before_flush`
method should be preferred for general on-flush changes.
:param mapper: the :class:`_orm.Mapper` which is the target
of this event.
:param connection: the :class:`_engine.Connection` being used to
emit UPDATE statements for this instance. This
provides a handle into the current transaction on the
target database specific to this instance.
:param target: the mapped instance being persisted. If
the event is configured with ``raw=True``, this will
instead be the :class:`.InstanceState` state-management
object associated with the instance.
:return: No return value is supported by this event.
.. seealso::
:ref:`session_persistence_events`
"""
def after_update(self, mapper, connection, target):
"""Receive an object instance after an UPDATE statement
is emitted corresponding to that instance.
This event is used to modify in-Python-only
state on the instance after an UPDATE occurs, as well
as to emit additional SQL statements on the given
connection.
This method is called for all instances that are
marked as "dirty", *even those which have no net changes
to their column-based attributes*, and for which
no UPDATE statement has proceeded. An object is marked
as dirty when any of its column-based attributes have a
"set attribute" operation called or when any of its
collections are modified. If, at update time, no
column-based attributes have any net changes, no UPDATE
statement will be issued. This means that an instance
being sent to :meth:`~.MapperEvents.after_update` is
*not* a guarantee that an UPDATE statement has been
issued.
To detect if the column-based attributes on the object have net
changes, and therefore resulted in an UPDATE statement, use
``object_session(instance).is_modified(instance,
include_collections=False)``.
The event is often called for a batch of objects of the
same class after their UPDATE statements have been emitted at
once in a previous step. In the extremely rare case that
this is not desirable, the :func:`.mapper` can be
configured with ``batch=False``, which will cause
batches of instances to be broken up into individual
(and more poorly performing) event->persist->event
steps.
.. warning::
Mapper-level flush events only allow **very limited operations**,
on attributes local to the row being operated upon only,
as well as allowing any SQL to be emitted on the given
:class:`_engine.Connection`. **Please read fully** the notes
at :ref:`session_persistence_mapper` for guidelines on using
these methods; generally, the :meth:`.SessionEvents.before_flush`
method should be preferred for general on-flush changes.
:param mapper: the :class:`_orm.Mapper` which is the target
of this event.
:param connection: the :class:`_engine.Connection` being used to
emit UPDATE statements for this instance. This
provides a handle into the current transaction on the
target database specific to this instance.
:param target: the mapped instance being persisted. If
the event is configured with ``raw=True``, this will
instead be the :class:`.InstanceState` state-management
object associated with the instance.
:return: No return value is supported by this event.
.. seealso::
:ref:`session_persistence_events`
"""
def before_delete(self, mapper, connection, target):
"""Receive an object instance before a DELETE statement
is emitted corresponding to that instance.
This event is used to emit additional SQL statements on
the given connection as well as to perform application
specific bookkeeping related to a deletion event.
The event is often called for a batch of objects of the
same class before their DELETE statements are emitted at
once in a later step.
.. warning::
Mapper-level flush events only allow **very limited operations**,
on attributes local to the row being operated upon only,
as well as allowing any SQL to be emitted on the given
:class:`_engine.Connection`. **Please read fully** the notes
at :ref:`session_persistence_mapper` for guidelines on using
these methods; generally, the :meth:`.SessionEvents.before_flush`
method should be preferred for general on-flush changes.
:param mapper: the :class:`_orm.Mapper` which is the target
of this event.
:param connection: the :class:`_engine.Connection` being used to
emit DELETE statements for this instance. This
provides a handle into the current transaction on the
target database specific to this instance.
:param target: the mapped instance being deleted. If
the event is configured with ``raw=True``, this will
instead be the :class:`.InstanceState` state-management
object associated with the instance.
:return: No return value is supported by this event.
.. seealso::
:ref:`session_persistence_events`
"""
def after_delete(self, mapper, connection, target):
"""Receive an object instance after a DELETE statement
has been emitted corresponding to that instance.
This event is used to emit additional SQL statements on
the given connection as well as to perform application
specific bookkeeping related to a deletion event.
The event is often called for a batch of objects of the
same class after their DELETE statements have been emitted at
once in a previous step.
.. warning::
Mapper-level flush events only allow **very limited operations**,
on attributes local to the row being operated upon only,
as well as allowing any SQL to be emitted on the given
:class:`_engine.Connection`. **Please read fully** the notes
at :ref:`session_persistence_mapper` for guidelines on using
these methods; generally, the :meth:`.SessionEvents.before_flush`
method should be preferred for general on-flush changes.
:param mapper: the :class:`_orm.Mapper` which is the target
of this event.
:param connection: the :class:`_engine.Connection` being used to
emit DELETE statements for this instance. This
provides a handle into the current transaction on the
target database specific to this instance.
:param target: the mapped instance being deleted. If
the event is configured with ``raw=True``, this will
instead be the :class:`.InstanceState` state-management
object associated with the instance.
:return: No return value is supported by this event.
.. seealso::
:ref:`session_persistence_events`
"""
class _MapperEventsHold(_EventsHold):
all_holds = weakref.WeakKeyDictionary()
def resolve(self, class_):
return _mapper_or_none(class_)
class HoldMapperEvents(_EventsHold.HoldEvents, MapperEvents):
pass
dispatch = event.dispatcher(HoldMapperEvents)
_sessionevents_lifecycle_event_names = set()
class SessionEvents(event.Events):
"""Define events specific to :class:`.Session` lifecycle.
e.g.::
from sqlalchemy import event
from sqlalchemy.orm import sessionmaker
def my_before_commit(session):
print("before commit!")
Session = sessionmaker()
event.listen(Session, "before_commit", my_before_commit)
The :func:`~.event.listen` function will accept
:class:`.Session` objects as well as the return result
of :class:`~.sessionmaker()` and :class:`~.scoped_session()`.
Additionally, it accepts the :class:`.Session` class which
will apply listeners to all :class:`.Session` instances
globally.
:param raw=False: When True, the "target" argument passed
to applicable event listener functions that work on individual
objects will be the instance's :class:`.InstanceState` management
object, rather than the mapped instance itself.
