summaryrefslogtreecommitdiff
path: root/Source/JavaScriptCore/dfg/DFGByteCodeParser.cpp
diff options
context:
space:
mode:
authorKonstantin Tokarev <annulen@yandex.ru>2016-08-25 19:20:41 +0300
committerKonstantin Tokarev <annulen@yandex.ru>2017-02-02 12:30:55 +0000
commit6882a04fb36642862b11efe514251d32070c3d65 (patch)
treeb7959826000b061fd5ccc7512035c7478742f7b0 /Source/JavaScriptCore/dfg/DFGByteCodeParser.cpp
parentab6df191029eeeb0b0f16f127d553265659f739e (diff)
downloadqtwebkit-6882a04fb36642862b11efe514251d32070c3d65.tar.gz
Imported QtWebKit TP3 (git b57bc6801f1876c3220d5a4bfea33d620d477443)
Change-Id: I3b1d8a2808782c9f34d50240000e20cb38d3680f Reviewed-by: Konstantin Tokarev <annulen@yandex.ru>
Diffstat (limited to 'Source/JavaScriptCore/dfg/DFGByteCodeParser.cpp')
-rw-r--r--Source/JavaScriptCore/dfg/DFGByteCodeParser.cpp5572
1 files changed, 3435 insertions, 2137 deletions
diff --git a/Source/JavaScriptCore/dfg/DFGByteCodeParser.cpp b/Source/JavaScriptCore/dfg/DFGByteCodeParser.cpp
index c3e041c26..2f3f12d6c 100644
--- a/Source/JavaScriptCore/dfg/DFGByteCodeParser.cpp
+++ b/Source/JavaScriptCore/dfg/DFGByteCodeParser.cpp
@@ -1,5 +1,5 @@
/*
- * Copyright (C) 2011, 2012, 2013 Apple Inc. All rights reserved.
+ * Copyright (C) 2011-2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
@@ -29,23 +29,35 @@
#if ENABLE(DFG_JIT)
#include "ArrayConstructor.h"
+#include "BasicBlockLocation.h"
#include "CallLinkStatus.h"
#include "CodeBlock.h"
#include "CodeBlockWithJITType.h"
#include "DFGArrayMode.h"
#include "DFGCapabilities.h"
+#include "DFGClobbersExitState.h"
+#include "DFGGraph.h"
+#include "DFGJITCode.h"
#include "GetByIdStatus.h"
-#include "Operations.h"
+#include "Heap.h"
+#include "JSLexicalEnvironment.h"
+#include "JSCInlines.h"
+#include "JSModuleEnvironment.h"
#include "PreciseJumpTargets.h"
+#include "PutByIdFlags.h"
#include "PutByIdStatus.h"
-#include "ResolveGlobalStatus.h"
+#include "StackAlignment.h"
#include "StringConstructor.h"
+#include "Watchdog.h"
#include <wtf/CommaPrinter.h>
#include <wtf/HashMap.h>
#include <wtf/MathExtras.h>
+#include <wtf/StdLibExtras.h>
namespace JSC { namespace DFG {
+static const bool verbose = false;
+
class ConstantBufferKey {
public:
ConstantBufferKey()
@@ -128,26 +140,19 @@ public:
, m_graph(graph)
, m_currentBlock(0)
, m_currentIndex(0)
- , m_currentProfilingIndex(0)
- , m_constantUndefined(UINT_MAX)
- , m_constantNull(UINT_MAX)
- , m_constantNaN(UINT_MAX)
- , m_constant1(UINT_MAX)
- , m_constants(m_codeBlock->numberOfConstantRegisters())
+ , m_constantUndefined(graph.freeze(jsUndefined()))
+ , m_constantNull(graph.freeze(jsNull()))
+ , m_constantNaN(graph.freeze(jsNumber(PNaN)))
+ , m_constantOne(graph.freeze(jsNumber(1)))
, m_numArguments(m_codeBlock->numParameters())
- , m_numLocals(m_codeBlock->m_numCalleeRegisters)
- , m_preservedVars(m_codeBlock->m_numVars)
+ , m_numLocals(m_codeBlock->m_numCalleeLocals)
, m_parameterSlots(0)
, m_numPassedVarArgs(0)
, m_inlineStackTop(0)
- , m_haveBuiltOperandMaps(false)
- , m_emptyJSValueIndex(UINT_MAX)
, m_currentInstruction(0)
+ , m_hasDebuggerEnabled(graph.hasDebuggerEnabled())
{
ASSERT(m_profiledBlock);
-
- for (int i = 0; i < m_codeBlock->m_numVars; ++i)
- m_preservedVars.set(i);
}
// Parse a full CodeBlock of bytecode.
@@ -158,127 +163,252 @@ private:
// Just parse from m_currentIndex to the end of the current CodeBlock.
void parseCodeBlock();
+
+ void ensureLocals(unsigned newNumLocals)
+ {
+ if (newNumLocals <= m_numLocals)
+ return;
+ m_numLocals = newNumLocals;
+ for (size_t i = 0; i < m_graph.numBlocks(); ++i)
+ m_graph.block(i)->ensureLocals(newNumLocals);
+ }
// Helper for min and max.
- bool handleMinMax(bool usesResult, int resultOperand, NodeType op, int registerOffset, int argumentCountIncludingThis);
-
+ template<typename ChecksFunctor>
+ bool handleMinMax(int resultOperand, NodeType op, int registerOffset, int argumentCountIncludingThis, const ChecksFunctor& insertChecks);
+
// Handle calls. This resolves issues surrounding inlining and intrinsics.
- void handleCall(Interpreter*, Instruction* currentInstruction, NodeType op, CodeSpecializationKind);
- void emitFunctionChecks(const CallLinkStatus&, Node* callTarget, int registerOffset, CodeSpecializationKind);
- void emitArgumentPhantoms(int registerOffset, int argumentCountIncludingThis, CodeSpecializationKind);
+ enum Terminality { Terminal, NonTerminal };
+ Terminality handleCall(
+ int result, NodeType op, InlineCallFrame::Kind, unsigned instructionSize,
+ Node* callTarget, int argCount, int registerOffset, CallLinkStatus,
+ SpeculatedType prediction);
+ Terminality handleCall(
+ int result, NodeType op, CallMode, unsigned instructionSize,
+ Node* callTarget, int argCount, int registerOffset, CallLinkStatus);
+ Terminality handleCall(int result, NodeType op, CallMode, unsigned instructionSize, int callee, int argCount, int registerOffset);
+ Terminality handleCall(Instruction* pc, NodeType op, CallMode);
+ Terminality handleVarargsCall(Instruction* pc, NodeType op, CallMode);
+ void emitFunctionChecks(CallVariant, Node* callTarget, VirtualRegister thisArgumnt);
+ void emitArgumentPhantoms(int registerOffset, int argumentCountIncludingThis);
+ unsigned inliningCost(CallVariant, int argumentCountIncludingThis, CallMode); // Return UINT_MAX if it's not an inlining candidate. By convention, intrinsics have a cost of 1.
// Handle inlining. Return true if it succeeded, false if we need to plant a call.
- bool handleInlining(bool usesResult, Node* callTargetNode, int resultOperand, const CallLinkStatus&, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, CodeSpecializationKind);
- // Handle setting the result of an intrinsic.
- void setIntrinsicResult(bool usesResult, int resultOperand, Node*);
+ bool handleInlining(Node* callTargetNode, int resultOperand, const CallLinkStatus&, int registerOffset, VirtualRegister thisArgument, VirtualRegister argumentsArgument, unsigned argumentsOffset, int argumentCountIncludingThis, unsigned nextOffset, NodeType callOp, InlineCallFrame::Kind, SpeculatedType prediction);
+ enum CallerLinkability { CallerDoesNormalLinking, CallerLinksManually };
+ template<typename ChecksFunctor>
+ bool attemptToInlineCall(Node* callTargetNode, int resultOperand, CallVariant, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, InlineCallFrame::Kind, CallerLinkability, SpeculatedType prediction, unsigned& inliningBalance, const ChecksFunctor& insertChecks);
+ template<typename ChecksFunctor>
+ void inlineCall(Node* callTargetNode, int resultOperand, CallVariant, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, InlineCallFrame::Kind, CallerLinkability, const ChecksFunctor& insertChecks);
+ void cancelLinkingForBlock(InlineStackEntry*, BasicBlock*); // Only works when the given block is the last one to have been added for that inline stack entry.
// Handle intrinsic functions. Return true if it succeeded, false if we need to plant a call.
- bool handleIntrinsic(bool usesResult, int resultOperand, Intrinsic, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction);
- bool handleConstantInternalFunction(bool usesResult, int resultOperand, InternalFunction*, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction, CodeSpecializationKind);
- Node* handleGetByOffset(SpeculatedType, Node* base, unsigned identifierNumber, PropertyOffset);
- void handleGetByOffset(
- int destinationOperand, SpeculatedType, Node* base, unsigned identifierNumber,
- PropertyOffset);
+ template<typename ChecksFunctor>
+ bool handleIntrinsicCall(int resultOperand, Intrinsic, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction, const ChecksFunctor& insertChecks);
+ template<typename ChecksFunctor>
+ bool handleIntrinsicGetter(int resultOperand, const GetByIdVariant& intrinsicVariant, Node* thisNode, const ChecksFunctor& insertChecks);
+ template<typename ChecksFunctor>
+ bool handleTypedArrayConstructor(int resultOperand, InternalFunction*, int registerOffset, int argumentCountIncludingThis, TypedArrayType, const ChecksFunctor& insertChecks);
+ template<typename ChecksFunctor>
+ bool handleConstantInternalFunction(Node* callTargetNode, int resultOperand, InternalFunction*, int registerOffset, int argumentCountIncludingThis, CodeSpecializationKind, const ChecksFunctor& insertChecks);
+ Node* handlePutByOffset(Node* base, unsigned identifier, PropertyOffset, const InferredType::Descriptor&, Node* value);
+ Node* handleGetByOffset(SpeculatedType, Node* base, unsigned identifierNumber, PropertyOffset, const InferredType::Descriptor&, NodeType = GetByOffset);
+
+ // Create a presence ObjectPropertyCondition based on some known offset and structure set. Does not
+ // check the validity of the condition, but it may return a null one if it encounters a contradiction.
+ ObjectPropertyCondition presenceLike(
+ JSObject* knownBase, UniquedStringImpl*, PropertyOffset, const StructureSet&);
+
+ // Attempt to watch the presence of a property. It will watch that the property is present in the same
+ // way as in all of the structures in the set. It may emit code instead of just setting a watchpoint.
+ // Returns true if this all works out.
+ bool checkPresenceLike(JSObject* knownBase, UniquedStringImpl*, PropertyOffset, const StructureSet&);
+ void checkPresenceLike(Node* base, UniquedStringImpl*, PropertyOffset, const StructureSet&);
+
+ // Works with both GetByIdVariant and the setter form of PutByIdVariant.
+ template<typename VariantType>
+ Node* load(SpeculatedType, Node* base, unsigned identifierNumber, const VariantType&);
+
+ Node* store(Node* base, unsigned identifier, const PutByIdVariant&, Node* value);
+
void handleGetById(
int destinationOperand, SpeculatedType, Node* base, unsigned identifierNumber,
const GetByIdStatus&);
-
- Node* getScope(bool skipTop, unsigned skipCount);
+ void emitPutById(
+ Node* base, unsigned identifierNumber, Node* value, const PutByIdStatus&, bool isDirect);
+ void handlePutById(
+ Node* base, unsigned identifierNumber, Node* value, const PutByIdStatus&,
+ bool isDirect);
+
+ // Either register a watchpoint or emit a check for this condition. Returns false if the
+ // condition no longer holds, and therefore no reasonable check can be emitted.
+ bool check(const ObjectPropertyCondition&);
+
+ GetByOffsetMethod promoteToConstant(GetByOffsetMethod);
+
+ // Either register a watchpoint or emit a check for this condition. It must be a Presence
+ // condition. It will attempt to promote a Presence condition to an Equivalence condition.
+ // Emits code for the loaded value that the condition guards, and returns a node containing
+ // the loaded value. Returns null if the condition no longer holds.
+ GetByOffsetMethod planLoad(const ObjectPropertyCondition&);
+ Node* load(SpeculatedType, unsigned identifierNumber, const GetByOffsetMethod&, NodeType = GetByOffset);
+ Node* load(SpeculatedType, const ObjectPropertyCondition&, NodeType = GetByOffset);
+
+ // Calls check() for each condition in the set: that is, it either emits checks or registers
+ // watchpoints (or a combination of the two) to make the conditions hold. If any of those
+ // conditions are no longer checkable, returns false.
+ bool check(const ObjectPropertyConditionSet&);
- // Convert a set of ResolveOperations into graph nodes
- bool parseResolveOperations(SpeculatedType, unsigned identifierNumber, ResolveOperations*, PutToBaseOperation*, Node** base, Node** value);
+ // Calls check() for those conditions that aren't the slot base, and calls load() for the slot
+ // base. Does a combination of watchpoint registration and check emission to guard the
+ // conditions, and emits code to load the value from the slot base. Returns a node containing
+ // the loaded value. Returns null if any of the conditions were no longer checkable.
+ GetByOffsetMethod planLoad(const ObjectPropertyConditionSet&);
+ Node* load(SpeculatedType, const ObjectPropertyConditionSet&, NodeType = GetByOffset);
- // Prepare to parse a block.
void prepareToParseBlock();
+ void clearCaches();
+
// Parse a single basic block of bytecode instructions.
bool parseBlock(unsigned limit);
// Link block successors.
- void linkBlock(BasicBlock*, Vector<BlockIndex>& possibleTargets);
- void linkBlocks(Vector<UnlinkedBlock>& unlinkedBlocks, Vector<BlockIndex>& possibleTargets);
+ void linkBlock(BasicBlock*, Vector<BasicBlock*>& possibleTargets);
+ void linkBlocks(Vector<UnlinkedBlock>& unlinkedBlocks, Vector<BasicBlock*>& possibleTargets);
- VariableAccessData* newVariableAccessData(int operand, bool isCaptured)
+ VariableAccessData* newVariableAccessData(VirtualRegister operand)
{
- ASSERT(operand < FirstConstantRegisterIndex);
+ ASSERT(!operand.isConstant());
- m_graph.m_variableAccessData.append(VariableAccessData(static_cast<VirtualRegister>(operand), isCaptured));
+ m_graph.m_variableAccessData.append(VariableAccessData(operand));
return &m_graph.m_variableAccessData.last();
}
// Get/Set the operands/result of a bytecode instruction.
- Node* getDirect(int operand)
+ Node* getDirect(VirtualRegister operand)
{
- // Is this a constant?
- if (operand >= FirstConstantRegisterIndex) {
- unsigned constant = operand - FirstConstantRegisterIndex;
- ASSERT(constant < m_constants.size());
- return getJSConstant(constant);
- }
+ ASSERT(!operand.isConstant());
- ASSERT(operand != JSStack::Callee);
-
// Is this an argument?
- if (operandIsArgument(operand))
+ if (operand.isArgument())
return getArgument(operand);
// Must be a local.
- return getLocal((unsigned)operand);
+ return getLocal(operand);
}
- Node* get(int operand)
+
+ Node* get(VirtualRegister operand)
{
- if (operand == JSStack::Callee) {
- if (inlineCallFrame() && inlineCallFrame()->callee)
- return cellConstant(inlineCallFrame()->callee.get());
-
- return getCallee();
+ if (operand.isConstant()) {
+ unsigned constantIndex = operand.toConstantIndex();
+ unsigned oldSize = m_constants.size();
+ if (constantIndex >= oldSize || !m_constants[constantIndex]) {
+ const CodeBlock& codeBlock = *m_inlineStackTop->m_codeBlock;
+ JSValue value = codeBlock.getConstant(operand.offset());
+ SourceCodeRepresentation sourceCodeRepresentation = codeBlock.constantSourceCodeRepresentation(operand.offset());
+ if (constantIndex >= oldSize) {
+ m_constants.grow(constantIndex + 1);
+ for (unsigned i = oldSize; i < m_constants.size(); ++i)
+ m_constants[i] = nullptr;
+ }
+
+ Node* constantNode = nullptr;
+ if (sourceCodeRepresentation == SourceCodeRepresentation::Double)
+ constantNode = addToGraph(DoubleConstant, OpInfo(m_graph.freezeStrong(jsDoubleNumber(value.asNumber()))));
+ else
+ constantNode = addToGraph(JSConstant, OpInfo(m_graph.freezeStrong(value)));
+ m_constants[constantIndex] = constantNode;
+ }
+ ASSERT(m_constants[constantIndex]);
+ return m_constants[constantIndex];
+ }
+
+ if (inlineCallFrame()) {
+ if (!inlineCallFrame()->isClosureCall) {
+ JSFunction* callee = inlineCallFrame()->calleeConstant();
+ if (operand.offset() == JSStack::Callee)
+ return weakJSConstant(callee);
+ }
+ } else if (operand.offset() == JSStack::Callee) {
+ // We have to do some constant-folding here because this enables CreateThis folding. Note
+ // that we don't have such watchpoint-based folding for inlined uses of Callee, since in that
+ // case if the function is a singleton then we already know it.
