1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
|
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef UI_ACCESSIBILITY_AX_TREE_SERIALIZER_H_
#define UI_ACCESSIBILITY_AX_TREE_SERIALIZER_H_
#include <set>
#include "base/containers/hash_tables.h"
#include "base/logging.h"
#include "base/stl_util.h"
#include "ui/accessibility/ax_tree_source.h"
#include "ui/accessibility/ax_tree_update.h"
namespace ui {
struct ClientTreeNode;
// AXTreeSerializer is a helper class that serializes incremental
// updates to an AXTreeSource as a AXTreeUpdate struct.
// These structs can be unserialized by a client object such as an
// AXTree. An AXTreeSerializer keeps track of the tree of node ids that its
// client is aware of so that it will never generate an AXTreeUpdate that
// results in an invalid tree.
//
// Every node in the source tree must have an id that's a unique positive
// integer, the same node must not appear twice.
//
// Usage:
//
// You must call SerializeChanges() every time a node in the tree changes,
// and send the generated AXTreeUpdate to the client.
//
// If a node is added, call SerializeChanges on its parent.
// If a node is removed, call SerializeChanges on its parent.
// If a whole new subtree is added, just call SerializeChanges on its root.
// If the root of the tree changes, call SerializeChanges on the new root.
//
// AXTreeSerializer will avoid re-serializing nodes that do not change.
// For example, if node 1 has children 2, 3, 4, 5 and then child 2 is
// removed and a new child 6 is added, the AXTreeSerializer will only
// update nodes 1 and 6 (and any children of node 6 recursively). It will
// assume that nodes 3, 4, and 5 are not modified unless you explicitly
// call SerializeChanges() on them.
//
// As long as the source tree has unique ids for every node and no loops,
// and as long as every update is applied to the client tree, AXTreeSerializer
// will continue to work. If the source tree makes a change but fails to
// call SerializeChanges properly, the trees may get out of sync - but
// because AXTreeSerializer always keeps track of what updates it's sent,
// it will never send an invalid update and the client tree will not break,
// it just may not contain all of the changes.
template<class AXSourceNode>
class AXTreeSerializer {
public:
explicit AXTreeSerializer(AXTreeSource<AXSourceNode>* tree);
~AXTreeSerializer();
// Throw out the internal state that keeps track of the nodes the client
// knows about. This has the effect that the next update will send the
// entire tree over because it assumes the client knows nothing.
void Reset();
// Serialize all changes to |node| and append them to |out_update|.
void SerializeChanges(const AXSourceNode* node,
AXTreeUpdate* out_update);
// Only for unit testing. Normally this class relies on getting a call
// to SerializeChanges() every time the source tree changes. For unit
// testing, it's convenient to create a static AXTree for the initial
// state and then call ChangeTreeSourceForTesting and then SerializeChanges
// to simulate the changes you'd get if a tree changed from the initial
// state to the second tree's state.
void ChangeTreeSourceForTesting(AXTreeSource<AXSourceNode>* new_tree);
private:
// Return the least common ancestor of a node in the source tree
// and a node in the client tree, or NULL if there is no such node.
// The least common ancestor is the closest ancestor to |node| (which
// may be |node| itself) that's in both the source tree and client tree,
// and for which both the source and client tree agree on their ancestor
// chain up to the root.
//
// Example 1:
//
// Client Tree Source tree |
// 1 1 |
// / \ / \ |
// 2 3 2 4 |
//
// LCA(source node 2, client node 2) is node 2.
// LCA(source node 3, client node 4) is node 1.
//
// Example 2:
//
// Client Tree Source tree |
// 1 1 |
// / \ / \ |
// 2 3 2 3 |
// / \ / / |
// 4 7 8 4 |
// / \ / \ |
// 5 6 5 6 |
//
// LCA(source node 8, client node 7) is node 2.
// LCA(source node 5, client node 5) is node 1.