.. versionadded:: 1.3.14
:param restore_load_context=False: Applies to the
:meth:`.SessionEvents.loaded_as_persistent` event. Restores the loader
context of the object when the event hook is complete, so that ongoing
eager load operations continue to target the object appropriately. A
warning is emitted if the object is moved to a new loader context from
within this event if this flag is not set.
.. versionadded:: 1.3.14
"""
_target_class_doc = "SomeSessionOrFactory"
_dispatch_target = Session
def _lifecycle_event(fn):
_sessionevents_lifecycle_event_names.add(fn.__name__)
return fn
@classmethod
def _accept_with(cls, target):
if isinstance(target, scoped_session):
target = target.session_factory
if not isinstance(target, sessionmaker) and (
not isinstance(target, type) or not issubclass(target, Session)
):
raise exc.ArgumentError(
"Session event listen on a scoped_session "
"requires that its creation callable "
"is associated with the Session class."
)
if isinstance(target, sessionmaker):
return target.class_
elif isinstance(target, type):
if issubclass(target, scoped_session):
return Session
elif issubclass(target, Session):
return target
elif isinstance(target, Session):
return target
else:
# allows alternate SessionEvents-like-classes to be consulted
return event.Events._accept_with(target)
@classmethod
def _listen(cls, event_key, raw=False, restore_load_context=False, **kw):
is_instance_event = (
event_key.identifier in _sessionevents_lifecycle_event_names
)
if is_instance_event:
if not raw or restore_load_context:
fn = event_key._listen_fn
def wrap(session, state, *arg, **kw):
if not raw:
target = state.obj()
if target is None:
# existing behavior is that if the object is
# garbage collected, no event is emitted
return
else:
target = state
if restore_load_context:
runid = state.runid
try:
return fn(session, target, *arg, **kw)
finally:
if restore_load_context:
state.runid = runid
event_key = event_key.with_wrapper(wrap)
event_key.base_listen(**kw)
def do_orm_execute(self, orm_execute_state):
"""Intercept statement executions that occur in terms of a :class:`.Session`.
This event is invoked for all top-level SQL statements invoked
from the :meth:`_orm.Session.execute` method. As of SQLAlchemy 1.4,
all ORM queries emitted on behalf of a :class:`_orm.Session` will
flow through this method, so this event hook provides the single
point at which ORM queries of all types may be intercepted before
they are invoked, and additionally to replace their execution with
a different process.
This event is a ``do_`` event, meaning it has the capability to replace
the operation that the :meth:`_orm.Session.execute` method normally
performs. The intended use for this includes sharding and
result-caching schemes which may seek to invoke the same statement
across multiple database connections, returning a result that is
merged from each of them, or which don't invoke the statement at all,
instead returning data from a cache.
The hook intends to replace the use of the
``Query._execute_and_instances`` method that could be subclassed prior
to SQLAlchemy 1.4.
:param orm_execute_state: an instance of :class:`.ORMExecuteState`
which contains all information about the current execution, as well
as helper functions used to derive other commonly required
information. See that object for details.
.. seealso::
:ref:`session_execute_events` - top level documentation on how
to use :meth:`_orm.SessionEvents.do_orm_execute`
:class:`.ORMExecuteState` - the object passed to the
:meth:`_orm.SessionEvents.do_orm_execute` event which contains
all information about the statement to be invoked. It also
provides an interface to extend the current statement, options,
and parameters as well as an option that allows programmatic
invocation of the statement at any point.
:ref:`examples_session_orm_events` - includes examples of using
:meth:`_orm.SessionEvents.do_orm_execute`
:ref:`examples_caching` - an example of how to integrate
Dogpile caching with the ORM :class:`_orm.Session` making use
of the :meth:`_orm.SessionEvents.do_orm_execute` event hook.
:ref:`examples_sharding` - the Horizontal Sharding example /
extension relies upon the
:meth:`_orm.SessionEvents.do_orm_execute` event hook to invoke a
SQL statement on multiple backends and return a merged result.
.. versionadded:: 1.4
"""
def after_transaction_create(self, session, transaction):
"""Execute when a new :class:`.SessionTransaction` is created.
This event differs from :meth:`~.SessionEvents.after_begin`
in that it occurs for each :class:`.SessionTransaction`
overall, as opposed to when transactions are begun
on individual database connections. It is also invoked
for nested transactions and subtransactions, and is always
matched by a corresponding
:meth:`~.SessionEvents.after_transaction_end` event
(assuming normal operation of the :class:`.Session`).
:param session: the target :class:`.Session`.
:param transaction: the target :class:`.SessionTransaction`.
To detect if this is the outermost
:class:`.SessionTransaction`, as opposed to a "subtransaction" or a
SAVEPOINT, test that the :attr:`.SessionTransaction.parent` attribute
is ``None``::
@event.listens_for(session, "after_transaction_create")
def after_transaction_create(session, transaction):
if transaction.parent is None:
# work with top-level transaction
To detect if the :class:`.SessionTransaction` is a SAVEPOINT, use the
:attr:`.SessionTransaction.nested` attribute::
@event.listens_for(session, "after_transaction_create")
def after_transaction_create(session, transaction):
if transaction.nested:
# work with SAVEPOINT transaction
.. seealso::
:class:`.SessionTransaction`
:meth:`~.SessionEvents.after_transaction_end`
"""
def after_transaction_end(self, session, transaction):
"""Execute when the span of a :class:`.SessionTransaction` ends.
This event differs from :meth:`~.SessionEvents.after_commit`
in that it corresponds to all :class:`.SessionTransaction`
objects in use, including those for nested transactions
and subtransactions, and is always matched by a corresponding
:meth:`~.SessionEvents.after_transaction_create` event.
:param session: the target :class:`.Session`.
:param transaction: the target :class:`.SessionTransaction`.