+ if (FunctionExecutable* executable = jsDynamicCast<FunctionExecutable*>(m_codeBlock->ownerExecutable())) {
+ InferredValue* singleton = executable->singletonFunction();
+ if (JSValue value = singleton->inferredValue()) {
+ m_graph.watchpoints().addLazily(singleton);
+ JSFunction* function = jsCast<JSFunction*>(value);
+ return weakJSConstant(function);
+ }
+ }
+ return addToGraph(GetCallee);
}
return getDirect(m_inlineStackTop->remapOperand(operand));
}
- enum SetMode { NormalSet, SetOnEntry };
- void setDirect(int operand, Node* value, SetMode setMode = NormalSet)
+
+ enum SetMode {
+ // A normal set which follows a two-phase commit that spans code origins. During
+ // the current code origin it issues a MovHint, and at the start of the next
+ // code origin there will be a SetLocal. If the local needs flushing, the second
+ // SetLocal will be preceded with a Flush.
+ NormalSet,
+
+ // A set where the SetLocal happens immediately and there is still a Flush. This
+ // is relevant when assigning to a local in tricky situations for the delayed
+ // SetLocal logic but where we know that we have not performed any side effects
+ // within this code origin. This is a safe replacement for NormalSet anytime we
+ // know that we have not yet performed side effects in this code origin.
+ ImmediateSetWithFlush,
+
+ // A set where the SetLocal happens immediately and we do not Flush it even if
+ // this is a local that is marked as needing it. This is relevant when
+ // initializing locals at the top of a function.
+ ImmediateNakedSet
+ };
+ Node* setDirect(VirtualRegister operand, Node* value, SetMode setMode = NormalSet)
{
- // Is this an argument?
- if (operandIsArgument(operand)) {
- setArgument(operand, value, setMode);
- return;
- }
+ addToGraph(MovHint, OpInfo(operand.offset()), value);
- // Must be a local.
- setLocal((unsigned)operand, value, setMode);
+ // We can't exit anymore because our OSR exit state has changed.
+ m_exitOK = false;
+
+ DelayedSetLocal delayed(currentCodeOrigin(), operand, value);
+
+ if (setMode == NormalSet) {
+ m_setLocalQueue.append(delayed);
+ return 0;
+ }
+
+ return delayed.execute(this, setMode);
}
- void set(int operand, Node* value, SetMode setMode = NormalSet)
+
+ void processSetLocalQueue()
{
- setDirect(m_inlineStackTop->remapOperand(operand), value, setMode);
+ for (unsigned i = 0; i < m_setLocalQueue.size(); ++i)
+ m_setLocalQueue[i].execute(this);
+ m_setLocalQueue.resize(0);
}
-
- void setPair(int operand1, Node* value1, int operand2, Node* value2)
+
+ Node* set(VirtualRegister operand, Node* value, SetMode setMode = NormalSet)
{
- // First emit dead SetLocals for the benefit of OSR.
- set(operand1, value1);
- set(operand2, value2);
-
- // Now emit the real SetLocals.
- set(operand1, value1);
- set(operand2, value2);
+ return setDirect(m_inlineStackTop->remapOperand(operand), value, setMode);
}
Node* injectLazyOperandSpeculation(Node* node)
{
ASSERT(node->op() == GetLocal);
- ASSERT(node->codeOrigin.bytecodeIndex == m_currentIndex);
- SpeculatedType prediction =
- m_inlineStackTop->m_lazyOperands.prediction(
- LazyOperandValueProfileKey(m_currentIndex, node->local()));
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLog("Lazy operand [@", node->index(), ", bc#", m_currentIndex, ", r", node->local(), "] prediction: ", SpeculationDump(prediction), "\n");
-#endif
+ ASSERT(node->origin.semantic.bytecodeIndex == m_currentIndex);
+ ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
+ LazyOperandValueProfileKey key(m_currentIndex, node->local());
+ SpeculatedType prediction = m_inlineStackTop->m_lazyOperands.prediction(locker, key);
node->variableAccessData()->predict(prediction);
return node;
}
// Used in implementing get/set, above, where the operand is a local variable.
- Node* getLocal(unsigned operand)
+ Node* getLocal(VirtualRegister operand)
{
- Node* node = m_currentBlock->variablesAtTail.local(operand);
- bool isCaptured = m_codeBlock->isCaptured(operand, inlineCallFrame());
+ unsigned local = operand.toLocal();
+
+ Node* node = m_currentBlock->variablesAtTail.local(local);
// This has two goals: 1) link together variable access datas, and 2)
// try to avoid creating redundant GetLocals. (1) is required for
@@ -290,58 +420,61 @@ private:
if (node) {
variable = node->variableAccessData();
- variable->mergeIsCaptured(isCaptured);
- if (!isCaptured) {
- switch (node->op()) {
- case GetLocal:
- return node;
- case SetLocal:
- return node->child1().node();
- default:
- break;
- }
+ switch (node->op()) {
+ case GetLocal:
+ return node;
+ case SetLocal:
+ return node->child1().node();
+ default:
+ break;
}
- } else {
- m_preservedVars.set(operand);
- variable = newVariableAccessData(operand, isCaptured);
- }
+ } else
+ variable = newVariableAccessData(operand);
node = injectLazyOperandSpeculation(addToGraph(GetLocal, OpInfo(variable)));
- m_currentBlock->variablesAtTail.local(operand) = node;
+ m_currentBlock->variablesAtTail.local(local) = node;
return node;
}
- void setLocal(unsigned operand, Node* value, SetMode setMode = NormalSet)
+ Node* setLocal(const CodeOrigin& semanticOrigin, VirtualRegister operand, Node* value, SetMode setMode = NormalSet)
{
- bool isCaptured = m_codeBlock->isCaptured(operand, inlineCallFrame());
+ CodeOrigin oldSemanticOrigin = m_currentSemanticOrigin;
+ m_currentSemanticOrigin = semanticOrigin;
+
+ unsigned local = operand.toLocal();
- if (setMode == NormalSet) {
+ if (setMode != ImmediateNakedSet) {
ArgumentPosition* argumentPosition = findArgumentPositionForLocal(operand);
- if (isCaptured || argumentPosition)
+ if (argumentPosition)
flushDirect(operand, argumentPosition);
+ else if (m_hasDebuggerEnabled && operand == m_codeBlock->scopeRegister())
+ flush(operand);
}
- VariableAccessData* variableAccessData = newVariableAccessData(operand, isCaptured);
+ VariableAccessData* variableAccessData = newVariableAccessData(operand);
variableAccessData->mergeStructureCheckHoistingFailed(
- m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache));
+ m_inlineStackTop->m_exitProfile.hasExitSite(semanticOrigin.bytecodeIndex, BadCache));
+ variableAccessData->mergeCheckArrayHoistingFailed(
+ m_inlineStackTop->m_exitProfile.hasExitSite(semanticOrigin.bytecodeIndex, BadIndexingType));
Node* node = addToGraph(SetLocal, OpInfo(variableAccessData), value);
- m_currentBlock->variablesAtTail.local(operand) = node;
+ m_currentBlock->variablesAtTail.local(local) = node;
+
+ m_currentSemanticOrigin = oldSemanticOrigin;
+ return node;
}
// Used in implementing get/set, above, where the operand is an argument.
- Node* getArgument(unsigned operand)
+ Node* getArgument(VirtualRegister operand)
{
- unsigned argument = operandToArgument(operand);
+ unsigned argument = operand.toArgument();
ASSERT(argument < m_numArguments);
Node* node = m_currentBlock->variablesAtTail.argument(argument);
- bool isCaptured = m_codeBlock->isCaptured(operand);
VariableAccessData* variable;
if (node) {
variable = node->variableAccessData();
- variable->mergeIsCaptured(isCaptured);
switch (node->op()) {
case GetLocal:
@@ -352,33 +485,39 @@ private:
break;
}
} else
- variable = newVariableAccessData(operand, isCaptured);
+ variable = newVariableAccessData(operand);
node = injectLazyOperandSpeculation(addToGraph(GetLocal, OpInfo(variable)));
m_currentBlock->variablesAtTail.argument(argument) = node;
return node;
}
- void setArgument(int operand, Node* value, SetMode setMode = NormalSet)
+ Node* setArgument(const CodeOrigin& semanticOrigin, VirtualRegister operand, Node* value, SetMode setMode = NormalSet)
{
- unsigned argument = operandToArgument(operand);
+ CodeOrigin oldSemanticOrigin = m_currentSemanticOrigin;
+ m_currentSemanticOrigin = semanticOrigin;
+
+ unsigned argument = operand.toArgument();
ASSERT(argument < m_numArguments);
- bool isCaptured = m_codeBlock->isCaptured(operand);
-
- VariableAccessData* variableAccessData = newVariableAccessData(operand, isCaptured);
+ VariableAccessData* variableAccessData = newVariableAccessData(operand);
// Always flush arguments, except for 'this'. If 'this' is created by us,
// then make sure that it's never unboxed.
if (argument) {
- if (setMode == NormalSet)
+ if (setMode != ImmediateNakedSet)
flushDirect(operand);
} else if (m_codeBlock->specializationKind() == CodeForConstruct)
variableAccessData->mergeShouldNeverUnbox(true);
variableAccessData->mergeStructureCheckHoistingFailed(
- m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache));
+ m_inlineStackTop->m_exitProfile.hasExitSite(semanticOrigin.bytecodeIndex, BadCache));
+ variableAccessData->mergeCheckArrayHoistingFailed(
+ m_inlineStackTop->m_exitProfile.hasExitSite(semanticOrigin.bytecodeIndex, BadIndexingType));
Node* node = addToGraph(SetLocal, OpInfo(variableAccessData), value);
m_currentBlock->variablesAtTail.argument(argument) = node;
+
+ m_currentSemanticOrigin = oldSemanticOrigin;
+ return node;
}
ArgumentPosition* findArgumentPositionForArgument(int argument)
@@ -389,149 +528,111 @@ private:
return stack->m_argumentPositions[argument];
}
- ArgumentPosition* findArgumentPositionForLocal(int operand)
+ ArgumentPosition* findArgumentPositionForLocal(VirtualRegister operand)
{
for (InlineStackEntry* stack = m_inlineStackTop; ; stack = stack->m_caller) {
InlineCallFrame* inlineCallFrame = stack->m_inlineCallFrame;
if (!inlineCallFrame)
break;
- if (operand >= static_cast<int>(inlineCallFrame->stackOffset - JSStack::CallFrameHeaderSize))
+ if (operand.offset() < static_cast<int>(inlineCallFrame->stackOffset + JSStack::CallFrameHeaderSize))
continue;
- if (operand == inlineCallFrame->stackOffset + CallFrame::thisArgumentOffset())
+ if (operand.offset() == inlineCallFrame->stackOffset + CallFrame::thisArgumentOffset())
continue;
- if (operand < static_cast<int>(inlineCallFrame->stackOffset - JSStack::CallFrameHeaderSize - inlineCallFrame->arguments.size()))
+ if (operand.offset() >= static_cast<int>(inlineCallFrame->stackOffset + CallFrame::thisArgumentOffset() + inlineCallFrame->arguments.size()))
continue;
- int argument = operandToArgument(operand - inlineCallFrame->stackOffset);
+ int argument = VirtualRegister(operand.offset() - inlineCallFrame->stackOffset).toArgument();
return stack->m_argumentPositions[argument];
}
return 0;
}
- ArgumentPosition* findArgumentPosition(int operand)
+ ArgumentPosition* findArgumentPosition(VirtualRegister operand)
{
- if (operandIsArgument(operand))
- return findArgumentPositionForArgument(operandToArgument(operand));
+ if (operand.isArgument())
+ return findArgumentPositionForArgument(operand.toArgument());
return findArgumentPositionForLocal(operand);
}
-
- void flush(int operand)
+
+ void flush(VirtualRegister operand)
{
flushDirect(m_inlineStackTop->remapOperand(operand));
}
- void flushDirect(int operand)
+ void flushDirect(VirtualRegister operand)
{
flushDirect(operand, findArgumentPosition(operand));
}
- void flushDirect(int operand, ArgumentPosition* argumentPosition)
+ void flushDirect(VirtualRegister operand, ArgumentPosition* argumentPosition)
{
- bool isCaptured = m_codeBlock->isCaptured(operand, inlineCallFrame());
-
- ASSERT(operand < FirstConstantRegisterIndex);
-
- if (!operandIsArgument(operand))
- m_preservedVars.set(operand);
+ ASSERT(!operand.isConstant());
Node* node = m_currentBlock->variablesAtTail.operand(operand);
VariableAccessData* variable;
- if (node) {
+ if (node)
variable = node->variableAccessData();
- variable->mergeIsCaptured(isCaptured);
- } else
- variable = newVariableAccessData(operand, isCaptured);
+ else
+ variable = newVariableAccessData(operand);
node = addToGraph(Flush, OpInfo(variable));
m_currentBlock->variablesAtTail.operand(operand) = node;
if (argumentPosition)
argumentPosition->addVariable(variable);
}
-
+
void flush(InlineStackEntry* inlineStackEntry)
{
int numArguments;
- if (InlineCallFrame* inlineCallFrame = inlineStackEntry->m_inlineCallFrame)
+ if (InlineCallFrame* inlineCallFrame = inlineStackEntry->m_inlineCallFrame) {
+ ASSERT(!m_hasDebuggerEnabled);
numArguments = inlineCallFrame->arguments.size();
- else
+ if (inlineCallFrame->isClosureCall)
+ flushDirect(inlineStackEntry->remapOperand(VirtualRegister(JSStack::Callee)));
+ if (inlineCallFrame->isVarargs())
+ flushDirect(inlineStackEntry->remapOperand(VirtualRegister(JSStack::ArgumentCount)));
+ } else
numArguments = inlineStackEntry->m_codeBlock->numParameters();
for (unsigned argument = numArguments; argument-- > 1;)
- flushDirect(inlineStackEntry->remapOperand(argumentToOperand(argument)));
- for (int local = 0; local < inlineStackEntry->m_codeBlock->m_numVars; ++local) {
- if (!inlineStackEntry->m_codeBlock->isCaptured(local))
- continue;
- flushDirect(inlineStackEntry->remapOperand(local));
- }
+ flushDirect(inlineStackEntry->remapOperand(virtualRegisterForArgument(argument)));
+ if (m_hasDebuggerEnabled)
+ flush(m_codeBlock->scopeRegister());
}
- void flushAllArgumentsAndCapturedVariablesInInlineStack()
+ void flushForTerminal()
{
for (InlineStackEntry* inlineStackEntry = m_inlineStackTop; inlineStackEntry; inlineStackEntry = inlineStackEntry->m_caller)
flush(inlineStackEntry);
}
- void flushArgumentsAndCapturedVariables()
+ void flushForReturn()
{
flush(m_inlineStackTop);
}
-
- // Get an operand, and perform a ToInt32/ToNumber conversion on it.
- Node* getToInt32(int operand)
- {
- return toInt32(get(operand));
- }
-
- // Perform an ES5 ToInt32 operation - returns a node of type NodeResultInt32.
- Node* toInt32(Node* node)
- {
- if (node->hasInt32Result())
- return node;
-
- if (node->op() == UInt32ToNumber)
- return node->child1().node();
-
- // Check for numeric constants boxed as JSValues.
- if (canFold(node)) {
- JSValue v = valueOfJSConstant(node);
- if (v.isInt32())
- return getJSConstant(node->constantNumber());
- if (v.isNumber())
- return getJSConstantForValue(JSValue(JSC::toInt32(v.asNumber())));
- }
-
- return addToGraph(ValueToInt32, node);
- }
-
- // NOTE: Only use this to construct constants that arise from non-speculative
- // constant folding. I.e. creating constants using this if we had constant
- // field inference would be a bad idea, since the bytecode parser's folding
- // doesn't handle liveness preservation.
- Node* getJSConstantForValue(JSValue constantValue)
+
+ void flushIfTerminal(SwitchData& data)
{
- unsigned constantIndex = m_codeBlock->addOrFindConstant(constantValue);
- if (constantIndex >= m_constants.size())
- m_constants.append(ConstantRecord());
+ if (data.fallThrough.bytecodeIndex() > m_currentIndex)
+ return;
- ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters());
+ for (unsigned i = data.cases.size(); i--;) {
+ if (data.cases[i].target.bytecodeIndex() > m_currentIndex)
+ return;
+ }
- return getJSConstant(constantIndex);
+ flushForTerminal();
}
- Node* getJSConstant(unsigned constant)
+ // Assumes that the constant should be strongly marked.