// It's not node 5, because the two trees disagree on the parent of
// node 4, so the LCA is the first ancestor both trees agree on.
const AXSourceNode* LeastCommonAncestor(const AXSourceNode* node,
ClientTreeNode* client_node);
// Return the least common ancestor of |node| that's in the client tree.
// This just walks up the ancestors of |node| until it finds a node that's
// also in the client tree, and then calls LeastCommonAncestor on the
// source node and client node.
const AXSourceNode* LeastCommonAncestor(const AXSourceNode* node);
// Walk the subtree rooted at |node| and return true if any nodes that
// would be updated are being reparented. If so, update |lca| to point
// to the least common ancestor of the previous LCA and the previous
// parent of the node being reparented.
bool AnyDescendantWasReparented(const AXSourceNode* node,
const AXSourceNode** lca);
ClientTreeNode* ClientTreeNodeById(int32 id);
// Delete the given client tree node and recursively delete all of its
// descendants.
void DeleteClientSubtree(ClientTreeNode* client_node);
// Helper function, called recursively with each new node to serialize.
void SerializeChangedNodes(const AXSourceNode* node,
AXTreeUpdate* out_update);
// The tree source.
AXTreeSource<AXSourceNode>* tree_;
// Our representation of the client tree.
ClientTreeNode* client_root_;
// A map from IDs to nodes in the client tree.
base::hash_map<int32, ClientTreeNode*> client_id_map_;
};
// In order to keep track of what nodes the client knows about, we keep a
// representation of the client tree - just IDs and parent/child
// relationships.
struct AX_EXPORT ClientTreeNode {
ClientTreeNode();
virtual ~ClientTreeNode();
int32 id;
ClientTreeNode* parent;
std::vector<ClientTreeNode*> children;
};
template<class AXSourceNode>
AXTreeSerializer<AXSourceNode>::AXTreeSerializer(
AXTreeSource<AXSourceNode>* tree)
: tree_(tree),
client_root_(NULL) {
}
template<class AXSourceNode>
AXTreeSerializer<AXSourceNode>::~AXTreeSerializer() {
Reset();
}
template<class AXSourceNode>
void AXTreeSerializer<AXSourceNode>::Reset() {
if (client_root_) {
DeleteClientSubtree(client_root_);
client_root_ = NULL;
}
}
template<class AXSourceNode>
void AXTreeSerializer<AXSourceNode>::ChangeTreeSourceForTesting(
AXTreeSource<AXSourceNode>* new_tree) {
tree_ = new_tree;
}
template<class AXSourceNode>
const AXSourceNode* AXTreeSerializer<AXSourceNode>::LeastCommonAncestor(
const AXSourceNode* node, ClientTreeNode* client_node) {
if (node == NULL || client_node == NULL)
return NULL;
std::vector<const AXSourceNode*> ancestors;
while (node) {
ancestors.push_back(node);
node = tree_->GetParent(node);
}
std::vector<ClientTreeNode*> client_ancestors;
while (client_node) {
client_ancestors.push_back(client_node);
client_node = client_node->parent;
}
// Start at the root. Keep going until the source ancestor chain and
// client ancestor chain disagree. The last node before they disagree
// is the LCA.
const AXSourceNode* lca = NULL;
int source_index = static_cast<int>(ancestors.size() - 1);
int client_index = static_cast<int>(client_ancestors.size() - 1);
while (source_index >= 0 && client_index >= 0) {
if (tree_->GetId(ancestors[source_index]) !=
client_ancestors[client_index]->id) {
return lca;
}
lca = ancestors[source_index];
source_index--;
client_index--;
}
return lca;
}
template<class AXSourceNode>
const AXSourceNode* AXTreeSerializer<AXSourceNode>::LeastCommonAncestor(
const AXSourceNode* node) {
// Walk up the tree until the source node's id also exists in the
// client tree, then call LeastCommonAncestor on those two nodes.