To detect if this is the outermost
:class:`.SessionTransaction`, as opposed to a "subtransaction" or a
SAVEPOINT, test that the :attr:`.SessionTransaction.parent` attribute
is ``None``::
@event.listens_for(session, "after_transaction_create")
def after_transaction_end(session, transaction):
if transaction.parent is None:
# work with top-level transaction
To detect if the :class:`.SessionTransaction` is a SAVEPOINT, use the
:attr:`.SessionTransaction.nested` attribute::
@event.listens_for(session, "after_transaction_create")
def after_transaction_end(session, transaction):
if transaction.nested:
# work with SAVEPOINT transaction
.. seealso::
:class:`.SessionTransaction`
:meth:`~.SessionEvents.after_transaction_create`
"""
def before_commit(self, session):
"""Execute before commit is called.
.. note::
The :meth:`~.SessionEvents.before_commit` hook is *not* per-flush,
that is, the :class:`.Session` can emit SQL to the database
many times within the scope of a transaction.
For interception of these events, use the
:meth:`~.SessionEvents.before_flush`,
:meth:`~.SessionEvents.after_flush`, or
:meth:`~.SessionEvents.after_flush_postexec`
events.
:param session: The target :class:`.Session`.
.. seealso::
:meth:`~.SessionEvents.after_commit`
:meth:`~.SessionEvents.after_begin`
:meth:`~.SessionEvents.after_transaction_create`
:meth:`~.SessionEvents.after_transaction_end`
"""
def after_commit(self, session):
"""Execute after a commit has occurred.
.. note::
The :meth:`~.SessionEvents.after_commit` hook is *not* per-flush,
that is, the :class:`.Session` can emit SQL to the database
many times within the scope of a transaction.
For interception of these events, use the
:meth:`~.SessionEvents.before_flush`,
:meth:`~.SessionEvents.after_flush`, or
:meth:`~.SessionEvents.after_flush_postexec`
events.
.. note::
The :class:`.Session` is not in an active transaction
when the :meth:`~.SessionEvents.after_commit` event is invoked,
and therefore can not emit SQL. To emit SQL corresponding to
every transaction, use the :meth:`~.SessionEvents.before_commit`
event.
:param session: The target :class:`.Session`.
.. seealso::
:meth:`~.SessionEvents.before_commit`
:meth:`~.SessionEvents.after_begin`
:meth:`~.SessionEvents.after_transaction_create`
:meth:`~.SessionEvents.after_transaction_end`
"""
def after_rollback(self, session):
"""Execute after a real DBAPI rollback has occurred.
Note that this event only fires when the *actual* rollback against
the database occurs - it does *not* fire each time the
:meth:`.Session.rollback` method is called, if the underlying
DBAPI transaction has already been rolled back. In many
cases, the :class:`.Session` will not be in
an "active" state during this event, as the current
transaction is not valid. To acquire a :class:`.Session`
which is active after the outermost rollback has proceeded,
use the :meth:`.SessionEvents.after_soft_rollback` event, checking the
:attr:`.Session.is_active` flag.
:param session: The target :class:`.Session`.
"""
def after_soft_rollback(self, session, previous_transaction):
"""Execute after any rollback has occurred, including "soft"
rollbacks that don't actually emit at the DBAPI level.
This corresponds to both nested and outer rollbacks, i.e.
the innermost rollback that calls the DBAPI's
rollback() method, as well as the enclosing rollback
calls that only pop themselves from the transaction stack.
The given :class:`.Session` can be used to invoke SQL and
:meth:`.Session.query` operations after an outermost rollback
by first checking the :attr:`.Session.is_active` flag::
@event.listens_for(Session, "after_soft_rollback")
def do_something(session, previous_transaction):
if session.is_active:
session.execute("select * from some_table")
:param session: The target :class:`.Session`.
:param previous_transaction: The :class:`.SessionTransaction`
transactional marker object which was just closed. The current
:class:`.SessionTransaction` for the given :class:`.Session` is
available via the :attr:`.Session.transaction` attribute.
"""
def before_flush(self, session, flush_context, instances):
"""Execute before flush process has started.
:param session: The target :class:`.Session`.
:param flush_context: Internal :class:`.UOWTransaction` object
which handles the details of the flush.
:param instances: Usually ``None``, this is the collection of
objects which can be passed to the :meth:`.Session.flush` method
(note this usage is deprecated).
.. seealso::
:meth:`~.SessionEvents.after_flush`
:meth:`~.SessionEvents.after_flush_postexec`
:ref:`session_persistence_events`
"""
def after_flush(self, session, flush_context):
"""Execute after flush has completed, but before commit has been
called.
Note that the session's state is still in pre-flush, i.e. 'new',
'dirty', and 'deleted' lists still show pre-flush state as well
as the history settings on instance attributes.
.. warning:: This event runs after the :class:`.Session` has emitted
SQL to modify the database, but **before** it has altered its
internal state to reflect those changes, including that newly
inserted objects are placed into the identity map. ORM operations
emitted within this event such as loads of related items
may produce new identity map entries that will immediately
be replaced, sometimes causing confusing results. SQLAlchemy will
emit a warning for this condition as of version 1.3.9.
:param session: The target :class:`.Session`.
:param flush_context: Internal :class:`.UOWTransaction` object
which handles the details of the flush.
.. seealso::
:meth:`~.SessionEvents.before_flush`
:meth:`~.SessionEvents.after_flush_postexec`
:ref:`session_persistence_events`
"""
def after_flush_postexec(self, session, flush_context):
"""Execute after flush has completed, and after the post-exec
state occurs.
This will be when the 'new', 'dirty', and 'deleted' lists are in
their final state. An actual commit() may or may not have
occurred, depending on whether or not the flush started its own
transaction or participated in a larger transaction.
:param session: The target :class:`.Session`.
:param flush_context: Internal :class:`.UOWTransaction` object
which handles the details of the flush.
.. seealso::
:meth:`~.SessionEvents.before_flush`
:meth:`~.SessionEvents.after_flush`
:ref:`session_persistence_events`
"""
def after_begin(self, session, transaction, connection):
"""Execute after a transaction is begun on a connection
:param session: The target :class:`.Session`.
:param transaction: The :class:`.SessionTransaction`.
:param connection: The :class:`_engine.Connection` object
which will be used for SQL statements.