+ Node* jsConstant(JSValue constantValue)
{
- Node* node = m_constants[constant].asJSValue;
- if (node)
- return node;
-
- Node* result = addToGraph(JSConstant, OpInfo(constant));
- m_constants[constant].asJSValue = result;
- return result;
+ return addToGraph(JSConstant, OpInfo(m_graph.freezeStrong(constantValue)));
}
- Node* getCallee()
+ Node* weakJSConstant(JSValue constantValue)
{
- return addToGraph(GetCallee);
+ return addToGraph(JSConstant, OpInfo(m_graph.freeze(constantValue)));
}
// Helper functions to get/set the this value.
@@ -539,279 +640,213 @@ private:
{
return get(m_inlineStackTop->m_codeBlock->thisRegister());
}
+
void setThis(Node* value)
{
set(m_inlineStackTop->m_codeBlock->thisRegister(), value);
}
- // Convenience methods for checking nodes for constants.
- bool isJSConstant(Node* node)
- {
- return node->op() == JSConstant;
- }
- bool isInt32Constant(Node* node)
- {
- return isJSConstant(node) && valueOfJSConstant(node).isInt32();
- }
- // Convenience methods for getting constant values.
- JSValue valueOfJSConstant(Node* node)
- {
- ASSERT(isJSConstant(node));
- return m_codeBlock->getConstant(FirstConstantRegisterIndex + node->constantNumber());
- }
- int32_t valueOfInt32Constant(Node* node)
+ InlineCallFrame* inlineCallFrame()
{
- ASSERT(isInt32Constant(node));
- return valueOfJSConstant(node).asInt32();
+ return m_inlineStackTop->m_inlineCallFrame;
}
-
- // This method returns a JSConstant with the value 'undefined'.
- Node* constantUndefined()
- {
- // Has m_constantUndefined been set up yet?
- if (m_constantUndefined == UINT_MAX) {
- // Search the constant pool for undefined, if we find it, we can just reuse this!
- unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters();
- for (m_constantUndefined = 0; m_constantUndefined < numberOfConstants; ++m_constantUndefined) {
- JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantUndefined);
- if (testMe.isUndefined())
- return getJSConstant(m_constantUndefined);
- }
-
- // Add undefined to the CodeBlock's constants, and add a corresponding slot in m_constants.
- ASSERT(m_constants.size() == numberOfConstants);
- m_codeBlock->addConstant(jsUndefined());
- m_constants.append(ConstantRecord());
- ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters());
- }
- // m_constantUndefined must refer to an entry in the CodeBlock's constant pool that has the value 'undefined'.
- ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantUndefined).isUndefined());
- return getJSConstant(m_constantUndefined);
+ bool allInlineFramesAreTailCalls()
+ {
+ return !inlineCallFrame() || !inlineCallFrame()->getCallerSkippingTailCalls();
}
- // This method returns a JSConstant with the value 'null'.
- Node* constantNull()
+ CodeOrigin currentCodeOrigin()
{
- // Has m_constantNull been set up yet?
- if (m_constantNull == UINT_MAX) {
- // Search the constant pool for null, if we find it, we can just reuse this!
- unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters();
- for (m_constantNull = 0; m_constantNull < numberOfConstants; ++m_constantNull) {
- JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNull);
- if (testMe.isNull())
- return getJSConstant(m_constantNull);
- }
-
- // Add null to the CodeBlock's constants, and add a corresponding slot in m_constants.
- ASSERT(m_constants.size() == numberOfConstants);
- m_codeBlock->addConstant(jsNull());
- m_constants.append(ConstantRecord());
- ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters());
- }
-
- // m_constantNull must refer to an entry in the CodeBlock's constant pool that has the value 'null'.
- ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNull).isNull());
- return getJSConstant(m_constantNull);
+ return CodeOrigin(m_currentIndex, inlineCallFrame());
}
- // This method returns a DoubleConstant with the value 1.
- Node* one()
+ NodeOrigin currentNodeOrigin()
{
- // Has m_constant1 been set up yet?
- if (m_constant1 == UINT_MAX) {
- // Search the constant pool for the value 1, if we find it, we can just reuse this!
- unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters();
- for (m_constant1 = 0; m_constant1 < numberOfConstants; ++m_constant1) {
- JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1);
- if (testMe.isInt32() && testMe.asInt32() == 1)
- return getJSConstant(m_constant1);
- }
-
- // Add the value 1 to the CodeBlock's constants, and add a corresponding slot in m_constants.
- ASSERT(m_constants.size() == numberOfConstants);
- m_codeBlock->addConstant(jsNumber(1));
- m_constants.append(ConstantRecord());
- ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters());
- }
+ CodeOrigin semantic;
+ CodeOrigin forExit;
- // m_constant1 must refer to an entry in the CodeBlock's constant pool that has the integer value 1.
- ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1).isInt32());
- ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1).asInt32() == 1);
- return getJSConstant(m_constant1);
- }
-
- // This method returns a DoubleConstant with the value NaN.
- Node* constantNaN()
- {
- JSValue nan = jsNaN();
-
- // Has m_constantNaN been set up yet?
- if (m_constantNaN == UINT_MAX) {
- // Search the constant pool for the value NaN, if we find it, we can just reuse this!
- unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters();
- for (m_constantNaN = 0; m_constantNaN < numberOfConstants; ++m_constantNaN) {
- JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNaN);
- if (JSValue::encode(testMe) == JSValue::encode(nan))
- return getJSConstant(m_constantNaN);
- }
+ if (m_currentSemanticOrigin.isSet())
+ semantic = m_currentSemanticOrigin;
+ else
+ semantic = currentCodeOrigin();
- // Add the value nan to the CodeBlock's constants, and add a corresponding slot in m_constants.
- ASSERT(m_constants.size() == numberOfConstants);
- m_codeBlock->addConstant(nan);
- m_constants.append(ConstantRecord());
- ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters());
- }
+ forExit = currentCodeOrigin();
- // m_constantNaN must refer to an entry in the CodeBlock's constant pool that has the value nan.
- ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNaN).isDouble());
- ASSERT(std::isnan(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNaN).asDouble()));
- return getJSConstant(m_constantNaN);
+ return NodeOrigin(semantic, forExit, m_exitOK);
}
- Node* cellConstant(JSCell* cell)
- {
- HashMap<JSCell*, Node*>::AddResult result = m_cellConstantNodes.add(cell, 0);
- if (result.isNewEntry)
- result.iterator->value = addToGraph(WeakJSConstant, OpInfo(cell));
-
- return result.iterator->value;
- }
-
- InlineCallFrame* inlineCallFrame()
- {
- return m_inlineStackTop->m_inlineCallFrame;
- }
-
- CodeOrigin currentCodeOrigin()
+ BranchData* branchData(unsigned taken, unsigned notTaken)
{
- return CodeOrigin(m_currentIndex, inlineCallFrame(), m_currentProfilingIndex - m_currentIndex);
+ // We assume that branches originating from bytecode always have a fall-through. We
+ // use this assumption to avoid checking for the creation of terminal blocks.
+ ASSERT((taken > m_currentIndex) || (notTaken > m_currentIndex));
+ BranchData* data = m_graph.m_branchData.add();
+ *data = BranchData::withBytecodeIndices(taken, notTaken);
+ return data;
}
- bool canFold(Node* node)
+ Node* addToGraph(Node* node)
{
- return node->isStronglyProvedConstantIn(inlineCallFrame());
- }
-
- // Our codegen for constant strict equality performs a bitwise comparison,
- // so we can only select values that have a consistent bitwise identity.
- bool isConstantForCompareStrictEq(Node* node)
- {
- if (!node->isConstant())
- return false;
- JSValue value = valueOfJSConstant(node);
- return value.isBoolean() || value.isUndefinedOrNull();
+ if (Options::verboseDFGByteCodeParsing())
+ dataLog(" appended ", node, " ", Graph::opName(node->op()), "\n");
+ m_currentBlock->append(node);
+ if (clobbersExitState(m_graph, node))
+ m_exitOK = false;
+ return node;
}
Node* addToGraph(NodeType op, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0)
{
Node* result = m_graph.addNode(
- SpecNone, op, currentCodeOrigin(), Edge(child1), Edge(child2), Edge(child3));
- ASSERT(op != Phi);
- m_currentBlock->append(result);
- return result;
+ SpecNone, op, currentNodeOrigin(), Edge(child1), Edge(child2),
+ Edge(child3));
+ return addToGraph(result);
}
Node* addToGraph(NodeType op, Edge child1, Edge child2 = Edge(), Edge child3 = Edge())
{
Node* result = m_graph.addNode(
- SpecNone, op, currentCodeOrigin(), child1, child2, child3);
- ASSERT(op != Phi);
- m_currentBlock->append(result);
- return result;
+ SpecNone, op, currentNodeOrigin(), child1, child2, child3);
+ return addToGraph(result);
}
Node* addToGraph(NodeType op, OpInfo info, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0)
{
Node* result = m_graph.addNode(
- SpecNone, op, currentCodeOrigin(), info, Edge(child1), Edge(child2), Edge(child3));
- ASSERT(op != Phi);
- m_currentBlock->append(result);
- return result;
+ SpecNone, op, currentNodeOrigin(), info, Edge(child1), Edge(child2),
+ Edge(child3));
+ return addToGraph(result);
}
Node* addToGraph(NodeType op, OpInfo info1, OpInfo info2, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0)
{
Node* result = m_graph.addNode(
- SpecNone, op, currentCodeOrigin(), info1, info2,
+ SpecNone, op, currentNodeOrigin(), info1, info2,
Edge(child1), Edge(child2), Edge(child3));
- ASSERT(op != Phi);
- m_currentBlock->append(result);
- return result;
+ return addToGraph(result);
}
Node* addToGraph(Node::VarArgTag, NodeType op, OpInfo info1, OpInfo info2)
{
Node* result = m_graph.addNode(
- SpecNone, Node::VarArg, op, currentCodeOrigin(), info1, info2,
+ SpecNone, Node::VarArg, op, currentNodeOrigin(), info1, info2,
m_graph.m_varArgChildren.size() - m_numPassedVarArgs, m_numPassedVarArgs);
- ASSERT(op != Phi);
- m_currentBlock->append(result);
+ addToGraph(result);
m_numPassedVarArgs = 0;
return result;
}
-
+
void addVarArgChild(Node* child)
{
m_graph.m_varArgChildren.append(Edge(child));
m_numPassedVarArgs++;
}
- Node* addCall(Interpreter* interpreter, Instruction* currentInstruction, NodeType op)
+ Node* addCallWithoutSettingResult(
+ NodeType op, OpInfo opInfo, Node* callee, int argCount, int registerOffset,
+ OpInfo prediction)
{
- Instruction* putInstruction = currentInstruction + OPCODE_LENGTH(op_call);
+ addVarArgChild(callee);
+ size_t frameSize = JSStack::CallFrameHeaderSize + argCount;
+ size_t alignedFrameSize = WTF::roundUpToMultipleOf(stackAlignmentRegisters(), frameSize);
+ size_t parameterSlots = alignedFrameSize - JSStack::CallerFrameAndPCSize;
- SpeculatedType prediction = SpecNone;
- if (interpreter->getOpcodeID(putInstruction->u.opcode) == op_call_put_result) {
- m_currentProfilingIndex = m_currentIndex + OPCODE_LENGTH(op_call);
- prediction = getPrediction();
- }
-
- addVarArgChild(get(currentInstruction[1].u.operand));
- int argCount = currentInstruction[2].u.operand;
- if (JSStack::CallFrameHeaderSize + (unsigned)argCount > m_parameterSlots)
- m_parameterSlots = JSStack::CallFrameHeaderSize + argCount;
+ if (parameterSlots > m_parameterSlots)
+ m_parameterSlots = parameterSlots;
- int registerOffset = currentInstruction[3].u.operand;
- int dummyThisArgument = op == Call ? 0 : 1;
- for (int i = 0 + dummyThisArgument; i < argCount; ++i)
- addVarArgChild(get(registerOffset + argumentToOperand(i)));
+ for (int i = 0; i < argCount; ++i)
+ addVarArgChild(get(virtualRegisterForArgument(i, registerOffset)));
- Node* call = addToGraph(Node::VarArg, op, OpInfo(0), OpInfo(prediction));
- if (interpreter->getOpcodeID(putInstruction->u.opcode) == op_call_put_result)
- set(putInstruction[1].u.operand, call);
- return call;
+ return addToGraph(Node::VarArg, op, opInfo, prediction);
}
- Node* addStructureTransitionCheck(JSCell* object, Structure* structure)
+ Node* addCall(
+ int result, NodeType op, OpInfo opInfo, Node* callee, int argCount, int registerOffset,
+ SpeculatedType prediction)
{
- // Add a weak JS constant for the object regardless, since the code should
- // be jettisoned if the object ever dies.
- Node* objectNode = cellConstant(object);
-
- if (object->structure() == structure && structure->transitionWatchpointSetIsStillValid()) {
- addToGraph(StructureTransitionWatchpoint, OpInfo(structure), objectNode);
- return objectNode;
+ if (op == TailCall) {
+ if (allInlineFramesAreTailCalls())
+ return addCallWithoutSettingResult(op, OpInfo(), callee, argCount, registerOffset, OpInfo());
+ op = TailCallInlinedCaller;
}
-
- addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(structure)), objectNode);
-
- return objectNode;
+
+
+ Node* call = addCallWithoutSettingResult(
+ op, opInfo, callee, argCount, registerOffset, OpInfo(prediction));
+ VirtualRegister resultReg(result);
+ if (resultReg.isValid())
+ set(resultReg, call);
+ return call;
}
- Node* addStructureTransitionCheck(JSCell* object)
+ Node* cellConstantWithStructureCheck(JSCell* object, Structure* structure)
{
- return addStructureTransitionCheck(object, object->structure());
+ // FIXME: This should route to emitPropertyCheck, not the other way around. But currently,
+ // this gets no profit from using emitPropertyCheck() since we'll non-adaptively watch the
+ // object's structure as soon as we make it a weakJSCosntant.
+ Node* objectNode = weakJSConstant(object);
+ addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(structure)), objectNode);
+ return objectNode;
}
SpeculatedType getPredictionWithoutOSRExit(unsigned bytecodeIndex)
{
- return m_inlineStackTop->m_profiledBlock->valueProfilePredictionForBytecodeOffset(bytecodeIndex);
+ SpeculatedType prediction;
+ CodeBlock* profiledBlock = nullptr;
+
+ {
+ ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
+ prediction = m_inlineStackTop->m_profiledBlock->valueProfilePredictionForBytecodeOffset(locker, bytecodeIndex);
+
+ if (prediction == SpecNone) {
+ // If we have no information about the values this
+ // node generates, we check if by any chance it is
+ // a tail call opcode. In that case, we walk up the
+ // inline frames to find a call higher in the call
+ // chain and use its prediction. If we only have
+ // inlined tail call frames, we use SpecFullTop
+ // to avoid a spurious OSR exit.
+ Instruction* instruction = m_inlineStackTop->m_profiledBlock->instructions().begin() + bytecodeIndex;
+ OpcodeID opcodeID = m_vm->interpreter->getOpcodeID(instruction->u.opcode);
+
+ switch (opcodeID) {
+ case op_tail_call:
+ case op_tail_call_varargs: {
+ if (!inlineCallFrame()) {
+ prediction = SpecFullTop;
+ break;
+ }
+ CodeOrigin* codeOrigin = inlineCallFrame()->getCallerSkippingTailCalls();
+ if (!codeOrigin) {
+ prediction = SpecFullTop;
+ break;
+ }
+ InlineStackEntry* stack = m_inlineStackTop;
+ while (stack->m_inlineCallFrame != codeOrigin->inlineCallFrame)
+ stack = stack->m_caller;
+ bytecodeIndex = codeOrigin->bytecodeIndex;
+ profiledBlock = stack->m_profiledBlock;
+ break;
+ }
+
+ default:
+ break;
+ }
+ }
+ }
+
+ if (profiledBlock) {
+ ConcurrentJITLocker locker(profiledBlock->m_lock);
+ prediction = profiledBlock->valueProfilePredictionForBytecodeOffset(locker, bytecodeIndex);
+ }
+
+ return prediction;
}
SpeculatedType getPrediction(unsigned bytecodeIndex)
{
SpeculatedType prediction = getPredictionWithoutOSRExit(bytecodeIndex);
-
+
if (prediction == SpecNone) {
// We have no information about what values this node generates. Give up
// on executing this code, since we're likely to do more damage than good.