ClientTreeNode* client_node = ClientTreeNodeById(tree_->GetId(node));
while (node && !client_node) {
node = tree_->GetParent(node);
if (node)
client_node = ClientTreeNodeById(tree_->GetId(node));
}
return LeastCommonAncestor(node, client_node);
}
template<class AXSourceNode>
bool AXTreeSerializer<AXSourceNode>::AnyDescendantWasReparented(
const AXSourceNode* node, const AXSourceNode** lca) {
bool result = false;
int id = tree_->GetId(node);
int child_count = tree_->GetChildCount(node);
for (int i = 0; i < child_count; ++i) {
const AXSourceNode* child = tree_->GetChildAtIndex(node, i);
int child_id = tree_->GetId(child);
ClientTreeNode* client_child = ClientTreeNodeById(child_id);
if (client_child) {
if (!client_child->parent) {
// If the client child has no parent, it must have been the
// previous root node, so there is no LCA and we can exit early.
*lca = NULL;
return true;
} else if (client_child->parent->id != id) {
// If the client child's parent is not this node, update the LCA
// and return true (reparenting was found).
*lca = LeastCommonAncestor(*lca, client_child);
result = true;
} else {
// This child is already in the client tree, we won't
// recursively serialize it so we don't need to check this
// subtree recursively for reparenting.
continue;
}
}
// This is a new child or reparented child, check it recursively.
if (AnyDescendantWasReparented(child, lca))
result = true;
}
return result;
}
template<class AXSourceNode>
ClientTreeNode* AXTreeSerializer<AXSourceNode>::ClientTreeNodeById(int32 id) {
base::hash_map<int32, ClientTreeNode*>::iterator iter =
client_id_map_.find(id);
if (iter != client_id_map_.end())
return iter->second;
else
return NULL;
}
template<class AXSourceNode>
void AXTreeSerializer<AXSourceNode>::SerializeChanges(
const AXSourceNode* node,
AXTreeUpdate* out_update) {
// If the node isn't in the client tree, we need to serialize starting
// with the LCA.
const AXSourceNode* lca = LeastCommonAncestor(node);
if (client_root_) {
// If the LCA is anything other than the node itself, tell the
// client to first delete the subtree rooted at the LCA.
bool need_delete = (lca != node);
if (lca) {
// Check for any reparenting within this subtree - if there is
// any, we need to delete and reserialize the whole subtree
// that contains the old and new parents of the reparented node.
if (AnyDescendantWasReparented(lca, &lca))
need_delete = true;
}
if (lca == NULL) {
// If there's no LCA, just tell the client to destroy the whole
// tree and then we'll serialize everything from the new root.
out_update->node_id_to_clear = client_root_->id;
DeleteClientSubtree(client_root_);
client_id_map_.erase(client_root_->id);
client_root_ = NULL;
} else if (need_delete) {
// Otherwise, if we need to reserialize a subtree, first we need
// to delete those nodes in our client tree so that
// SerializeChangedNodes() will be sure to send them again.
out_update->node_id_to_clear = tree_->GetId(lca);
ClientTreeNode* client_lca = ClientTreeNodeById(tree_->GetId(lca));
CHECK(client_lca);
for (size_t i = 0; i < client_lca->children.size(); ++i) {
client_id_map_.erase(client_lca->children[i]->id);
DeleteClientSubtree(client_lca->children[i]);
}
client_lca->children.clear();
}
}
// Serialize from the LCA, or from the root if there isn't one.
if (!lca)
lca = tree_->GetRoot();
SerializeChangedNodes(lca, out_update);
}
template<class AXSourceNode>
void AXTreeSerializer<AXSourceNode>::DeleteClientSubtree(
ClientTreeNode* client_node) {
for (size_t i = 0; i < client_node->children.size(); ++i) {
client_id_map_.erase(client_node->children[i]->id);
DeleteClientSubtree(client_node->children[i]);
}
client_node->children.clear();
}
template<class AXSourceNode>
void AXTreeSerializer<AXSourceNode>::SerializeChangedNodes(
const AXSourceNode* node,
AXTreeUpdate* out_update) {
// This method has three responsibilities:
// 1. Serialize |node| into an AXNodeData, and append it to
// the AXTreeUpdate to be sent to the client.