.. seealso::
:meth:`~.SessionEvents.before_commit`
:meth:`~.SessionEvents.after_commit`
:meth:`~.SessionEvents.after_transaction_create`
:meth:`~.SessionEvents.after_transaction_end`
"""
@_lifecycle_event
def before_attach(self, session, instance):
"""Execute before an instance is attached to a session.
This is called before an add, delete or merge causes
the object to be part of the session.
.. seealso::
:meth:`~.SessionEvents.after_attach`
:ref:`session_lifecycle_events`
"""
@_lifecycle_event
def after_attach(self, session, instance):
"""Execute after an instance is attached to a session.
This is called after an add, delete or merge.
.. note::
As of 0.8, this event fires off *after* the item
has been fully associated with the session, which is
different than previous releases. For event
handlers that require the object not yet
be part of session state (such as handlers which
may autoflush while the target object is not
yet complete) consider the
new :meth:`.before_attach` event.
.. seealso::
:meth:`~.SessionEvents.before_attach`
:ref:`session_lifecycle_events`
"""
@event._legacy_signature(
"0.9",
["session", "query", "query_context", "result"],
lambda update_context: (
update_context.session,
update_context.query,
None,
update_context.result,
),
)
def after_bulk_update(self, update_context):
"""Execute after an ORM UPDATE against a WHERE expression has been
invoked.
This is called as a result of the :meth:`_query.Query.update` method.
:param update_context: an "update context" object which contains
details about the update, including these attributes:
* ``session`` - the :class:`.Session` involved
* ``query`` -the :class:`_query.Query`
object that this update operation
was called upon.
* ``values`` The "values" dictionary that was passed to
:meth:`_query.Query.update`.
* ``result`` the :class:`_engine.CursorResult`
returned as a result of the
bulk UPDATE operation.
.. versionchanged:: 1.4 the update_context no longer has a
``QueryContext`` object associated with it.
.. seealso::
:meth:`.QueryEvents.before_compile_update`
:meth:`.SessionEvents.after_bulk_delete`
"""
@event._legacy_signature(
"0.9",
["session", "query", "query_context", "result"],
lambda delete_context: (
delete_context.session,
delete_context.query,
None,
delete_context.result,
),
)
def after_bulk_delete(self, delete_context):
"""Execute after ORM DELETE against a WHERE expression has been
invoked.
This is called as a result of the :meth:`_query.Query.delete` method.
:param delete_context: a "delete context" object which contains
details about the update, including these attributes:
* ``session`` - the :class:`.Session` involved
* ``query`` -the :class:`_query.Query`
object that this update operation
was called upon.
* ``result`` the :class:`_engine.CursorResult`
returned as a result of the
bulk DELETE operation.
.. versionchanged:: 1.4 the update_context no longer has a
``QueryContext`` object associated with it.
.. seealso::
:meth:`.QueryEvents.before_compile_delete`
:meth:`.SessionEvents.after_bulk_update`
"""
@_lifecycle_event
def transient_to_pending(self, session, instance):
"""Intercept the "transient to pending" transition for a specific object.
This event is a specialization of the
:meth:`.SessionEvents.after_attach` event which is only invoked
for this specific transition. It is invoked typically during the
:meth:`.Session.add` call.
:param session: target :class:`.Session`
:param instance: the ORM-mapped instance being operated upon.
.. versionadded:: 1.1
.. seealso::
:ref:`session_lifecycle_events`
"""
@_lifecycle_event
def pending_to_transient(self, session, instance):
"""Intercept the "pending to transient" transition for a specific object.
This less common transition occurs when an pending object that has
not been flushed is evicted from the session; this can occur
when the :meth:`.Session.rollback` method rolls back the transaction,
or when the :meth:`.Session.expunge` method is used.
:param session: target :class:`.Session`
:param instance: the ORM-mapped instance being operated upon.
.. versionadded:: 1.1
.. seealso::
:ref:`session_lifecycle_events`
"""
@_lifecycle_event
def persistent_to_transient(self, session, instance):
"""Intercept the "persistent to transient" transition for a specific object.
This less common transition occurs when an pending object that has
has been flushed is evicted from the session; this can occur
when the :meth:`.Session.rollback` method rolls back the transaction.
:param session: target :class:`.Session`
:param instance: the ORM-mapped instance being operated upon.
.. versionadded:: 1.1
.. seealso::
:ref:`session_lifecycle_events`
"""
@_lifecycle_event
def pending_to_persistent(self, session, instance):
"""Intercept the "pending to persistent"" transition for a specific object.
This event is invoked within the flush process, and is
similar to scanning the :attr:`.Session.new` collection within
the :meth:`.SessionEvents.after_flush` event. However, in this
case the object has already been moved to the persistent state
when the event is called.
:param session: target :class:`.Session`
:param instance: the ORM-mapped instance being operated upon.
.. versionadded:: 1.1
.. seealso::
:ref:`session_lifecycle_events`
"""
@_lifecycle_event
def detached_to_persistent(self, session, instance):
"""Intercept the "detached to persistent" transition for a specific object.
This event is a specialization of the
:meth:`.SessionEvents.after_attach` event which is only invoked
for this specific transition. It is invoked typically during the
:meth:`.Session.add` call, as well as during the
:meth:`.Session.delete` call if the object was not previously
associated with the
:class:`.Session` (note that an object marked as "deleted" remains
in the "persistent" state until the flush proceeds).
.. note::
If the object becomes persistent as part of a call to
:meth:`.Session.delete`, the object is **not** yet marked as
deleted when this event is called. To detect deleted objects,
check the ``deleted`` flag sent to the
:meth:`.SessionEvents.persistent_to_detached` to event after the
flush proceeds, or check the :attr:`.Session.deleted` collection
within the :meth:`.SessionEvents.before_flush` event if deleted
objects need to be intercepted before the flush.
:param session: target :class:`.Session`
:param instance: the ORM-mapped instance being operated upon.
.. versionadded:: 1.1
.. seealso::
:ref:`session_lifecycle_events`
"""
@_lifecycle_event
def loaded_as_persistent(self, session, instance):
"""Intercept the "loaded as persistent" transition for a specific object.