@@ -823,18 +858,20 @@ private:
SpeculatedType getPredictionWithoutOSRExit()
{
- return getPredictionWithoutOSRExit(m_currentProfilingIndex);
+ return getPredictionWithoutOSRExit(m_currentIndex);
}
SpeculatedType getPrediction()
{
- return getPrediction(m_currentProfilingIndex);
+ return getPrediction(m_currentIndex);
}
ArrayMode getArrayMode(ArrayProfile* profile, Array::Action action)
{
- profile->computeUpdatedPrediction(m_inlineStackTop->m_codeBlock);
- return ArrayMode::fromObserved(profile, action, false);
+ ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
+ profile->computeUpdatedPrediction(locker, m_inlineStackTop->m_profiledBlock);
+ bool makeSafe = profile->outOfBounds(locker);
+ return ArrayMode::fromObserved(locker, profile, action, makeSafe);
}
ArrayMode getArrayMode(ArrayProfile* profile)
@@ -842,69 +879,49 @@ private:
return getArrayMode(profile, Array::Read);
}
- ArrayMode getArrayModeAndEmitChecks(ArrayProfile* profile, Array::Action action, Node* base)
- {
- profile->computeUpdatedPrediction(m_inlineStackTop->m_codeBlock);
-
-#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
- if (m_inlineStackTop->m_profiledBlock->numberOfRareCaseProfiles())
- dataLogF("Slow case profile for bc#%u: %u\n", m_currentIndex, m_inlineStackTop->m_profiledBlock->rareCaseProfileForBytecodeOffset(m_currentIndex)->m_counter);
- dataLogF("Array profile for bc#%u: %p%s%s, %u\n", m_currentIndex, profile->expectedStructure(), profile->structureIsPolymorphic() ? " (polymorphic)" : "", profile->mayInterceptIndexedAccesses() ? " (may intercept)" : "", profile->observedArrayModes());
-#endif
-
- bool makeSafe =
- m_inlineStackTop->m_profiledBlock->likelyToTakeSlowCase(m_currentIndex)
- || profile->outOfBounds();
-
- ArrayMode result = ArrayMode::fromObserved(profile, action, makeSafe);
-
- if (profile->hasDefiniteStructure()
- && result.benefitsFromStructureCheck()
- && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache))
- addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(profile->expectedStructure())), base);
-
- return result;
- }
-
Node* makeSafe(Node* node)
{
- bool likelyToTakeSlowCase;
- if (!isX86() && node->op() == ArithMod)
- likelyToTakeSlowCase = false;
- else
- likelyToTakeSlowCase = m_inlineStackTop->m_profiledBlock->likelyToTakeSlowCase(m_currentIndex);
+ if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow))
+ node->mergeFlags(NodeMayOverflowInt32InDFG);
+ if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero))
+ node->mergeFlags(NodeMayNegZeroInDFG);
- if (!likelyToTakeSlowCase
- && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow)
- && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero))
+ if (!isX86() && node->op() == ArithMod)
+ return node;
+
+ if (!m_inlineStackTop->m_profiledBlock->likelyToTakeSlowCase(m_currentIndex))
return node;
switch (node->op()) {
case UInt32ToNumber:
case ArithAdd:
case ArithSub:
- case ArithNegate:
case ValueAdd:
case ArithMod: // for ArithMod "MayOverflow" means we tried to divide by zero, or we saw double.
- node->mergeFlags(NodeMayOverflow);
+ node->mergeFlags(NodeMayOverflowInt32InBaseline);
break;
- case ArithMul:
- if (m_inlineStackTop->m_profiledBlock->likelyToTakeDeepestSlowCase(m_currentIndex)
- || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow)) {
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLogF("Making ArithMul @%u take deepest slow case.\n", node->index());
-#endif
- node->mergeFlags(NodeMayOverflow | NodeMayNegZero);
- } else if (m_inlineStackTop->m_profiledBlock->likelyToTakeSlowCase(m_currentIndex)
- || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero)) {
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLogF("Making ArithMul @%u take faster slow case.\n", node->index());
-#endif
- node->mergeFlags(NodeMayNegZero);
- }
+ case ArithNegate:
+ // Currently we can't tell the difference between a negation overflowing
+ // (i.e. -(1 << 31)) or generating negative zero (i.e. -0). If it took slow
+ // path then we assume that it did both of those things.
+ node->mergeFlags(NodeMayOverflowInt32InBaseline);
+ node->mergeFlags(NodeMayNegZeroInBaseline);
break;
-
+
+ case ArithMul: {
+ ResultProfile& resultProfile = *m_inlineStackTop->m_profiledBlock->resultProfileForBytecodeOffset(m_currentIndex);
+ if (resultProfile.didObserveInt52Overflow())
+ node->mergeFlags(NodeMayOverflowInt52);
+ if (resultProfile.didObserveInt32Overflow() || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow))
+ node->mergeFlags(NodeMayOverflowInt32InBaseline);
+ if (resultProfile.didObserveNegZeroDouble() || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero))
+ node->mergeFlags(NodeMayNegZeroInBaseline);
+ if (resultProfile.didObserveNonInt32())
+ node->mergeFlags(NodeMayHaveNonIntResult);
+ break;
+ }
+
default:
RELEASE_ASSERT_NOT_REACHED();
break;
@@ -917,46 +934,36 @@ private:
{
ASSERT(node->op() == ArithDiv);
+ if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow))
+ node->mergeFlags(NodeMayOverflowInt32InDFG);
+ if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero))
+ node->mergeFlags(NodeMayNegZeroInDFG);
+
// The main slow case counter for op_div in the old JIT counts only when
// the operands are not numbers. We don't care about that since we already
// have speculations in place that take care of that separately. We only
// care about when the outcome of the division is not an integer, which
// is what the special fast case counter tells us.
- if (!m_inlineStackTop->m_profiledBlock->couldTakeSpecialFastCase(m_currentIndex)
- && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow)
- && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero))
+ if (!m_inlineStackTop->m_profiledBlock->couldTakeSpecialFastCase(m_currentIndex))
return node;
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLogF("Making %s @%u safe at bc#%u because special fast-case counter is at %u and exit profiles say %d, %d\n", Graph::opName(node->op()), node->index(), m_currentIndex, m_inlineStackTop->m_profiledBlock->specialFastCaseProfileForBytecodeOffset(m_currentIndex)->m_counter, m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow), m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero));
-#endif
-
- // FIXME: It might be possible to make this more granular. The DFG certainly can
- // distinguish between negative zero and overflow in its exit profiles.
- node->mergeFlags(NodeMayOverflow | NodeMayNegZero);
+ // FIXME: It might be possible to make this more granular.
+ node->mergeFlags(NodeMayOverflowInt32InBaseline | NodeMayNegZeroInBaseline);
return node;
}
- bool structureChainIsStillValid(bool direct, Structure* previousStructure, StructureChain* chain)
+ void noticeArgumentsUse()
{
- if (direct)
- return true;
-
- if (!previousStructure->storedPrototype().isNull() && previousStructure->storedPrototype().asCell()->structure() != chain->head()->get())
- return false;
-
- for (WriteBarrier<Structure>* it = chain->head(); *it; ++it) {
- if (!(*it)->storedPrototype().isNull() && (*it)->storedPrototype().asCell()->structure() != it[1].get())
- return false;
- }
+ // All of the arguments in this function need to be formatted as JSValues because we will
+ // load from them in a random-access fashion and we don't want to have to switch on
+ // format.
- return true;
+ for (ArgumentPosition* argument : m_inlineStackTop->m_argumentPositions)
+ argument->mergeShouldNeverUnbox(true);
}
- void buildOperandMapsIfNecessary();
-
VM* m_vm;
CodeBlock* m_codeBlock;
CodeBlock* m_profiledBlock;
@@ -966,52 +973,26 @@ private:
BasicBlock* m_currentBlock;
// The bytecode index of the current instruction being generated.
unsigned m_currentIndex;
- // The bytecode index of the value profile of the current instruction being generated.
- unsigned m_currentProfilingIndex;
-
- // We use these values during code generation, and to avoid the need for
- // special handling we make sure they are available as constants in the
- // CodeBlock's constant pool. These variables are initialized to
- // UINT_MAX, and lazily updated to hold an index into the CodeBlock's
- // constant pool, as necessary.
- unsigned m_constantUndefined;
- unsigned m_constantNull;
- unsigned m_constantNaN;
- unsigned m_constant1;
- HashMap<JSCell*, unsigned> m_cellConstants;
- HashMap<JSCell*, Node*> m_cellConstantNodes;
-
- // A constant in the constant pool may be represented by more than one
- // node in the graph, depending on the context in which it is being used.
- struct ConstantRecord {
- ConstantRecord()
- : asInt32(0)
- , asNumeric(0)
- , asJSValue(0)
- {
- }
+ // The semantic origin of the current node if different from the current Index.
+ CodeOrigin m_currentSemanticOrigin;
+ // True if it's OK to OSR exit right now.
+ bool m_exitOK { false };
- Node* asInt32;
- Node* asNumeric;
- Node* asJSValue;
- };
-
- // Track the index of the node whose result is the current value for every
- // register value in the bytecode - argument, local, and temporary.
- Vector<ConstantRecord, 16> m_constants;
+ FrozenValue* m_constantUndefined;
+ FrozenValue* m_constantNull;
+ FrozenValue* m_constantNaN;
+ FrozenValue* m_constantOne;
+ Vector<Node*, 16> m_constants;
// The number of arguments passed to the function.
unsigned m_numArguments;
// The number of locals (vars + temporaries) used in the function.
unsigned m_numLocals;
- // The set of registers we need to preserve across BasicBlock boundaries;
- // typically equal to the set of vars, but we expand this to cover all
- // temporaries that persist across blocks (dues to ?:, &&, ||, etc).
- BitVector m_preservedVars;
// The number of slots (in units of sizeof(Register)) that we need to
- // preallocate for calls emanating from this frame. This includes the
- // size of the CallFrame, only if this is not a leaf function. (I.e.
- // this is 0 if and only if this function is a leaf.)
+ // preallocate for arguments to outgoing calls from this frame. This
+ // number includes the CallFrame slots that we initialize for the callee
+ // (but not the callee-initialized CallerFrame and ReturnPC slots).
+ // This number is 0 if and only if this function is a leaf.
unsigned m_parameterSlots;
// The number of var args passed to the next var arg node.
unsigned m_numPassedVarArgs;
@@ -1025,7 +1006,7 @@ private:
CodeBlock* m_profiledBlock;
InlineCallFrame* m_inlineCallFrame;
- ScriptExecutable* executable() { return m_codeBlock->ownerExecutable(); }
+ ScriptExecutable* executable() { return m_codeBlock->ownerScriptExecutable(); }
QueryableExitProfile m_exitProfile;
@@ -1034,8 +1015,8 @@ private:
// (the machine code block, which is the transitive, though not necessarily
// direct, caller).
Vector<unsigned> m_identifierRemap;
- Vector<unsigned> m_constantRemap;
Vector<unsigned> m_constantBufferRemap;
+ Vector<unsigned> m_switchRemap;
// Blocks introduced by this code block, which need successor linking.
// May include up to one basic block that includes the continuation after
@@ -1045,15 +1026,14 @@ private:
Vector<UnlinkedBlock> m_unlinkedBlocks;
// Potential block linking targets. Must be sorted by bytecodeBegin, and
- // cannot have two blocks that have the same bytecodeBegin. For this very
- // reason, this is not equivalent to
- Vector<BlockIndex> m_blockLinkingTargets;
+ // cannot have two blocks that have the same bytecodeBegin.
+ Vector<BasicBlock*> m_blockLinkingTargets;
// If the callsite's basic block was split into two, then this will be
// the head of the callsite block. It needs its successors linked to the
// m_unlinkedBlocks, but not the other way around: there's no way for
// any blocks in m_unlinkedBlocks to jump back into this block.
- BlockIndex m_callsiteBlockHead;
+ BasicBlock* m_callsiteBlockHead;
// Does the callsite block head need linking? This is typically true
// but will be false for the machine code block's inline stack entry
@@ -1068,6 +1048,10 @@ private:
// code block had gathered.
LazyOperandValueProfileParser m_lazyOperands;
+ CallLinkInfoMap m_callLinkInfos;
+ StubInfoMap m_stubInfos;
+ ByValInfoMap m_byValInfos;
+
// Did we see any returns? We need to handle the (uncommon but necessary)
// case where a procedure that does not return was inlined.
bool m_didReturn;
@@ -1084,49 +1068,60 @@ private:
ByteCodeParser*,
CodeBlock*,
CodeBlock* profiledBlock,
- BlockIndex callsiteBlockHead,
+ BasicBlock* callsiteBlockHead,
JSFunction* callee, // Null if this is a closure call.
VirtualRegister returnValueVR,
VirtualRegister inlineCallFrameStart,
int argumentCountIncludingThis,
- CodeSpecializationKind);
+ InlineCallFrame::Kind);
~InlineStackEntry()
{
m_byteCodeParser->m_inlineStackTop = m_caller;
}
- int remapOperand(int operand) const
+ VirtualRegister remapOperand(VirtualRegister operand) const
{
if (!m_inlineCallFrame)
return operand;
- if (operand >= FirstConstantRegisterIndex) {
- int result = m_constantRemap[operand - FirstConstantRegisterIndex];
- ASSERT(result >= FirstConstantRegisterIndex);
- return result;
- }
+ ASSERT(!operand.isConstant());
- ASSERT(operand != JSStack::Callee);
-
- return operand + m_inlineCallFrame->stackOffset;
+ return VirtualRegister(operand.offset() + m_inlineCallFrame->stackOffset);
}
};
InlineStackEntry* m_inlineStackTop;
+
+ struct DelayedSetLocal {
+ CodeOrigin m_origin;
+ VirtualRegister m_operand;
+ Node* m_value;
+
+ DelayedSetLocal() { }
+ DelayedSetLocal(const CodeOrigin& origin, VirtualRegister operand, Node* value)
+ : m_origin(origin)
+ , m_operand(operand)
+ , m_value(value)
+ {
+ }
+
+ Node* execute(ByteCodeParser* parser, SetMode setMode = NormalSet)
+ {
+ if (m_operand.isArgument())
+ return parser->setArgument(m_origin, m_operand, m_value, setMode);
+ return parser->setLocal(m_origin, m_operand, m_value, setMode);
+ }
+ };
+
+ Vector<DelayedSetLocal, 2> m_setLocalQueue;
- // Have we built operand maps? We initialize them lazily, and only when doing
- // inlining.
- bool m_haveBuiltOperandMaps;
- // Mapping between identifier names and numbers.
- IdentifierMap m_identifierMap;
- // Mapping between values and constant numbers.
- JSValueMap m_jsValueMap;
- // Index of the empty value, or UINT_MAX if there is no mapping. This is a horrible
- // work-around for the fact that JSValueMap can't handle "empty" values.
- unsigned m_emptyJSValueIndex;
+ CodeBlock* m_dfgCodeBlock;
+ CallLinkStatus::ContextMap m_callContextMap;
+ StubInfoMap m_dfgStubInfos;
Instruction* m_currentInstruction;
+ bool m_hasDebuggerEnabled;
};
#define NEXT_OPCODE(name) \
@@ -1135,330 +1130,859 @@ private:
#define LAST_OPCODE(name) \
m_currentIndex += OPCODE_LENGTH(name); \
+ m_exitOK = false; \
return shouldContinueParsing
-
-void ByteCodeParser::handleCall(Interpreter* interpreter, Instruction* currentInstruction, NodeType op, CodeSpecializationKind kind)
+ByteCodeParser::Terminality ByteCodeParser::handleCall(Instruction* pc, NodeType op, CallMode callMode)
{
ASSERT(OPCODE_LENGTH(op_call) == OPCODE_LENGTH(op_construct));
+ ASSERT(OPCODE_LENGTH(op_call) == OPCODE_LENGTH(op_tail_call));
+ return handleCall(
+ pc[1].u.operand, op, callMode, OPCODE_LENGTH(op_call),
+ pc[2].u.operand, pc[3].u.operand, -pc[4].u.operand);
+}
+
+ByteCodeParser::Terminality ByteCodeParser::handleCall(
+ int result, NodeType op, CallMode callMode, unsigned instructionSize,
+ int callee, int argumentCountIncludingThis, int registerOffset)
+{
+ Node* callTarget = get(VirtualRegister(callee));
+
+ CallLinkStatus callLinkStatus = CallLinkStatus::computeFor(
+ m_inlineStackTop->m_profiledBlock, currentCodeOrigin(),
+ m_inlineStackTop->m_callLinkInfos, m_callContextMap);
- Node* callTarget = get(currentInstruction[1].u.operand);
+ return handleCall(
+ result, op, callMode, instructionSize, callTarget,
+ argumentCountIncludingThis, registerOffset, callLinkStatus);
+}
- CallLinkStatus callLinkStatus;
+ByteCodeParser::Terminality ByteCodeParser::handleCall(
+ int result, NodeType op, CallMode callMode, unsigned instructionSize,
+ Node* callTarget, int argumentCountIncludingThis, int registerOffset,
+ CallLinkStatus callLinkStatus)
+{
+ return handleCall(
+ result, op, InlineCallFrame::kindFor(callMode), instructionSize, callTarget, argumentCountIncludingThis,
+ registerOffset, callLinkStatus, getPrediction());
+}
- if (m_graph.isConstant(callTarget))
- callLinkStatus = CallLinkStatus(m_graph.valueOfJSConstant(callTarget)).setIsProved(true);
- else {
- callLinkStatus = CallLinkStatus::computeFor(m_inlineStackTop->m_profiledBlock, m_currentIndex);
- callLinkStatus.setHasBadFunctionExitSite(m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadFunction));
- callLinkStatus.setHasBadCacheExitSite(m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache));
- callLinkStatus.setHasBadExecutableExitSite(m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadExecutable));
- }
+ByteCodeParser::Terminality ByteCodeParser::handleCall(
+ int result, NodeType op, InlineCallFrame::Kind kind, unsigned instructionSize,
+ Node* callTarget, int argumentCountIncludingThis, int registerOffset,
+ CallLinkStatus callLinkStatus, SpeculatedType prediction)
+{
+ ASSERT(registerOffset <= 0);
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLog("For call at bc#", m_currentIndex, ": ", callLinkStatus, "\n");
-#endif
+ if (callTarget->isCellConstant())
+ callLinkStatus.setProvenConstantCallee(CallVariant(callTarget->asCell()));
+
+ if (Options::verboseDFGByteCodeParsing())
+ dataLog(" Handling call at ", currentCodeOrigin(), ": ", callLinkStatus, "\n");
if (!callLinkStatus.canOptimize()) {
// Oddly, this conflates calls that haven't executed with calls that behaved sufficiently polymorphically
// that we cannot optimize them.