// 2. Determine if |node| has any new children that the client doesn't
// know about yet, and call SerializeChangedNodes recursively on those.
// 3. Update our internal data structure that keeps track of what nodes
// the client knows about.
// First, find the ClientTreeNode for this id in our data structure where
// we keep track of what accessibility objects the client already knows
// about. If we don't find it, then this must be the new root of the
// accessibility tree.
int id = tree_->GetId(node);
ClientTreeNode* client_node = ClientTreeNodeById(id);
if (!client_node) {
if (client_root_) {
client_id_map_.erase(client_root_->id);
DeleteClientSubtree(client_root_);
}
client_root_ = new ClientTreeNode();
client_node = client_root_;
client_node->id = id;
client_node->parent = NULL;
client_id_map_[client_node->id] = client_node;
}
// Iterate over the ids of the children of |node|.
// Create a set of the child ids so we can quickly look
// up which children are new and which ones were there before.
base::hash_set<int32> new_child_ids;
int child_count = tree_->GetChildCount(node);
for (int i = 0; i < child_count; ++i) {
AXSourceNode* child = tree_->GetChildAtIndex(node, i);
int new_child_id = tree_->GetId(child);
new_child_ids.insert(new_child_id);
// This is a sanity check - there shouldn't be any reparenting
// because we've already handled it above.
ClientTreeNode* client_child = client_id_map_[new_child_id];
CHECK(!client_child || client_child->parent == client_node);
}
// Go through the old children and delete subtrees for child
// ids that are no longer present, and create a map from
// id to ClientTreeNode for the rest. It's important to delete
// first in a separate pass so that nodes that are reparented
// don't end up children of two different parents in the middle
// of an update, which can lead to a double-free.
base::hash_map<int32, ClientTreeNode*> client_child_id_map;
std::vector<ClientTreeNode*> old_children;
old_children.swap(client_node->children);
for (size_t i = 0; i < old_children.size(); ++i) {
ClientTreeNode* old_child = old_children[i];
int old_child_id = old_child->id;
if (new_child_ids.find(old_child_id) == new_child_ids.end()) {
client_id_map_.erase(old_child_id);
DeleteClientSubtree(old_child);
} else {
client_child_id_map[old_child_id] = old_child;
}
}
// Serialize this node. This fills in all of the fields in
// AXNodeData except child_ids, which we handle below.
out_update->nodes.push_back(AXNodeData());
AXNodeData* serialized_node = &out_update->nodes.back();
tree_->SerializeNode(node, serialized_node);
if (serialized_node->id == client_root_->id)
serialized_node->role = AX_ROLE_ROOT_WEB_AREA;
serialized_node->child_ids.clear();
// Iterate over the children, make note of the ones that are new
// and need to be serialized, and update the ClientTreeNode
// data structure to reflect the new tree.
std::vector<AXSourceNode*> children_to_serialize;
client_node->children.reserve(child_count);
for (int i = 0; i < child_count; ++i) {
AXSourceNode* child = tree_->GetChildAtIndex(node, i);
int child_id = tree_->GetId(child);
// No need to do anything more with children that aren't new;
// the client will reuse its existing object.
if (new_child_ids.find(child_id) == new_child_ids.end())
continue;
new_child_ids.erase(child_id);
serialized_node->child_ids.push_back(child_id);
if (client_child_id_map.find(child_id) != client_child_id_map.end()) {
ClientTreeNode* reused_child = client_child_id_map[child_id];
client_node->children.push_back(reused_child);
} else {
ClientTreeNode* new_child = new ClientTreeNode();
new_child->id = child_id;
new_child->parent = client_node;
client_node->children.push_back(new_child);
client_id_map_[child_id] = new_child;
children_to_serialize.push_back(child);
}
}
// Serialize all of the new children, recursively.
for (size_t i = 0; i < children_to_serialize.size(); ++i)
SerializeChangedNodes(children_to_serialize[i], out_update);
}
} // namespace ui
#endif // UI_ACCESSIBILITY_AX_TREE_SERIALIZER_H_
|