This event is invoked within the ORM loading process, and is invoked
very similarly to the :meth:`.InstanceEvents.load` event. However,
the event here is linkable to a :class:`.Session` class or instance,
rather than to a mapper or class hierarchy, and integrates
with the other session lifecycle events smoothly. The object
is guaranteed to be present in the session's identity map when
this event is called.
.. note:: This event is invoked within the loader process before
eager loaders may have been completed, and the object's state may
not be complete. Additionally, invoking row-level refresh
operations on the object will place the object into a new loader
context, interfering with the existing load context. See the note
on :meth:`.InstanceEvents.load` for background on making use of the
:paramref:`.SessionEvents.restore_load_context` parameter, which
works in the same manner as that of
:paramref:`.InstanceEvents.restore_load_context`, in order to
resolve this scenario.
:param session: target :class:`.Session`
:param instance: the ORM-mapped instance being operated upon.
.. versionadded:: 1.1
.. seealso::
:ref:`session_lifecycle_events`
"""
@_lifecycle_event
def persistent_to_deleted(self, session, instance):
"""Intercept the "persistent to deleted" transition for a specific object.
This event is invoked when a persistent object's identity
is deleted from the database within a flush, however the object
still remains associated with the :class:`.Session` until the
transaction completes.
If the transaction is rolled back, the object moves again
to the persistent state, and the
:meth:`.SessionEvents.deleted_to_persistent` event is called.
If the transaction is committed, the object becomes detached,
which will emit the :meth:`.SessionEvents.deleted_to_detached`
event.
Note that while the :meth:`.Session.delete` method is the primary
public interface to mark an object as deleted, many objects
get deleted due to cascade rules, which are not always determined
until flush time. Therefore, there's no way to catch
every object that will be deleted until the flush has proceeded.
the :meth:`.SessionEvents.persistent_to_deleted` event is therefore
invoked at the end of a flush.
.. versionadded:: 1.1
.. seealso::
:ref:`session_lifecycle_events`
"""
@_lifecycle_event
def deleted_to_persistent(self, session, instance):
"""Intercept the "deleted to persistent" transition for a specific object.
This transition occurs only when an object that's been deleted
successfully in a flush is restored due to a call to
:meth:`.Session.rollback`. The event is not called under
any other circumstances.
.. versionadded:: 1.1
.. seealso::
:ref:`session_lifecycle_events`
"""
@_lifecycle_event
def deleted_to_detached(self, session, instance):
"""Intercept the "deleted to detached" transition for a specific object.
This event is invoked when a deleted object is evicted
from the session. The typical case when this occurs is when
the transaction for a :class:`.Session` in which the object
was deleted is committed; the object moves from the deleted
state to the detached state.
It is also invoked for objects that were deleted in a flush
when the :meth:`.Session.expunge_all` or :meth:`.Session.close`
events are called, as well as if the object is individually
expunged from its deleted state via :meth:`.Session.expunge`.
.. versionadded:: 1.1
.. seealso::
:ref:`session_lifecycle_events`
"""
@_lifecycle_event
def persistent_to_detached(self, session, instance):
"""Intercept the "persistent to detached" transition for a specific object.
This event is invoked when a persistent object is evicted
from the session. There are many conditions that cause this
to happen, including:
* using a method such as :meth:`.Session.expunge`
or :meth:`.Session.close`
* Calling the :meth:`.Session.rollback` method, when the object
was part of an INSERT statement for that session's transaction
:param session: target :class:`.Session`
:param instance: the ORM-mapped instance being operated upon.
:param deleted: boolean. If True, indicates this object moved
to the detached state because it was marked as deleted and flushed.
.. versionadded:: 1.1
.. seealso::
:ref:`session_lifecycle_events`
"""
class AttributeEvents(event.Events):
r"""Define events for object attributes.
These are typically defined on the class-bound descriptor for the
target class.
e.g.::
from sqlalchemy import event
@event.listens_for(MyClass.collection, 'append', propagate=True)
def my_append_listener(target, value, initiator):
print("received append event for target: %s" % target)
Listeners have the option to return a possibly modified version of the
value, when the :paramref:`.AttributeEvents.retval` flag is passed to
:func:`.event.listen` or :func:`.event.listens_for`::
def validate_phone(target, value, oldvalue, initiator):
"Strip non-numeric characters from a phone number"
return re.sub(r'\D', '', value)
# setup listener on UserContact.phone attribute, instructing
# it to use the return value
listen(UserContact.phone, 'set', validate_phone, retval=True)
A validation function like the above can also raise an exception
such as :exc:`ValueError` to halt the operation.
The :paramref:`.AttributeEvents.propagate` flag is also important when
applying listeners to mapped classes that also have mapped subclasses,
as when using mapper inheritance patterns::
@event.listens_for(MySuperClass.attr, 'set', propagate=True)
def receive_set(target, value, initiator):
print("value set: %s" % target)
The full list of modifiers available to the :func:`.event.listen`
and :func:`.event.listens_for` functions are below.
:param active_history=False: When True, indicates that the
"set" event would like to receive the "old" value being
replaced unconditionally, even if this requires firing off
database loads. Note that ``active_history`` can also be
set directly via :func:`.column_property` and
:func:`_orm.relationship`.
:param propagate=False: When True, the listener function will
be established not just for the class attribute given, but
for attributes of the same name on all current subclasses
of that class, as well as all future subclasses of that
class, using an additional listener that listens for
instrumentation events.
:param raw=False: When True, the "target" argument to the
event will be the :class:`.InstanceState` management
object, rather than the mapped instance itself.
:param retval=False: when True, the user-defined event
listening must return the "value" argument from the
function. This gives the listening function the opportunity
to change the value that is ultimately used for a "set"
or "append" event.