-
- addCall(interpreter, currentInstruction, op);
- return;
+
+ Node* callNode = addCall(result, op, OpInfo(), callTarget, argumentCountIncludingThis, registerOffset, prediction);
+ if (callNode->op() == TailCall)
+ return Terminal;
+ ASSERT(callNode->op() != TailCallVarargs);
+ return NonTerminal;
}
- int argumentCountIncludingThis = currentInstruction[2].u.operand;
- int registerOffset = currentInstruction[3].u.operand;
-
- // Do we have a result?
- bool usesResult = false;
- int resultOperand = 0; // make compiler happy
- unsigned nextOffset = m_currentIndex + OPCODE_LENGTH(op_call);
- Instruction* putInstruction = currentInstruction + OPCODE_LENGTH(op_call);
- SpeculatedType prediction = SpecNone;
- if (interpreter->getOpcodeID(putInstruction->u.opcode) == op_call_put_result) {
- resultOperand = putInstruction[1].u.operand;
- usesResult = true;
- m_currentProfilingIndex = nextOffset;
- prediction = getPrediction();
- nextOffset += OPCODE_LENGTH(op_call_put_result);
- }
-
- if (InternalFunction* function = callLinkStatus.internalFunction()) {
- if (handleConstantInternalFunction(usesResult, resultOperand, function, registerOffset, argumentCountIncludingThis, prediction, kind)) {
- // This phantoming has to be *after* the code for the intrinsic, to signify that
- // the inputs must be kept alive whatever exits the intrinsic may do.
- addToGraph(Phantom, callTarget);
- emitArgumentPhantoms(registerOffset, argumentCountIncludingThis, kind);
- return;
- }
-
- // Can only handle this using the generic call handler.
- addCall(interpreter, currentInstruction, op);
- return;
+ unsigned nextOffset = m_currentIndex + instructionSize;
+
+ OpInfo callOpInfo;
+
+ if (handleInlining(callTarget, result, callLinkStatus, registerOffset, virtualRegisterForArgument(0, registerOffset), VirtualRegister(), 0, argumentCountIncludingThis, nextOffset, op, kind, prediction)) {
+ if (m_graph.compilation())
+ m_graph.compilation()->noticeInlinedCall();
+ return NonTerminal;
}
-
- Intrinsic intrinsic = callLinkStatus.intrinsicFor(kind);
- if (intrinsic != NoIntrinsic) {
- emitFunctionChecks(callLinkStatus, callTarget, registerOffset, kind);
-
- if (handleIntrinsic(usesResult, resultOperand, intrinsic, registerOffset, argumentCountIncludingThis, prediction)) {
- // This phantoming has to be *after* the code for the intrinsic, to signify that
- // the inputs must be kept alive whatever exits the intrinsic may do.
- addToGraph(Phantom, callTarget);
- emitArgumentPhantoms(registerOffset, argumentCountIncludingThis, kind);
- if (m_graph.m_compilation)
- m_graph.m_compilation->noticeInlinedCall();
- return;
- }
- } else if (handleInlining(usesResult, callTarget, resultOperand, callLinkStatus, registerOffset, argumentCountIncludingThis, nextOffset, kind)) {
- if (m_graph.m_compilation)
- m_graph.m_compilation->noticeInlinedCall();
- return;
+
+ Node* callNode = addCall(result, op, callOpInfo, callTarget, argumentCountIncludingThis, registerOffset, prediction);
+ if (callNode->op() == TailCall)
+ return Terminal;
+ ASSERT(callNode->op() != TailCallVarargs);
+ return NonTerminal;
+}
+
+ByteCodeParser::Terminality ByteCodeParser::handleVarargsCall(Instruction* pc, NodeType op, CallMode callMode)
+{
+ ASSERT(OPCODE_LENGTH(op_call_varargs) == OPCODE_LENGTH(op_construct_varargs));
+ ASSERT(OPCODE_LENGTH(op_call_varargs) == OPCODE_LENGTH(op_tail_call_varargs));
+
+ int result = pc[1].u.operand;
+ int callee = pc[2].u.operand;
+ int thisReg = pc[3].u.operand;
+ int arguments = pc[4].u.operand;
+ int firstFreeReg = pc[5].u.operand;
+ int firstVarArgOffset = pc[6].u.operand;
+
+ SpeculatedType prediction = getPrediction();
+
+ Node* callTarget = get(VirtualRegister(callee));
+
+ CallLinkStatus callLinkStatus = CallLinkStatus::computeFor(
+ m_inlineStackTop->m_profiledBlock, currentCodeOrigin(),
+ m_inlineStackTop->m_callLinkInfos, m_callContextMap);
+ if (callTarget->isCellConstant())
+ callLinkStatus.setProvenConstantCallee(CallVariant(callTarget->asCell()));
+
+ if (Options::verboseDFGByteCodeParsing())
+ dataLog(" Varargs call link status at ", currentCodeOrigin(), ": ", callLinkStatus, "\n");
+
+ if (callLinkStatus.canOptimize()
+ && handleInlining(callTarget, result, callLinkStatus, firstFreeReg, VirtualRegister(thisReg), VirtualRegister(arguments), firstVarArgOffset, 0, m_currentIndex + OPCODE_LENGTH(op_call_varargs), op, InlineCallFrame::varargsKindFor(callMode), prediction)) {
+ if (m_graph.compilation())
+ m_graph.compilation()->noticeInlinedCall();
+ return NonTerminal;
}
- addCall(interpreter, currentInstruction, op);
+ CallVarargsData* data = m_graph.m_callVarargsData.add();
+ data->firstVarArgOffset = firstVarArgOffset;
+
+ Node* thisChild = get(VirtualRegister(thisReg));
+
+ if (op == TailCallVarargs) {
+ if (allInlineFramesAreTailCalls()) {
+ addToGraph(op, OpInfo(data), OpInfo(), callTarget, get(VirtualRegister(arguments)), thisChild);
+ return Terminal;
+ }
+ op = TailCallVarargsInlinedCaller;
+ }
+
+ Node* call = addToGraph(op, OpInfo(data), OpInfo(prediction), callTarget, get(VirtualRegister(arguments)), thisChild);
+ VirtualRegister resultReg(result);
+ if (resultReg.isValid())
+ set(resultReg, call);
+ return NonTerminal;
}
-void ByteCodeParser::emitFunctionChecks(const CallLinkStatus& callLinkStatus, Node* callTarget, int registerOffset, CodeSpecializationKind kind)
+void ByteCodeParser::emitFunctionChecks(CallVariant callee, Node* callTarget, VirtualRegister thisArgumentReg)
{
Node* thisArgument;
- if (kind == CodeForCall)
- thisArgument = get(registerOffset + argumentToOperand(0));
+ if (thisArgumentReg.isValid())
+ thisArgument = get(thisArgumentReg);
else
thisArgument = 0;
- if (callLinkStatus.isProved()) {
- addToGraph(Phantom, callTarget, thisArgument);
- return;
+ JSCell* calleeCell;
+ Node* callTargetForCheck;
+ if (callee.isClosureCall()) {
+ calleeCell = callee.executable();
+ callTargetForCheck = addToGraph(GetExecutable, callTarget);
+ } else {
+ calleeCell = callee.nonExecutableCallee();
+ callTargetForCheck = callTarget;
}
- ASSERT(callLinkStatus.canOptimize());
-
- if (JSFunction* function = callLinkStatus.function())
- addToGraph(CheckFunction, OpInfo(function), callTarget, thisArgument);
- else {
- ASSERT(callLinkStatus.structure());
- ASSERT(callLinkStatus.executable());
-
- addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(callLinkStatus.structure())), callTarget);
- addToGraph(CheckExecutable, OpInfo(callLinkStatus.executable()), callTarget, thisArgument);
- }
+ ASSERT(calleeCell);
+ addToGraph(CheckCell, OpInfo(m_graph.freeze(calleeCell)), callTargetForCheck, thisArgument);
}
-void ByteCodeParser::emitArgumentPhantoms(int registerOffset, int argumentCountIncludingThis, CodeSpecializationKind kind)
+void ByteCodeParser::emitArgumentPhantoms(int registerOffset, int argumentCountIncludingThis)
{
- for (int i = kind == CodeForCall ? 0 : 1; i < argumentCountIncludingThis; ++i)
- addToGraph(Phantom, get(registerOffset + argumentToOperand(i)));
+ for (int i = 0; i < argumentCountIncludingThis; ++i)
+ addToGraph(Phantom, get(virtualRegisterForArgument(i, registerOffset)));
}
-bool ByteCodeParser::handleInlining(bool usesResult, Node* callTargetNode, int resultOperand, const CallLinkStatus& callLinkStatus, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, CodeSpecializationKind kind)
+unsigned ByteCodeParser::inliningCost(CallVariant callee, int argumentCountIncludingThis, CallMode callMode)
{
- // First, the really simple checks: do we have an actual JS function?
- if (!callLinkStatus.executable())
- return false;
- if (callLinkStatus.executable()->isHostFunction())
- return false;
+ CodeSpecializationKind kind = specializationKindFor(callMode);
+ if (verbose)
+ dataLog("Considering inlining ", callee, " into ", currentCodeOrigin(), "\n");
- FunctionExecutable* executable = jsCast<FunctionExecutable*>(callLinkStatus.executable());
+ if (m_hasDebuggerEnabled) {
+ if (verbose)
+ dataLog(" Failing because the debugger is in use.\n");
+ return UINT_MAX;
+ }
+
+ FunctionExecutable* executable = callee.functionExecutable();
+ if (!executable) {
+ if (verbose)
+ dataLog(" Failing because there is no function executable.\n");
+ return UINT_MAX;
+ }
// Does the number of arguments we're passing match the arity of the target? We currently
// inline only if the number of arguments passed is greater than or equal to the number
// arguments expected.
- if (static_cast<int>(executable->parameterCount()) + 1 > argumentCountIncludingThis)
- return false;
+ if (static_cast<int>(executable->parameterCount()) + 1 > argumentCountIncludingThis) {
+ if (verbose)
+ dataLog(" Failing because of arity mismatch.\n");
+ return UINT_MAX;
+ }
+
+ // Do we have a code block, and does the code block's size match the heuristics/requirements for
+ // being an inline candidate? We might not have a code block (1) if code was thrown away,
+ // (2) if we simply hadn't actually made this call yet or (3) code is a builtin function and
+ // specialization kind is construct. In the former 2 cases, we could still theoretically attempt
+ // to inline it if we had a static proof of what was being called; this might happen for example
+ // if you call a global function, where watchpointing gives us static information. Overall,
+ // it's a rare case because we expect that any hot callees would have already been compiled.
+ CodeBlock* codeBlock = executable->baselineCodeBlockFor(kind);
+ if (!codeBlock) {
+ if (verbose)
+ dataLog(" Failing because no code block available.\n");
+ return UINT_MAX;
+ }
+ CapabilityLevel capabilityLevel = inlineFunctionForCapabilityLevel(
+ codeBlock, kind, callee.isClosureCall());
+ if (verbose) {
+ dataLog(" Call mode: ", callMode, "\n");
+ dataLog(" Is closure call: ", callee.isClosureCall(), "\n");
+ dataLog(" Capability level: ", capabilityLevel, "\n");
+ dataLog(" Might inline function: ", mightInlineFunctionFor(codeBlock, kind), "\n");
+ dataLog(" Might compile function: ", mightCompileFunctionFor(codeBlock, kind), "\n");
+ dataLog(" Is supported for inlining: ", isSupportedForInlining(codeBlock), "\n");
+ dataLog(" Is inlining candidate: ", codeBlock->ownerScriptExecutable()->isInliningCandidate(), "\n");
+ }
+ if (!canInline(capabilityLevel)) {
+ if (verbose)
+ dataLog(" Failing because the function is not inlineable.\n");
+ return UINT_MAX;
+ }
+
+ // Check if the caller is already too large. We do this check here because that's just
+ // where we happen to also have the callee's code block, and we want that for the
+ // purpose of unsetting SABI.
+ if (!isSmallEnoughToInlineCodeInto(m_codeBlock)) {
+ codeBlock->m_shouldAlwaysBeInlined = false;
+ if (verbose)
+ dataLog(" Failing because the caller is too large.\n");
+ return UINT_MAX;
+ }
+
+ // FIXME: this should be better at predicting how much bloat we will introduce by inlining
+ // this function.
+ // https://bugs.webkit.org/show_bug.cgi?id=127627
+
+ // FIXME: We currently inline functions that have run in LLInt but not in Baseline. These
+ // functions have very low fidelity profiling, and presumably they weren't very hot if they
+ // haven't gotten to Baseline yet. Consider not inlining these functions.
+ // https://bugs.webkit.org/show_bug.cgi?id=145503
+
+ // Have we exceeded inline stack depth, or are we trying to inline a recursive call to
+ // too many levels? If either of these are detected, then don't inline. We adjust our
+ // heuristics if we are dealing with a function that cannot otherwise be compiled.
- // Have we exceeded inline stack depth, or are we trying to inline a recursive call?
- // If either of these are detected, then don't inline.
unsigned depth = 0;
+ unsigned recursion = 0;
+
for (InlineStackEntry* entry = m_inlineStackTop; entry; entry = entry->m_caller) {
++depth;
- if (depth >= Options::maximumInliningDepth())
- return false; // Depth exceeded.
+ if (depth >= Options::maximumInliningDepth()) {
+ if (verbose)
+ dataLog(" Failing because depth exceeded.\n");
+ return UINT_MAX;
+ }
- if (entry->executable() == executable)
- return false; // Recursion detected.
+ if (entry->executable() == executable) {
+ ++recursion;
+ if (recursion >= Options::maximumInliningRecursion()) {
+ if (verbose)
+ dataLog(" Failing because recursion detected.\n");
+ return UINT_MAX;
+ }
+ }
}
- // Do we have a code block, and does the code block's size match the heuristics/requirements for
- // being an inline candidate? We might not have a code block if code was thrown away or if we
- // simply hadn't actually made this call yet. We could still theoretically attempt to inline it
- // if we had a static proof of what was being called; this might happen for example if you call a
- // global function, where watchpointing gives us static information. Overall, it's a rare case
- // because we expect that any hot callees would have already been compiled.
- CodeBlock* codeBlock = executable->baselineCodeBlockFor(kind);
- if (!codeBlock)
- return false;
- if (!canInlineFunctionFor(codeBlock, kind, callLinkStatus.isClosureCall()))
- return false;
+ if (verbose)
+ dataLog(" Inlining should be possible.\n");
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLogF("Inlining executable %p.\n", executable);
-#endif
+ // It might be possible to inline.
+ return codeBlock->instructionCount();
+}
+
+template<typename ChecksFunctor>
+void ByteCodeParser::inlineCall(Node* callTargetNode, int resultOperand, CallVariant callee, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, InlineCallFrame::Kind kind, CallerLinkability callerLinkability, const ChecksFunctor& insertChecks)
+{
+ CodeSpecializationKind specializationKind = InlineCallFrame::specializationKindFor(kind);
- // Now we know without a doubt that we are committed to inlining. So begin the process
- // by checking the callee (if necessary) and making sure that arguments and the callee
- // are flushed.
- emitFunctionChecks(callLinkStatus, callTargetNode, registerOffset, kind);
+ ASSERT(inliningCost(callee, argumentCountIncludingThis, InlineCallFrame::callModeFor(kind)) != UINT_MAX);
+ CodeBlock* codeBlock = callee.functionExecutable()->baselineCodeBlockFor(specializationKind);
+ insertChecks(codeBlock);
+
// FIXME: Don't flush constants!
- int inlineCallFrameStart = m_inlineStackTop->remapOperand(registerOffset) - JSStack::CallFrameHeaderSize;
+ int inlineCallFrameStart = m_inlineStackTop->remapOperand(VirtualRegister(registerOffset)).offset() + JSStack::CallFrameHeaderSize;
- // Make sure that the area used by the call frame is reserved.
- for (int arg = inlineCallFrameStart + JSStack::CallFrameHeaderSize + codeBlock->m_numVars; arg-- > inlineCallFrameStart;)
- m_preservedVars.set(arg);
-
- // Make sure that we have enough locals.
- unsigned newNumLocals = inlineCallFrameStart + JSStack::CallFrameHeaderSize + codeBlock->m_numCalleeRegisters;
- if (newNumLocals > m_numLocals) {
- m_numLocals = newNumLocals;
- for (size_t i = 0; i < m_graph.m_blocks.size(); ++i)
- m_graph.m_blocks[i]->ensureLocals(newNumLocals);
- }
+ ensureLocals(
+ VirtualRegister(inlineCallFrameStart).toLocal() + 1 +
+ JSStack::CallFrameHeaderSize + codeBlock->m_numCalleeLocals);
size_t argumentPositionStart = m_graph.m_argumentPositions.size();
+ VirtualRegister resultReg(resultOperand);
+ if (resultReg.isValid())
+ resultReg = m_inlineStackTop->remapOperand(resultReg);
+
+ VariableAccessData* calleeVariable = nullptr;
+ if (callee.isClosureCall()) {
+ Node* calleeSet = set(
+ VirtualRegister(registerOffset + JSStack::Callee), callTargetNode, ImmediateNakedSet);
+
+ calleeVariable = calleeSet->variableAccessData();
+ calleeVariable->mergeShouldNeverUnbox(true);
+ }
+
InlineStackEntry inlineStackEntry(
- this, codeBlock, codeBlock, m_graph.m_blocks.size() - 1,
- callLinkStatus.function(), (VirtualRegister)m_inlineStackTop->remapOperand(
- usesResult ? resultOperand : InvalidVirtualRegister),
+ this, codeBlock, codeBlock, m_graph.lastBlock(), callee.function(), resultReg,
(VirtualRegister)inlineCallFrameStart, argumentCountIncludingThis, kind);
// This is where the actual inlining really happens.
unsigned oldIndex = m_currentIndex;
- unsigned oldProfilingIndex = m_currentProfilingIndex;
m_currentIndex = 0;
- m_currentProfilingIndex = 0;
- addToGraph(InlineStart, OpInfo(argumentPositionStart));
- if (callLinkStatus.isClosureCall()) {
- addToGraph(SetCallee, callTargetNode);
- addToGraph(SetMyScope, addToGraph(GetScope, callTargetNode));
+ // At this point, it's again OK to OSR exit.
+ m_exitOK = true;
+
+ InlineVariableData inlineVariableData;
+ inlineVariableData.inlineCallFrame = m_inlineStackTop->m_inlineCallFrame;
+ inlineVariableData.argumentPositionStart = argumentPositionStart;
+ inlineVariableData.calleeVariable = 0;
+
+ RELEASE_ASSERT(
+ m_inlineStackTop->m_inlineCallFrame->isClosureCall
+ == callee.isClosureCall());
+ if (callee.isClosureCall()) {
+ RELEASE_ASSERT(calleeVariable);
+ inlineVariableData.calleeVariable = calleeVariable;
}
+ m_graph.m_inlineVariableData.append(inlineVariableData);
+
parseCodeBlock();
+ clearCaches(); // Reset our state now that we're back to the outer code.
m_currentIndex = oldIndex;
- m_currentProfilingIndex = oldProfilingIndex;
+ m_exitOK = false;
// If the inlined code created some new basic blocks, then we have linking to do.
- if (inlineStackEntry.m_callsiteBlockHead != m_graph.m_blocks.size() - 1) {
+ if (inlineStackEntry.m_callsiteBlockHead != m_graph.lastBlock()) {
ASSERT(!inlineStackEntry.m_unlinkedBlocks.isEmpty());
if (inlineStackEntry.m_callsiteBlockHeadNeedsLinking)
- linkBlock(m_graph.m_blocks[inlineStackEntry.m_callsiteBlockHead].get(), inlineStackEntry.m_blockLinkingTargets);
+ linkBlock(inlineStackEntry.m_callsiteBlockHead, inlineStackEntry.m_blockLinkingTargets);
else
- ASSERT(m_graph.m_blocks[inlineStackEntry.m_callsiteBlockHead]->isLinked);
-
- // It's possible that the callsite block head is not owned by the caller.
- if (!inlineStackEntry.m_caller->m_unlinkedBlocks.isEmpty()) {
- // It's definitely owned by the caller, because the caller created new blocks.
- // Assert that this all adds up.
- ASSERT(inlineStackEntry.m_caller->m_unlinkedBlocks.last().m_blockIndex == inlineStackEntry.m_callsiteBlockHead);
- ASSERT(inlineStackEntry.m_caller->m_unlinkedBlocks.last().m_needsNormalLinking);
- inlineStackEntry.m_caller->m_unlinkedBlocks.last().m_needsNormalLinking = false;
- } else {
- // It's definitely not owned by the caller. Tell the caller that he does not
- // need to link his callsite block head, because we did it for him.
- ASSERT(inlineStackEntry.m_caller->m_callsiteBlockHeadNeedsLinking);
- ASSERT(inlineStackEntry.m_caller->m_callsiteBlockHead == inlineStackEntry.m_callsiteBlockHead);
- inlineStackEntry.m_caller->m_callsiteBlockHeadNeedsLinking = false;
- }
+ ASSERT(inlineStackEntry.m_callsiteBlockHead->isLinked);
+
+ if (callerLinkability == CallerDoesNormalLinking)
+ cancelLinkingForBlock(inlineStackEntry.m_caller, inlineStackEntry.m_callsiteBlockHead);
linkBlocks(inlineStackEntry.m_unlinkedBlocks, inlineStackEntry.m_blockLinkingTargets);
} else
ASSERT(inlineStackEntry.m_unlinkedBlocks.isEmpty());
- BasicBlock* lastBlock = m_graph.m_blocks.last().get();
+ BasicBlock* lastBlock = m_graph.lastBlock();
// If there was a return, but no early returns, then we're done. We allow parsing of
// the caller to continue in whatever basic block we're in right now.
if (!inlineStackEntry.m_didEarlyReturn && inlineStackEntry.m_didReturn) {
- ASSERT(lastBlock->isEmpty() || !lastBlock->last()->isTerminal());
+ if (Options::verboseDFGByteCodeParsing())
+ dataLog(" Allowing parsing to continue in last inlined block.\n");
+
+ ASSERT(lastBlock->isEmpty() || !lastBlock->terminal());
// If we created new blocks then the last block needs linking, but in the
// caller. It doesn't need to be linked to, but it needs outgoing links.
if (!inlineStackEntry.m_unlinkedBlocks.isEmpty()) {
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLogF("Reascribing bytecode index of block %p from bc#%u to bc#%u (inline return case).\n", lastBlock, lastBlock->bytecodeBegin, m_currentIndex);
-#endif
// For debugging purposes, set the bytecodeBegin. Note that this doesn't matter
// for release builds because this block will never serve as a potential target
// in the linker's binary search.
+ if (Options::verboseDFGByteCodeParsing())
+ dataLog(" Repurposing last block from ", lastBlock->bytecodeBegin, " to ", m_currentIndex, "\n");
lastBlock->bytecodeBegin = m_currentIndex;
- m_inlineStackTop->m_caller->m_unlinkedBlocks.append(UnlinkedBlock(m_graph.m_blocks.size() - 1));
+ if (callerLinkability == CallerDoesNormalLinking) {
+ if (verbose)
+ dataLog("Adding unlinked block ", RawPointer(m_graph.lastBlock()), " (one return)\n");
+ m_inlineStackTop->m_caller->m_unlinkedBlocks.append(UnlinkedBlock(m_graph.lastBlock()));
+ }
}
- m_currentBlock = m_graph.m_blocks.last().get();
-
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLogF("Done inlining executable %p, continuing code generation at epilogue.\n", executable);
-#endif
- return true;
+ m_currentBlock = m_graph.lastBlock();
+ return;
}
-
+
+ if (Options::verboseDFGByteCodeParsing())
+ dataLog(" Creating new block after inlining.\n");
+
// If we get to this point then all blocks must end in some sort of terminals.
- ASSERT(lastBlock->last()->isTerminal());
-
+ ASSERT(lastBlock->terminal());
+
+ // Need to create a new basic block for the continuation at the caller.
+ RefPtr<BasicBlock> block = adoptRef(new BasicBlock(nextOffset, m_numArguments, m_numLocals, 1));
+
// Link the early returns to the basic block we're about to create.
for (size_t i = 0; i < inlineStackEntry.m_unlinkedBlocks.size(); ++i) {
if (!inlineStackEntry.m_unlinkedBlocks[i].m_needsEarlyReturnLinking)
continue;
- BasicBlock* block = m_graph.m_blocks[inlineStackEntry.m_unlinkedBlocks[i].m_blockIndex].get();
- ASSERT(!block->isLinked);
- Node* node = block->last();
+ BasicBlock* blockToLink = inlineStackEntry.m_unlinkedBlocks[i].m_block;
+ ASSERT(!blockToLink->isLinked);
+ Node* node = blockToLink->terminal();
ASSERT(node->op() == Jump);
- ASSERT(node->takenBlockIndex() == NoBlock);
- node->setTakenBlockIndex(m_graph.m_blocks.size());
+ ASSERT(!node->targetBlock());
+ node->targetBlock() = block.get();
inlineStackEntry.m_unlinkedBlocks[i].m_needsEarlyReturnLinking = false;
-#if !ASSERT_DISABLED
- block->isLinked = true;
-#endif
+ if (verbose)
+ dataLog("Marking ", RawPointer(blockToLink), " as linked (jumps to return)\n");
+ blockToLink->didLink();
}
- // Need to create a new basic block for the continuation at the caller.
- OwnPtr<BasicBlock> block = adoptPtr(new BasicBlock(nextOffset, m_numArguments, m_numLocals));
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLogF("Creating inline epilogue basic block %p, #%zu for %p bc#%u at inline depth %u.\n", block.get(), m_graph.m_blocks.size(), m_inlineStackTop->executable(), m_currentIndex, CodeOrigin::inlineDepthForCallFrame(inlineCallFrame()));
-#endif
m_currentBlock = block.get();
- ASSERT(m_inlineStackTop->m_caller->m_blockLinkingTargets.isEmpty() || m_graph.m_blocks[m_inlineStackTop->m_caller->m_blockLinkingTargets.last()]->bytecodeBegin < nextOffset);
- m_inlineStackTop->m_caller->m_unlinkedBlocks.append(UnlinkedBlock(m_graph.m_blocks.size()));
- m_inlineStackTop->m_caller->m_blockLinkingTargets.append(m_graph.m_blocks.size());
- m_graph.m_blocks.append(block.release());
+ ASSERT(m_inlineStackTop->m_caller->m_blockLinkingTargets.isEmpty() || m_inlineStackTop->m_caller->m_blockLinkingTargets.last()->bytecodeBegin < nextOffset);
+ if (verbose)
+ dataLog("Adding unlinked block ", RawPointer(block.get()), " (many returns)\n");
+ if (callerLinkability == CallerDoesNormalLinking) {
+ m_inlineStackTop->m_caller->m_unlinkedBlocks.append(UnlinkedBlock(block.get()));
+ m_inlineStackTop->m_caller->m_blockLinkingTargets.append(block.get());
+ }
+ m_graph.appendBlock(block);
prepareToParseBlock();
+}
+
+void ByteCodeParser::cancelLinkingForBlock(InlineStackEntry* inlineStackEntry, BasicBlock* block)
+{
+ // It's possible that the callsite block head is not owned by the caller.
+ if (!inlineStackEntry->m_unlinkedBlocks.isEmpty()) {
+ // It's definitely owned by the caller, because the caller created new blocks.
+ // Assert that this all adds up.
+ ASSERT_UNUSED(block, inlineStackEntry->m_unlinkedBlocks.last().m_block == block);
+ ASSERT(inlineStackEntry->m_unlinkedBlocks.last().m_needsNormalLinking);
+ inlineStackEntry->m_unlinkedBlocks.last().m_needsNormalLinking = false;
+ } else {
+ // It's definitely not owned by the caller. Tell the caller that he does not
+ // need to link his callsite block head, because we did it for him.
+ ASSERT(inlineStackEntry->m_callsiteBlockHeadNeedsLinking);
+ ASSERT_UNUSED(block, inlineStackEntry->m_callsiteBlockHead == block);
+ inlineStackEntry->m_callsiteBlockHeadNeedsLinking = false;
+ }
+}
+
+template<typename ChecksFunctor>
+bool ByteCodeParser::attemptToInlineCall(Node* callTargetNode, int resultOperand, CallVariant callee, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, InlineCallFrame::Kind kind, CallerLinkability callerLinkability, SpeculatedType prediction, unsigned& inliningBalance, const ChecksFunctor& insertChecks)
+{
+ CodeSpecializationKind specializationKind = InlineCallFrame::specializationKindFor(kind);
- // At this point we return and continue to generate code for the caller, but
- // in the new basic block.
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLogF("Done inlining executable %p, continuing code generation in new block.\n", executable);
-#endif
+ if (!inliningBalance)
+ return false;
+
+ bool didInsertChecks = false;
+ auto insertChecksWithAccounting = [&] () {
+ insertChecks(nullptr);
+ didInsertChecks = true;
+ };
+
+ if (verbose)
+ dataLog(" Considering callee ", callee, "\n");
+
+ // Intrinsics and internal functions can only be inlined if we're not doing varargs. This is because
+ // we currently don't have any way of getting profiling information for arguments to non-JS varargs
+ // calls. The prediction propagator won't be of any help because LoadVarargs obscures the data flow,
+ // and there are no callsite value profiles and native function won't have callee value profiles for
+ // those arguments. Even worse, if the intrinsic decides to exit, it won't really have anywhere to
+ // exit to: LoadVarargs is effectful and it's part of the op_call_varargs, so we can't exit without
+ // calling LoadVarargs twice.
+ if (!InlineCallFrame::isVarargs(kind)) {
+ if (InternalFunction* function = callee.internalFunction()) {
+ if (handleConstantInternalFunction(callTargetNode, resultOperand, function, registerOffset, argumentCountIncludingThis, specializationKind, insertChecksWithAccounting)) {
+ RELEASE_ASSERT(didInsertChecks);
+ addToGraph(Phantom, callTargetNode);
+ emitArgumentPhantoms(registerOffset, argumentCountIncludingThis);
+ inliningBalance--;
+ return true;
+ }
+ RELEASE_ASSERT(!didInsertChecks);
+ return false;
+ }
+
+ Intrinsic intrinsic = callee.intrinsicFor(specializationKind);
+ if (intrinsic != NoIntrinsic) {
+ if (handleIntrinsicCall(resultOperand, intrinsic, registerOffset, argumentCountIncludingThis, prediction, insertChecksWithAccounting)) {
+ RELEASE_ASSERT(didInsertChecks);
+ addToGraph(Phantom, callTargetNode);
+ emitArgumentPhantoms(registerOffset, argumentCountIncludingThis);
+ inliningBalance--;
+ return true;
+ }
+ RELEASE_ASSERT(!didInsertChecks);
+ return false;
+ }
+ }
+
+ unsigned myInliningCost = inliningCost(callee, argumentCountIncludingThis, InlineCallFrame::callModeFor(kind));
+ if (myInliningCost > inliningBalance)
+ return false;
+
+ Instruction* savedCurrentInstruction = m_currentInstruction;
+ inlineCall(callTargetNode, resultOperand, callee, registerOffset, argumentCountIncludingThis, nextOffset, kind, callerLinkability, insertChecks);
+ inliningBalance -= myInliningCost;
+ m_currentInstruction = savedCurrentInstruction;
return true;
}
-void ByteCodeParser::setIntrinsicResult(bool usesResult, int resultOperand, Node* node)
+bool ByteCodeParser::handleInlining(
+ Node* callTargetNode, int resultOperand, const CallLinkStatus& callLinkStatus,
+ int registerOffsetOrFirstFreeReg, VirtualRegister thisArgument,
+ VirtualRegister argumentsArgument, unsigned argumentsOffset, int argumentCountIncludingThis,
+ unsigned nextOffset, NodeType callOp, InlineCallFrame::Kind kind, SpeculatedType prediction)
{
- if (!usesResult)
- return;
- set(resultOperand, node);
+ if (verbose) {
+ dataLog("Handling inlining...\n");
+ dataLog("Stack: ", currentCodeOrigin(), "\n");
+ }
+ CodeSpecializationKind specializationKind = InlineCallFrame::specializationKindFor(kind);
+
+ if (!callLinkStatus.size()) {
+ if (verbose)
+ dataLog("Bailing inlining.\n");
+ return false;
+ }
+
+ if (InlineCallFrame::isVarargs(kind)
+ && callLinkStatus.maxNumArguments() > Options::maximumVarargsForInlining()) {
+ if (verbose)
+ dataLog("Bailing inlining because of varargs.\n");
+ return false;
+ }
+
+ unsigned inliningBalance = Options::maximumFunctionForCallInlineCandidateInstructionCount();
+ if (specializationKind == CodeForConstruct)
+ inliningBalance = std::min(inliningBalance, Options::maximumFunctionForConstructInlineCandidateInstructionCount());
+ if (callLinkStatus.isClosureCall())
+ inliningBalance = std::min(inliningBalance, Options::maximumFunctionForClosureCallInlineCandidateInstructionCount());
+
+ // First check if we can avoid creating control flow. Our inliner does some CFG
+ // simplification on the fly and this helps reduce compile times, but we can only leverage
+ // this in cases where we don't need control flow diamonds to check the callee.