"""
_target_class_doc = "SomeClass.some_attribute"
_dispatch_target = QueryableAttribute
@staticmethod
def _set_dispatch(cls, dispatch_cls):
dispatch = event.Events._set_dispatch(cls, dispatch_cls)
dispatch_cls._active_history = False
return dispatch
@classmethod
def _accept_with(cls, target):
# TODO: coverage
if isinstance(target, interfaces.MapperProperty):
return getattr(target.parent.class_, target.key)
else:
return target
@classmethod
def _listen(
cls,
event_key,
active_history=False,
raw=False,
retval=False,
propagate=False,
):
target, fn = event_key.dispatch_target, event_key._listen_fn
if active_history:
target.dispatch._active_history = True
if not raw or not retval:
def wrap(target, *arg):
if not raw:
target = target.obj()
if not retval:
if arg:
value = arg[0]
else:
value = None
fn(target, *arg)
return value
else:
return fn(target, *arg)
event_key = event_key.with_wrapper(wrap)
event_key.base_listen(propagate=propagate)
if propagate:
manager = instrumentation.manager_of_class(target.class_)
for mgr in manager.subclass_managers(True):
event_key.with_dispatch_target(mgr[target.key]).base_listen(
propagate=True
)
if active_history:
mgr[target.key].dispatch._active_history = True
def append(self, target, value, initiator):
"""Receive a collection append event.
The append event is invoked for each element as it is appended
to the collection. This occurs for single-item appends as well
as for a "bulk replace" operation.
:param target: the object instance receiving the event.
If the listener is registered with ``raw=True``, this will
be the :class:`.InstanceState` object.
:param value: the value being appended. If this listener
is registered with ``retval=True``, the listener
function must return this value, or a new value which
replaces it.
:param initiator: An instance of :class:`.attributes.Event`
representing the initiation of the event. May be modified
from its original value by backref handlers in order to control
chained event propagation, as well as be inspected for information
about the source of the event.
:return: if the event was registered with ``retval=True``,
the given value, or a new effective value, should be returned.
.. seealso::
:class:`.AttributeEvents` - background on listener options such
as propagation to subclasses.
:meth:`.AttributeEvents.bulk_replace`
"""
def append_wo_mutation(self, target, value, initiator):
"""Receive a collection append event where the collection was not
actually mutated.
This event differs from :meth:`_orm.AttributeEvents.append` in that
it is fired off for de-duplicating collections such as sets and
dictionaries, when the object already exists in the target collection.
The event does not have a return value and the identity of the
given object cannot be changed.
The event is used for cascading objects into a :class:`_orm.Session`
when the collection has already been mutated via a backref event.
:param target: the object instance receiving the event.
If the listener is registered with ``raw=True``, this will
be the :class:`.InstanceState` object.
:param value: the value that would be appended if the object did not
already exist in the collection.
:param initiator: An instance of :class:`.attributes.Event`
representing the initiation of the event. May be modified
from its original value by backref handlers in order to control
chained event propagation, as well as be inspected for information
about the source of the event.
:return: No return value is defined for this event.
.. versionadded:: 1.4.15
"""
def bulk_replace(self, target, values, initiator):
"""Receive a collection 'bulk replace' event.
This event is invoked for a sequence of values as they are incoming
to a bulk collection set operation, which can be
modified in place before the values are treated as ORM objects.
This is an "early hook" that runs before the bulk replace routine
attempts to reconcile which objects are already present in the
collection and which are being removed by the net replace operation.
It is typical that this method be combined with use of the
:meth:`.AttributeEvents.append` event. When using both of these
events, note that a bulk replace operation will invoke
the :meth:`.AttributeEvents.append` event for all new items,
even after :meth:`.AttributeEvents.bulk_replace` has been invoked
for the collection as a whole. In order to determine if an
:meth:`.AttributeEvents.append` event is part of a bulk replace,
use the symbol :attr:`~.attributes.OP_BULK_REPLACE` to test the
incoming initiator::
from sqlalchemy.orm.attributes import OP_BULK_REPLACE
@event.listens_for(SomeObject.collection, "bulk_replace")
def process_collection(target, values, initiator):
values[:] = [_make_value(value) for value in values]
@event.listens_for(SomeObject.collection, "append", retval=True)
def process_collection(target, value, initiator):
# make sure bulk_replace didn't already do it
if initiator is None or initiator.op is not OP_BULK_REPLACE:
return _make_value(value)
else:
return value
.. versionadded:: 1.2
:param target: the object instance receiving the event.
If the listener is registered with ``raw=True``, this will
be the :class:`.InstanceState` object.
:param value: a sequence (e.g. a list) of the values being set. The
handler can modify this list in place.
:param initiator: An instance of :class:`.attributes.Event`
representing the initiation of the event.
.. seealso::
:class:`.AttributeEvents` - background on listener options such
as propagation to subclasses.
"""
def remove(self, target, value, initiator):
"""Receive a collection remove event.
:param target: the object instance receiving the event.
If the listener is registered with ``raw=True``, this will
be the :class:`.InstanceState` object.
:param value: the value being removed.
:param initiator: An instance of :class:`.attributes.Event`
representing the initiation of the event. May be modified
from its original value by backref handlers in order to control
chained event propagation.
.. versionchanged:: 0.9.0 the ``initiator`` argument is now
passed as a :class:`.attributes.Event` object, and may be
modified by backref handlers within a chain of backref-linked
events.
:return: No return value is defined for this event.
.. seealso::
:class:`.AttributeEvents` - background on listener options such
as propagation to subclasses.
"""
def set(self, target, value, oldvalue, initiator):
"""Receive a scalar set event.
:param target: the object instance receiving the event.
If the listener is registered with ``raw=True``, this will
be the :class:`.InstanceState` object.
:param value: the value being set. If this listener
is registered with ``retval=True``, the listener
function must return this value, or a new value which
replaces it.
:param oldvalue: the previous value being replaced. This
may also be the symbol ``NEVER_SET`` or ``NO_VALUE``.
If the listener is registered with ``active_history=True``,
the previous value of the attribute will be loaded from
the database if the existing value is currently unloaded
or expired.
:param initiator: An instance of :class:`.attributes.Event`
representing the initiation of the event. May be modified
from its original value by backref handlers in order to control
chained event propagation.
.. versionchanged:: 0.9.0 the ``initiator`` argument is now
passed as a :class:`.attributes.Event` object, and may be
modified by backref handlers within a chain of backref-linked
events.
:return: if the event was registered with ``retval=True``,
the given value, or a new effective value, should be returned.
.. seealso::
:class:`.AttributeEvents` - background on listener options such
as propagation to subclasses.