+ if (!callLinkStatus.couldTakeSlowPath() && callLinkStatus.size() == 1) {
+ int registerOffset;
+
+ // Only used for varargs calls.
+ unsigned mandatoryMinimum = 0;
+ unsigned maxNumArguments = 0;
+
+ if (InlineCallFrame::isVarargs(kind)) {
+ if (FunctionExecutable* functionExecutable = callLinkStatus[0].functionExecutable())
+ mandatoryMinimum = functionExecutable->parameterCount();
+ else
+ mandatoryMinimum = 0;
+
+ // includes "this"
+ maxNumArguments = std::max(
+ callLinkStatus.maxNumArguments(),
+ mandatoryMinimum + 1);
+
+ // We sort of pretend that this *is* the number of arguments that were passed.
+ argumentCountIncludingThis = maxNumArguments;
+
+ registerOffset = registerOffsetOrFirstFreeReg + 1;
+ registerOffset -= maxNumArguments; // includes "this"
+ registerOffset -= JSStack::CallFrameHeaderSize;
+ registerOffset = -WTF::roundUpToMultipleOf(
+ stackAlignmentRegisters(),
+ -registerOffset);
+ } else
+ registerOffset = registerOffsetOrFirstFreeReg;
+
+ bool result = attemptToInlineCall(
+ callTargetNode, resultOperand, callLinkStatus[0], registerOffset,
+ argumentCountIncludingThis, nextOffset, kind, CallerDoesNormalLinking, prediction,
+ inliningBalance, [&] (CodeBlock* codeBlock) {
+ emitFunctionChecks(callLinkStatus[0], callTargetNode, thisArgument);
+
+ // If we have a varargs call, we want to extract the arguments right now.
+ if (InlineCallFrame::isVarargs(kind)) {
+ int remappedRegisterOffset =
+ m_inlineStackTop->remapOperand(VirtualRegister(registerOffset)).offset();
+
+ ensureLocals(VirtualRegister(remappedRegisterOffset).toLocal());
+
+ int argumentStart = registerOffset + JSStack::CallFrameHeaderSize;
+ int remappedArgumentStart =
+ m_inlineStackTop->remapOperand(VirtualRegister(argumentStart)).offset();
+
+ LoadVarargsData* data = m_graph.m_loadVarargsData.add();
+ data->start = VirtualRegister(remappedArgumentStart + 1);
+ data->count = VirtualRegister(remappedRegisterOffset + JSStack::ArgumentCount);
+ data->offset = argumentsOffset;
+ data->limit = maxNumArguments;
+ data->mandatoryMinimum = mandatoryMinimum;
+
+ addToGraph(LoadVarargs, OpInfo(data), get(argumentsArgument));
+
+ // LoadVarargs may OSR exit. Hence, we need to keep alive callTargetNode, thisArgument
+ // and argumentsArgument for the baseline JIT. However, we only need a Phantom for
+ // callTargetNode because the other 2 are still in use and alive at this point.
+ addToGraph(Phantom, callTargetNode);
+
+ // In DFG IR before SSA, we cannot insert control flow between after the
+ // LoadVarargs and the last SetArgument. This isn't a problem once we get to DFG
+ // SSA. Fortunately, we also have other reasons for not inserting control flow
+ // before SSA.
+
+ VariableAccessData* countVariable = newVariableAccessData(
+ VirtualRegister(remappedRegisterOffset + JSStack::ArgumentCount));
+ // This is pretty lame, but it will force the count to be flushed as an int. This doesn't
+ // matter very much, since our use of a SetArgument and Flushes for this local slot is
+ // mostly just a formality.
+ countVariable->predict(SpecInt32);
+ countVariable->mergeIsProfitableToUnbox(true);
+ Node* setArgumentCount = addToGraph(SetArgument, OpInfo(countVariable));
+ m_currentBlock->variablesAtTail.setOperand(countVariable->local(), setArgumentCount);
+
+ set(VirtualRegister(argumentStart), get(thisArgument), ImmediateNakedSet);
+ for (unsigned argument = 1; argument < maxNumArguments; ++argument) {
+ VariableAccessData* variable = newVariableAccessData(
+ VirtualRegister(remappedArgumentStart + argument));
+ variable->mergeShouldNeverUnbox(true); // We currently have nowhere to put the type check on the LoadVarargs. LoadVarargs is effectful, so after it finishes, we cannot exit.
+
+ // For a while it had been my intention to do things like this inside the
+ // prediction injection phase. But in this case it's really best to do it here,
+ // because it's here that we have access to the variable access datas for the
+ // inlining we're about to do.
+ //
+ // Something else that's interesting here is that we'd really love to get
+ // predictions from the arguments loaded at the callsite, rather than the
+ // arguments received inside the callee. But that probably won't matter for most
+ // calls.
+ if (codeBlock && argument < static_cast<unsigned>(codeBlock->numParameters())) {
+ ConcurrentJITLocker locker(codeBlock->m_lock);
+ if (ValueProfile* profile = codeBlock->valueProfileForArgument(argument))
+ variable->predict(profile->computeUpdatedPrediction(locker));
+ }
+
+ Node* setArgument = addToGraph(SetArgument, OpInfo(variable));
+ m_currentBlock->variablesAtTail.setOperand(variable->local(), setArgument);
+ }
+ }
+ });
+ if (verbose) {
+ dataLog("Done inlining (simple).\n");
+ dataLog("Stack: ", currentCodeOrigin(), "\n");
+ dataLog("Result: ", result, "\n");
+ }
+ return result;
+ }
+
+ // We need to create some kind of switch over callee. For now we only do this if we believe that
+ // we're in the top tier. We have two reasons for this: first, it provides us an opportunity to
+ // do more detailed polyvariant/polymorphic profiling; and second, it reduces compile times in
+ // the DFG. And by polyvariant profiling we mean polyvariant profiling of *this* call. Note that
+ // we could improve that aspect of this by doing polymorphic inlining but having the profiling
+ // also.
+ if (!isFTL(m_graph.m_plan.mode) || !Options::usePolymorphicCallInlining()
+ || InlineCallFrame::isVarargs(kind)) {
+ if (verbose) {
+ dataLog("Bailing inlining (hard).\n");
+ dataLog("Stack: ", currentCodeOrigin(), "\n");
+ }
+ return false;
+ }
+
+ unsigned oldOffset = m_currentIndex;
+
+ bool allAreClosureCalls = true;
+ bool allAreDirectCalls = true;
+ for (unsigned i = callLinkStatus.size(); i--;) {
+ if (callLinkStatus[i].isClosureCall())
+ allAreDirectCalls = false;
+ else
+ allAreClosureCalls = false;
+ }
+
+ Node* thingToSwitchOn;
+ if (allAreDirectCalls)
+ thingToSwitchOn = callTargetNode;
+ else if (allAreClosureCalls)
+ thingToSwitchOn = addToGraph(GetExecutable, callTargetNode);
+ else {
+ // FIXME: We should be able to handle this case, but it's tricky and we don't know of cases
+ // where it would be beneficial. It might be best to handle these cases as if all calls were
+ // closure calls.
+ // https://bugs.webkit.org/show_bug.cgi?id=136020
+ if (verbose) {
+ dataLog("Bailing inlining (mix).\n");
+ dataLog("Stack: ", currentCodeOrigin(), "\n");
+ }
+ return false;
+ }
+
+ if (verbose) {
+ dataLog("Doing hard inlining...\n");
+ dataLog("Stack: ", currentCodeOrigin(), "\n");
+ }
+
+ int registerOffset = registerOffsetOrFirstFreeReg;
+
+ // This makes me wish that we were in SSA all the time. We need to pick a variable into which to
+ // store the callee so that it will be accessible to all of the blocks we're about to create. We
+ // get away with doing an immediate-set here because we wouldn't have performed any side effects
+ // yet.
+ if (verbose)
+ dataLog("Register offset: ", registerOffset);
+ VirtualRegister calleeReg(registerOffset + JSStack::Callee);
+ calleeReg = m_inlineStackTop->remapOperand(calleeReg);
+ if (verbose)
+ dataLog("Callee is going to be ", calleeReg, "\n");
+ setDirect(calleeReg, callTargetNode, ImmediateSetWithFlush);
+
+ // It's OK to exit right now, even though we set some locals. That's because those locals are not
+ // user-visible.
+ m_exitOK = true;
+ addToGraph(ExitOK);
+
+ SwitchData& data = *m_graph.m_switchData.add();
+ data.kind = SwitchCell;
+ addToGraph(Switch, OpInfo(&data), thingToSwitchOn);
+
+ BasicBlock* originBlock = m_currentBlock;
+ if (verbose)
+ dataLog("Marking ", RawPointer(originBlock), " as linked (origin of poly inline)\n");
+ originBlock->didLink();
+ cancelLinkingForBlock(m_inlineStackTop, originBlock);
+
+ // Each inlined callee will have a landing block that it returns at. They should all have jumps
+ // to the continuation block, which we create last.
+ Vector<BasicBlock*> landingBlocks;
+
+ // We may force this true if we give up on inlining any of the edges.
+ bool couldTakeSlowPath = callLinkStatus.couldTakeSlowPath();
+
+ if (verbose)
+ dataLog("About to loop over functions at ", currentCodeOrigin(), ".\n");
+
+ for (unsigned i = 0; i < callLinkStatus.size(); ++i) {
+ m_currentIndex = oldOffset;
+ RefPtr<BasicBlock> block = adoptRef(new BasicBlock(UINT_MAX, m_numArguments, m_numLocals, 1));
+ m_currentBlock = block.get();
+ m_graph.appendBlock(block);
+ prepareToParseBlock();
+
+ Node* myCallTargetNode = getDirect(calleeReg);
+
+ bool inliningResult = attemptToInlineCall(
+ myCallTargetNode, resultOperand, callLinkStatus[i], registerOffset,
+ argumentCountIncludingThis, nextOffset, kind, CallerLinksManually, prediction,
+ inliningBalance, [&] (CodeBlock*) { });
+
+ if (!inliningResult) {
+ // That failed so we let the block die. Nothing interesting should have been added to
+ // the block. We also give up on inlining any of the (less frequent) callees.
+ ASSERT(m_currentBlock == block.get());
+ ASSERT(m_graph.m_blocks.last() == block);
+ m_graph.killBlockAndItsContents(block.get());
+ m_graph.m_blocks.removeLast();
+
+ // The fact that inlining failed means we need a slow path.
+ couldTakeSlowPath = true;
+ break;
+ }
+
+ JSCell* thingToCaseOn;
+ if (allAreDirectCalls)
+ thingToCaseOn = callLinkStatus[i].nonExecutableCallee();
+ else {
+ ASSERT(allAreClosureCalls);
+ thingToCaseOn = callLinkStatus[i].executable();
+ }
+ data.cases.append(SwitchCase(m_graph.freeze(thingToCaseOn), block.get()));
+ m_currentIndex = nextOffset;
+ m_exitOK = true;
+ processSetLocalQueue(); // This only comes into play for intrinsics, since normal inlined code will leave an empty queue.
+ if (Node* terminal = m_currentBlock->terminal())
+ ASSERT_UNUSED(terminal, terminal->op() == TailCall || terminal->op() == TailCallVarargs);
+ else {
+ addToGraph(Jump);
+ landingBlocks.append(m_currentBlock);
+ }
+ if (verbose)
+ dataLog("Marking ", RawPointer(m_currentBlock), " as linked (tail of poly inlinee)\n");
+ m_currentBlock->didLink();
+
+ if (verbose)
+ dataLog("Finished inlining ", callLinkStatus[i], " at ", currentCodeOrigin(), ".\n");
+ }
+
+ RefPtr<BasicBlock> slowPathBlock = adoptRef(
+ new BasicBlock(UINT_MAX, m_numArguments, m_numLocals, 1));
+ m_currentIndex = oldOffset;
+ m_exitOK = true;
+ data.fallThrough = BranchTarget(slowPathBlock.get());
+ m_graph.appendBlock(slowPathBlock);
+ if (verbose)
+ dataLog("Marking ", RawPointer(slowPathBlock.get()), " as linked (slow path block)\n");
+ slowPathBlock->didLink();
+ prepareToParseBlock();
+ m_currentBlock = slowPathBlock.get();
+ Node* myCallTargetNode = getDirect(calleeReg);
+ if (couldTakeSlowPath) {
+ addCall(
+ resultOperand, callOp, OpInfo(), myCallTargetNode, argumentCountIncludingThis,
+ registerOffset, prediction);
+ } else {
+ addToGraph(CheckBadCell);
+ addToGraph(Phantom, myCallTargetNode);
+ emitArgumentPhantoms(registerOffset, argumentCountIncludingThis);
+
+ set(VirtualRegister(resultOperand), addToGraph(BottomValue));
+ }
+
+ m_currentIndex = nextOffset;
+ m_exitOK = true; // Origin changed, so it's fine to exit again.
+ processSetLocalQueue();
+ if (Node* terminal = m_currentBlock->terminal())
+ ASSERT_UNUSED(terminal, terminal->op() == TailCall || terminal->op() == TailCallVarargs);
+ else {
+ addToGraph(Jump);
+ landingBlocks.append(m_currentBlock);
+ }
+
+ RefPtr<BasicBlock> continuationBlock = adoptRef(
+ new BasicBlock(UINT_MAX, m_numArguments, m_numLocals, 1));
+ m_graph.appendBlock(continuationBlock);
+ if (verbose)
+ dataLog("Adding unlinked block ", RawPointer(continuationBlock.get()), " (continuation)\n");
+ m_inlineStackTop->m_unlinkedBlocks.append(UnlinkedBlock(continuationBlock.get()));
+ prepareToParseBlock();
+ m_currentBlock = continuationBlock.get();
+
+ for (unsigned i = landingBlocks.size(); i--;)
+ landingBlocks[i]->terminal()->targetBlock() = continuationBlock.get();
+
+ m_currentIndex = oldOffset;
+ m_exitOK = true;
+
+ if (verbose) {
+ dataLog("Done inlining (hard).\n");
+ dataLog("Stack: ", currentCodeOrigin(), "\n");
+ }
+ return true;
}
-bool ByteCodeParser::handleMinMax(bool usesResult, int resultOperand, NodeType op, int registerOffset, int argumentCountIncludingThis)
+template<typename ChecksFunctor>
+bool ByteCodeParser::handleMinMax(int resultOperand, NodeType op, int registerOffset, int argumentCountIncludingThis, const ChecksFunctor& insertChecks)
{
if (argumentCountIncludingThis == 1) { // Math.min()
- setIntrinsicResult(usesResult, resultOperand, constantNaN());
+ insertChecks();
+ set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN)));
return true;
}
if (argumentCountIncludingThis == 2) { // Math.min(x)
- Node* result = get(registerOffset + argumentToOperand(1));
+ insertChecks();
+ Node* result = get(VirtualRegister(virtualRegisterForArgument(1, registerOffset)));
addToGraph(Phantom, Edge(result, NumberUse));
- setIntrinsicResult(usesResult, resultOperand, result);
+ set(VirtualRegister(resultOperand), result);
return true;
}
if (argumentCountIncludingThis == 3) { // Math.min(x, y)
- setIntrinsicResult(usesResult, resultOperand, addToGraph(op, get(registerOffset + argumentToOperand(1)), get(registerOffset + argumentToOperand(2))));
+ insertChecks();
+ set(VirtualRegister(resultOperand), addToGraph(op, get(virtualRegisterForArgument(1, registerOffset)), get(virtualRegisterForArgument(2, registerOffset))));
return true;
}
@@ -1466,43 +1990,85 @@ bool ByteCodeParser::handleMinMax(bool usesResult, int resultOperand, NodeType o
return false;
}
-// FIXME: We dead-code-eliminate unused Math intrinsics, but that's invalid because
-// they need to perform the ToNumber conversion, which can have side-effects.