"""
def init_scalar(self, target, value, dict_):
r"""Receive a scalar "init" event.
This event is invoked when an uninitialized, unpersisted scalar
attribute is accessed, e.g. read::
x = my_object.some_attribute
The ORM's default behavior when this occurs for an un-initialized
attribute is to return the value ``None``; note this differs from
Python's usual behavior of raising ``AttributeError``. The
event here can be used to customize what value is actually returned,
with the assumption that the event listener would be mirroring
a default generator that is configured on the Core
:class:`_schema.Column`
object as well.
Since a default generator on a :class:`_schema.Column`
might also produce
a changing value such as a timestamp, the
:meth:`.AttributeEvents.init_scalar`
event handler can also be used to **set** the newly returned value, so
that a Core-level default generation function effectively fires off
only once, but at the moment the attribute is accessed on the
non-persisted object. Normally, no change to the object's state
is made when an uninitialized attribute is accessed (much older
SQLAlchemy versions did in fact change the object's state).
If a default generator on a column returned a particular constant,
a handler might be used as follows::
SOME_CONSTANT = 3.1415926
class MyClass(Base):
# ...
some_attribute = Column(Numeric, default=SOME_CONSTANT)
@event.listens_for(
MyClass.some_attribute, "init_scalar",
retval=True, propagate=True)
def _init_some_attribute(target, dict_, value):
dict_['some_attribute'] = SOME_CONSTANT
return SOME_CONSTANT
Above, we initialize the attribute ``MyClass.some_attribute`` to the
value of ``SOME_CONSTANT``. The above code includes the following
features:
* By setting the value ``SOME_CONSTANT`` in the given ``dict_``,
we indicate that this value is to be persisted to the database.
This supersedes the use of ``SOME_CONSTANT`` in the default generator
for the :class:`_schema.Column`. The ``active_column_defaults.py``
example given at :ref:`examples_instrumentation` illustrates using
the same approach for a changing default, e.g. a timestamp
generator. In this particular example, it is not strictly
necessary to do this since ``SOME_CONSTANT`` would be part of the
INSERT statement in either case.
* By establishing the ``retval=True`` flag, the value we return
from the function will be returned by the attribute getter.
Without this flag, the event is assumed to be a passive observer
and the return value of our function is ignored.
* The ``propagate=True`` flag is significant if the mapped class
includes inheriting subclasses, which would also make use of this
event listener. Without this flag, an inheriting subclass will
not use our event handler.
In the above example, the attribute set event
:meth:`.AttributeEvents.set` as well as the related validation feature
provided by :obj:`_orm.validates` is **not** invoked when we apply our
value to the given ``dict_``. To have these events to invoke in
response to our newly generated value, apply the value to the given
object as a normal attribute set operation::
SOME_CONSTANT = 3.1415926
@event.listens_for(
MyClass.some_attribute, "init_scalar",
retval=True, propagate=True)
def _init_some_attribute(target, dict_, value):
# will also fire off attribute set events
target.some_attribute = SOME_CONSTANT
return SOME_CONSTANT
When multiple listeners are set up, the generation of the value
is "chained" from one listener to the next by passing the value
returned by the previous listener that specifies ``retval=True``
as the ``value`` argument of the next listener.
.. versionadded:: 1.1
:param target: the object instance receiving the event.
If the listener is registered with ``raw=True``, this will
be the :class:`.InstanceState` object.
:param value: the value that is to be returned before this event
listener were invoked. This value begins as the value ``None``,
however will be the return value of the previous event handler
function if multiple listeners are present.
:param dict\_: the attribute dictionary of this mapped object.
This is normally the ``__dict__`` of the object, but in all cases
represents the destination that the attribute system uses to get
at the actual value of this attribute. Placing the value in this
dictionary has the effect that the value will be used in the
INSERT statement generated by the unit of work.
.. seealso::
:meth:`.AttributeEvents.init_collection` - collection version
of this event
:class:`.AttributeEvents` - background on listener options such
as propagation to subclasses.
:ref:`examples_instrumentation` - see the
``active_column_defaults.py`` example.
"""
def init_collection(self, target, collection, collection_adapter):
"""Receive a 'collection init' event.
This event is triggered for a collection-based attribute, when
the initial "empty collection" is first generated for a blank
attribute, as well as for when the collection is replaced with
a new one, such as via a set event.
E.g., given that ``User.addresses`` is a relationship-based
collection, the event is triggered here::
u1 = User()
u1.addresses.append(a1) # <- new collection
and also during replace operations::
u1.addresses = [a2, a3] # <- new collection
:param target: the object instance receiving the event.
If the listener is registered with ``raw=True``, this will
be the :class:`.InstanceState` object.
:param collection: the new collection. This will always be generated
from what was specified as
:paramref:`_orm.relationship.collection_class`, and will always
be empty.
:param collection_adapter: the :class:`.CollectionAdapter` that will
mediate internal access to the collection.
.. versionadded:: 1.0.0 :meth:`.AttributeEvents.init_collection`
and :meth:`.AttributeEvents.dispose_collection` events.
.. seealso::
:class:`.AttributeEvents` - background on listener options such
as propagation to subclasses.
:meth:`.AttributeEvents.init_scalar` - "scalar" version of this
event.
"""
def dispose_collection(self, target, collection, collection_adapter):
"""Receive a 'collection dispose' event.
This event is triggered for a collection-based attribute when
a collection is replaced, that is::
u1.addresses.append(a1)
u1.addresses = [a2, a3] # <- old collection is disposed
The old collection received will contain its previous contents.
.. versionchanged:: 1.2 The collection passed to
:meth:`.AttributeEvents.dispose_collection` will now have its
contents before the dispose intact; previously, the collection
would be empty.
.. versionadded:: 1.0.0 the :meth:`.AttributeEvents.init_collection`
and :meth:`.AttributeEvents.dispose_collection` events.
.. seealso::
:class:`.AttributeEvents` - background on listener options such
as propagation to subclasses.
"""
def modified(self, target, initiator):
"""Receive a 'modified' event.
This event is triggered when the :func:`.attributes.flag_modified`
function is used to trigger a modify event on an attribute without
any specific value being set.
.. versionadded:: 1.2
:param target: the object instance receiving the event.
If the listener is registered with ``raw=True``, this will
be the :class:`.InstanceState` object.
:param initiator: An instance of :class:`.attributes.Event`
representing the initiation of the event.
.. seealso::
:class:`.AttributeEvents` - background on listener options such
as propagation to subclasses.
"""
class QueryEvents(event.Events):
"""Represent events within the construction of a :class:`_query.Query`
object.
The :class:`_orm.QueryEvents` hooks are now superseded by the
:meth:`_orm.SessionEvents.do_orm_execute` event hook.
"""
_target_class_doc = "SomeQuery"
_dispatch_target = Query
def before_compile(self, query):
"""Receive the :class:`_query.Query`
object before it is composed into a
core :class:`_expression.Select` object.
.. deprecated:: 1.4 The :meth:`_orm.QueryEvents.before_compile` event
is superseded by the much more capable
:meth:`_orm.SessionEvents.do_orm_execute` hook. In version 1.4,
the :meth:`_orm.QueryEvents.before_compile` event is **no longer
used** for ORM-level attribute loads, such as loads of deferred
or expired attributes as well as relationship loaders. See the
new examples in :ref:`examples_session_orm_events` which
illustrate new ways of intercepting and modifying ORM queries
for the most common purpose of adding arbitrary filter criteria.
This event is intended to allow changes to the query given::
@event.listens_for(Query, "before_compile", retval=True)
def no_deleted(query):
for desc in query.column_descriptions:
if desc['type'] is User:
entity = desc['entity']
query = query.filter(entity.deleted == False)
return query
The event should normally be listened with the ``retval=True``
parameter set, so that the modified query may be returned.
The :meth:`.QueryEvents.before_compile` event by default
will disallow "baked" queries from caching a query, if the event
hook returns a new :class:`_query.Query` object.
This affects both direct
use of the baked query extension as well as its operation within
lazy loaders and eager loaders for relationships. In order to
re-establish the query being cached, apply the event adding the
``bake_ok`` flag::
@event.listens_for(
Query, "before_compile", retval=True, bake_ok=True)
def my_event(query):
for desc in query.column_descriptions:
if desc['type'] is User:
entity = desc['entity']
query = query.filter(entity.deleted == False)
return query
When ``bake_ok`` is set to True, the event hook will only be invoked
once, and not called for subsequent invocations of a particular query
that is being cached.
.. versionadded:: 1.3.11 - added the "bake_ok" flag to the
:meth:`.QueryEvents.before_compile` event and disallowed caching via
the "baked" extension from occurring for event handlers that
return a new :class:`_query.Query` object if this flag is not set.
.. seealso::
:meth:`.QueryEvents.before_compile_update`
:meth:`.QueryEvents.before_compile_delete`
:ref:`baked_with_before_compile`
"""
def before_compile_update(self, query, update_context):
"""Allow modifications to the :class:`_query.Query` object within
:meth:`_query.Query.update`.
.. deprecated:: 1.4 The :meth:`_orm.QueryEvents.before_compile_update`
event is superseded by the much more capable
:meth:`_orm.SessionEvents.do_orm_execute` hook.
Like the :meth:`.QueryEvents.before_compile` event, if the event
is to be used to alter the :class:`_query.Query` object, it should
be configured with ``retval=True``, and the modified
:class:`_query.Query` object returned, as in ::
@event.listens_for(Query, "before_compile_update", retval=True)
def no_deleted(query, update_context):
for desc in query.column_descriptions:
if desc['type'] is User:
entity = desc['entity']
query = query.filter(entity.deleted == False)
update_context.values['timestamp'] = datetime.utcnow()
return query
The ``.values`` dictionary of the "update context" object can also
be modified in place as illustrated above.
:param query: a :class:`_query.Query` instance; this is also
the ``.query`` attribute of the given "update context"
object.
:param update_context: an "update context" object which is
the same kind of object as described in
:paramref:`.QueryEvents.after_bulk_update.update_context`.
The object has a ``.values`` attribute in an UPDATE context which is
the dictionary of parameters passed to :meth:`_query.Query.update`.
This
dictionary can be modified to alter the VALUES clause of the
resulting UPDATE statement.
.. versionadded:: 1.2.17
.. seealso::
:meth:`.QueryEvents.before_compile`
:meth:`.QueryEvents.before_compile_delete`
"""
def before_compile_delete(self, query, delete_context):
"""Allow modifications to the :class:`_query.Query` object within
:meth:`_query.Query.delete`.
.. deprecated:: 1.4 The :meth:`_orm.QueryEvents.before_compile_delete`
event is superseded by the much more capable
:meth:`_orm.SessionEvents.do_orm_execute` hook.
Like the :meth:`.QueryEvents.before_compile` event, this event
should be configured with ``retval=True``, and the modified
:class:`_query.Query` object returned, as in ::
@event.listens_for(Query, "before_compile_delete", retval=True)
def no_deleted(query, delete_context):
for desc in query.column_descriptions:
if desc['type'] is User:
entity = desc['entity']
query = query.filter(entity.deleted == False)
return query
:param query: a :class:`_query.Query` instance; this is also
the ``.query`` attribute of the given "delete context"
object.
:param delete_context: a "delete context" object which is
the same kind of object as described in
:paramref:`.QueryEvents.after_bulk_delete.delete_context`.
.. versionadded:: 1.2.17
.. seealso::
:meth:`.QueryEvents.before_compile`
:meth:`.QueryEvents.before_compile_update`
"""
@classmethod
def _listen(cls, event_key, retval=False, bake_ok=False, **kw):
fn = event_key._listen_fn
if not retval:
def wrap(*arg, **kw):
if not retval:
query = arg[0]
fn(*arg, **kw)
return query
else:
return fn(*arg, **kw)
event_key = event_key.with_wrapper(wrap)
else:
# don't assume we can apply an attribute to the callable
def wrap(*arg, **kw):
return fn(*arg, **kw)
event_key = event_key.with_wrapper(wrap)
wrap._bake_ok = bake_ok
event_key.base_listen(**kw)
|