-bool ByteCodeParser::handleIntrinsic(bool usesResult, int resultOperand, Intrinsic intrinsic, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction)
+template<typename ChecksFunctor>
+bool ByteCodeParser::handleIntrinsicCall(int resultOperand, Intrinsic intrinsic, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction, const ChecksFunctor& insertChecks)
{
switch (intrinsic) {
+
+ // Intrinsic Functions:
+
case AbsIntrinsic: {
if (argumentCountIncludingThis == 1) { // Math.abs()
- setIntrinsicResult(usesResult, resultOperand, constantNaN());
+ insertChecks();
+ set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN)));
return true;
}
if (!MacroAssembler::supportsFloatingPointAbs())
return false;
- Node* node = addToGraph(ArithAbs, get(registerOffset + argumentToOperand(1)));
+ insertChecks();
+ Node* node = addToGraph(ArithAbs, get(virtualRegisterForArgument(1, registerOffset)));
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow))
- node->mergeFlags(NodeMayOverflow);
- setIntrinsicResult(usesResult, resultOperand, node);
+ node->mergeFlags(NodeMayOverflowInt32InDFG);
+ set(VirtualRegister(resultOperand), node);
return true;
}
case MinIntrinsic:
- return handleMinMax(usesResult, resultOperand, ArithMin, registerOffset, argumentCountIncludingThis);
+ return handleMinMax(resultOperand, ArithMin, registerOffset, argumentCountIncludingThis, insertChecks);
case MaxIntrinsic:
- return handleMinMax(usesResult, resultOperand, ArithMax, registerOffset, argumentCountIncludingThis);
-
- case SqrtIntrinsic: {
- if (argumentCountIncludingThis == 1) { // Math.sqrt()
- setIntrinsicResult(usesResult, resultOperand, constantNaN());
+ return handleMinMax(resultOperand, ArithMax, registerOffset, argumentCountIncludingThis, insertChecks);
+
+ case SqrtIntrinsic:
+ case CosIntrinsic:
+ case SinIntrinsic:
+ case LogIntrinsic: {
+ if (argumentCountIncludingThis == 1) {
+ insertChecks();
+ set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN)));
return true;
}
- if (!MacroAssembler::supportsFloatingPointSqrt())
+ switch (intrinsic) {
+ case SqrtIntrinsic:
+ insertChecks();
+ set(VirtualRegister(resultOperand), addToGraph(ArithSqrt, get(virtualRegisterForArgument(1, registerOffset))));
+ return true;
+
+ case CosIntrinsic:
+ insertChecks();
+ set(VirtualRegister(resultOperand), addToGraph(ArithCos, get(virtualRegisterForArgument(1, registerOffset))));
+ return true;
+
+ case SinIntrinsic:
+ insertChecks();
+ set(VirtualRegister(resultOperand), addToGraph(ArithSin, get(virtualRegisterForArgument(1, registerOffset))));
+ return true;
+
+ case LogIntrinsic:
+ insertChecks();
+ set(VirtualRegister(resultOperand), addToGraph(ArithLog, get(virtualRegisterForArgument(1, registerOffset))));
+ return true;
+
+ default:
+ RELEASE_ASSERT_NOT_REACHED();
return false;
-
- setIntrinsicResult(usesResult, resultOperand, addToGraph(ArithSqrt, get(registerOffset + argumentToOperand(1))));
+ }
+ }
+
+ case PowIntrinsic: {
+ if (argumentCountIncludingThis < 3) {
+ // Math.pow() and Math.pow(x) return NaN.
+ insertChecks();
+ set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN)));
+ return true;
+ }
+ insertChecks();
+ VirtualRegister xOperand = virtualRegisterForArgument(1, registerOffset);
+ VirtualRegister yOperand = virtualRegisterForArgument(2, registerOffset);
+ set(VirtualRegister(resultOperand), addToGraph(ArithPow, get(xOperand), get(yOperand)));
return true;
}
@@ -1510,18 +2076,17 @@ bool ByteCodeParser::handleIntrinsic(bool usesResult, int resultOperand, Intrins
if (argumentCountIncludingThis != 2)
return false;
- ArrayMode arrayMode = getArrayMode(m_currentInstruction[5].u.arrayProfile);
+ ArrayMode arrayMode = getArrayMode(m_currentInstruction[OPCODE_LENGTH(op_call) - 2].u.arrayProfile);
if (!arrayMode.isJSArray())
return false;
switch (arrayMode.type()) {
- case Array::Undecided:
case Array::Int32:
case Array::Double:
case Array::Contiguous:
case Array::ArrayStorage: {
- Node* arrayPush = addToGraph(ArrayPush, OpInfo(arrayMode.asWord()), OpInfo(prediction), get(registerOffset + argumentToOperand(0)), get(registerOffset + argumentToOperand(1)));
- if (usesResult)
- set(resultOperand, arrayPush);
+ insertChecks();
+ Node* arrayPush = addToGraph(ArrayPush, OpInfo(arrayMode.asWord()), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)), get(virtualRegisterForArgument(1, registerOffset)));
+ set(VirtualRegister(resultOperand), arrayPush);
return true;
}
@@ -1535,7 +2100,7 @@ bool ByteCodeParser::handleIntrinsic(bool usesResult, int resultOperand, Intrins
if (argumentCountIncludingThis != 1)
return false;
- ArrayMode arrayMode = getArrayMode(m_currentInstruction[5].u.arrayProfile);
+ ArrayMode arrayMode = getArrayMode(m_currentInstruction[OPCODE_LENGTH(op_call) - 2].u.arrayProfile);
if (!arrayMode.isJSArray())
return false;
switch (arrayMode.type()) {
@@ -1543,9 +2108,9 @@ bool ByteCodeParser::handleIntrinsic(bool usesResult, int resultOperand, Intrins
case Array::Double:
case Array::Contiguous:
case Array::ArrayStorage: {
- Node* arrayPop = addToGraph(ArrayPop, OpInfo(arrayMode.asWord()), OpInfo(prediction), get(registerOffset + argumentToOperand(0)));
- if (usesResult)
- set(resultOperand, arrayPop);
+ insertChecks();
+ Node* arrayPop = addToGraph(ArrayPop, OpInfo(arrayMode.asWord()), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)));
+ set(VirtualRegister(resultOperand), arrayPop);
return true;
}
@@ -1558,12 +2123,12 @@ bool ByteCodeParser::handleIntrinsic(bool usesResult, int resultOperand, Intrins
if (argumentCountIncludingThis != 2)
return false;
- int thisOperand = registerOffset + argumentToOperand(0);
- int indexOperand = registerOffset + argumentToOperand(1);
- Node* charCode = addToGraph(StringCharCodeAt, OpInfo(ArrayMode(Array::String).asWord()), get(thisOperand), getToInt32(indexOperand));
+ insertChecks();
+ VirtualRegister thisOperand = virtualRegisterForArgument(0, registerOffset);
+ VirtualRegister indexOperand = virtualRegisterForArgument(1, registerOffset);
+ Node* charCode = addToGraph(StringCharCodeAt, OpInfo(ArrayMode(Array::String).asWord()), get(thisOperand), get(indexOperand));
- if (usesResult)
- set(resultOperand, charCode);
+ set(VirtualRegister(resultOperand), charCode);
return true;
}
@@ -1571,23 +2136,33 @@ bool ByteCodeParser::handleIntrinsic(bool usesResult, int resultOperand, Intrins
if (argumentCountIncludingThis != 2)
return false;
- int thisOperand = registerOffset + argumentToOperand(0);
- int indexOperand = registerOffset + argumentToOperand(1);
- Node* charCode = addToGraph(StringCharAt, OpInfo(ArrayMode(Array::String).asWord()), get(thisOperand), getToInt32(indexOperand));
+ insertChecks();
+ VirtualRegister thisOperand = virtualRegisterForArgument(0, registerOffset);
+ VirtualRegister indexOperand = virtualRegisterForArgument(1, registerOffset);
+ Node* charCode = addToGraph(StringCharAt, OpInfo(ArrayMode(Array::String).asWord()), get(thisOperand), get(indexOperand));
- if (usesResult)
- set(resultOperand, charCode);
+ set(VirtualRegister(resultOperand), charCode);
+ return true;
+ }
+ case Clz32Intrinsic: {
+ insertChecks();
+ if (argumentCountIncludingThis == 1)
+ set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_graph.freeze(jsNumber(32)))));
+ else {
+ Node* operand = get(virtualRegisterForArgument(1, registerOffset));
+ set(VirtualRegister(resultOperand), addToGraph(ArithClz32, operand));
+ }
return true;
}
case FromCharCodeIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
- int indexOperand = registerOffset + argumentToOperand(1);
- Node* charCode = addToGraph(StringFromCharCode, getToInt32(indexOperand));
+ insertChecks();
+ VirtualRegister indexOperand = virtualRegisterForArgument(1, registerOffset);
+ Node* charCode = addToGraph(StringFromCharCode, get(indexOperand));
- if (usesResult)
- set(resultOperand, charCode);
+ set(VirtualRegister(resultOperand), charCode);
return true;
}
@@ -1596,9 +2171,9 @@ bool ByteCodeParser::handleIntrinsic(bool usesResult, int resultOperand, Intrins
if (argumentCountIncludingThis != 2)
return false;
- Node* regExpExec = addToGraph(RegExpExec, OpInfo(0), OpInfo(prediction), get(registerOffset + argumentToOperand(0)), get(registerOffset + argumentToOperand(1)));
- if (usesResult)
- set(resultOperand, regExpExec);
+ insertChecks();
+ Node* regExpExec = addToGraph(RegExpExec, OpInfo(0), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)), get(virtualRegisterForArgument(1, registerOffset)));
+ set(VirtualRegister(resultOperand), regExpExec);
return true;
}
@@ -1607,21 +2182,134 @@ bool ByteCodeParser::handleIntrinsic(bool usesResult, int resultOperand, Intrins
if (argumentCountIncludingThis != 2)
return false;
- Node* regExpExec = addToGraph(RegExpTest, OpInfo(0), OpInfo(prediction), get(registerOffset + argumentToOperand(0)), get(registerOffset + argumentToOperand(1)));
- if (usesResult)
- set(resultOperand, regExpExec);
+ insertChecks();
+ Node* regExpExec = addToGraph(RegExpTest, OpInfo(0), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)), get(virtualRegisterForArgument(1, registerOffset)));
+ set(VirtualRegister(resultOperand), regExpExec);
return true;
}
+ case StringPrototypeReplaceIntrinsic: {
+ if (!isFTL(m_graph.m_plan.mode)) {
+ // This is a marginally profitable intrinsic. We've only the work to make it an
+ // intrinsic on the fourth tier.
+ return false;
+ }
+
+ if (argumentCountIncludingThis != 3)
+ return false;
+
+ insertChecks();
+ Node* result = addToGraph(StringReplace, OpInfo(0), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)), get(virtualRegisterForArgument(1, registerOffset)), get(virtualRegisterForArgument(2, registerOffset)));
+ set(VirtualRegister(resultOperand), result);
+ return true;
+ }
+
+ case RoundIntrinsic:
+ case FloorIntrinsic:
+ case CeilIntrinsic: {
+ if (argumentCountIncludingThis == 1) {
+ insertChecks();
+ set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN)));
+ return true;
+ }
+ if (argumentCountIncludingThis == 2) {
+ insertChecks();
+ Node* operand = get(virtualRegisterForArgument(1, registerOffset));
+ NodeType op;
+ if (intrinsic == RoundIntrinsic)
+ op = ArithRound;
+ else if (intrinsic == FloorIntrinsic)
+ op = ArithFloor;
+ else {
+ ASSERT(intrinsic == CeilIntrinsic);
+ op = ArithCeil;
+ }
+ Node* roundNode = addToGraph(op, OpInfo(0), OpInfo(prediction), operand);
+ set(VirtualRegister(resultOperand), roundNode);
+ return true;
+ }
+ return false;
+ }
case IMulIntrinsic: {
if (argumentCountIncludingThis != 3)
return false;
- int leftOperand = registerOffset + argumentToOperand(1);
- int rightOperand = registerOffset + argumentToOperand(2);
- Node* left = getToInt32(leftOperand);
- Node* right = getToInt32(rightOperand);
- setIntrinsicResult(usesResult, resultOperand, addToGraph(ArithIMul, left, right));
+ insertChecks();
+ VirtualRegister leftOperand = virtualRegisterForArgument(1, registerOffset);
+ VirtualRegister rightOperand = virtualRegisterForArgument(2, registerOffset);
+ Node* left = get(leftOperand);
+ Node* right = get(rightOperand);
+ set(VirtualRegister(resultOperand), addToGraph(ArithIMul, left, right));
+ return true;
+ }
+
+ case RandomIntrinsic: {
+ if (argumentCountIncludingThis != 1)
+ return false;
+ insertChecks();
+ set(VirtualRegister(resultOperand), addToGraph(ArithRandom));
+ return true;
+ }
+
+ case FRoundIntrinsic: {
+ if (argumentCountIncludingThis != 2)
+ return false;
+ insertChecks();
+ VirtualRegister operand = virtualRegisterForArgument(1, registerOffset);
+ set(VirtualRegister(resultOperand), addToGraph(ArithFRound, get(operand)));
+ return true;
+ }
+
+ case DFGTrueIntrinsic: {
+ insertChecks();
+ set(VirtualRegister(resultOperand), jsConstant(jsBoolean(true)));
+ return true;
+ }
+
+ case OSRExitIntrinsic: {
+ insertChecks();
+ addToGraph(ForceOSRExit);
+ set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantUndefined)));
+ return true;
+ }
+
+ case IsFinalTierIntrinsic: {
+ insertChecks();
+ set(VirtualRegister(resultOperand),
+ jsConstant(jsBoolean(Options::useFTLJIT() ? isFTL(m_graph.m_plan.mode) : true)));
+ return true;
+ }
+
+ case SetInt32HeapPredictionIntrinsic: {
+ insertChecks();
+ for (int i = 1; i < argumentCountIncludingThis; ++i) {
+ Node* node = get(virtualRegisterForArgument(i, registerOffset));
+ if (node->hasHeapPrediction())
+ node->setHeapPrediction(SpecInt32);
+ }
+ set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantUndefined)));
+ return true;
+ }
+
+ case CheckInt32Intrinsic: {
+ insertChecks();
+ for (int i = 1; i < argumentCountIncludingThis; ++i) {
+ Node* node = get(virtualRegisterForArgument(i, registerOffset));
+ addToGraph(Phantom, Edge(node, Int32Use));
+ }
+ set(VirtualRegister(resultOperand), jsConstant(jsBoolean(true)));
+ return true;
+ }
+
+ case FiatInt52Intrinsic: {
+ if (argumentCountIncludingThis != 2)
+ return false;
+ insertChecks();
+ VirtualRegister operand = virtualRegisterForArgument(1, registerOffset);
+ if (enableInt52())
+ set(VirtualRegister(resultOperand), addToGraph(FiatInt52, get(operand)));
+ else
+ set(VirtualRegister(resultOperand), get(operand));
return true;
}
@@ -1630,320 +2318,868 @@ bool ByteCodeParser::handleIntrinsic(bool usesResult, int resultOperand, Intrins
}
}
-bool ByteCodeParser::handleConstantInternalFunction(
- bool usesResult, int resultOperand, InternalFunction* function, int registerOffset,
- int argumentCountIncludingThis, SpeculatedType prediction, CodeSpecializationKind kind)
+template<typename ChecksFunctor>
+bool ByteCodeParser::handleIntrinsicGetter(int resultOperand, const GetByIdVariant& variant, Node* thisNode, const ChecksFunctor& insertChecks)
+{
+ switch (variant.intrinsic()) {
+ case TypedArrayByteLengthIntrinsic: {
+ insertChecks();
+
+ TypedArrayType type = (*variant.structureSet().begin())->classInfo()->typedArrayStorageType;
+ Array::Type arrayType = toArrayType(type);
+ size_t logSize = logElementSize(type);
+
+ variant.structureSet().forEach([&] (Structure* structure) {
+ TypedArrayType curType = structure->classInfo()->typedArrayStorageType;
+ ASSERT(logSize == logElementSize(curType));
+ arrayType = refineTypedArrayType(arrayType, curType);
+ ASSERT(arrayType != Array::Generic);
+ });
+
+ Node* lengthNode = addToGraph(GetArrayLength, OpInfo(ArrayMode(arrayType).asWord()), thisNode);
+
+ if (!logSize) {
+ set(VirtualRegister(resultOperand), lengthNode);
+ return true;
+ }
+
+ // We can use a BitLShift here because typed arrays will never have a byteLength
+ // that overflows int32.
+ Node* shiftNode = jsConstant(jsNumber(logSize));
+ set(VirtualRegister(resultOperand), addToGraph(BitLShift, lengthNode, shiftNode));
+
+ return true;
+ }
+
+ case TypedArrayLengthIntrinsic: {
+ insertChecks();
+
+ TypedArrayType type = (*variant.structureSet().begin())->classInfo()->typedArrayStorageType;
+ Array::Type arrayType = toArrayType(type);
+
+ variant.structureSet().forEach([&] (Structure* structure) {
+ TypedArrayType curType = structure->classInfo()->typedArrayStorageType;
+ arrayType = refineTypedArrayType(arrayType, curType);
+ ASSERT(arrayType != Array::Generic);
+ });
+
+ set(VirtualRegister(resultOperand), addToGraph(GetArrayLength, OpInfo(ArrayMode(arrayType).asWord()), thisNode));
+
+ return true;
+
+ }
+
+ case TypedArrayByteOffsetIntrinsic: {
+ insertChecks();
+
+ TypedArrayType type = (*variant.structureSet().begin())->classInfo()->typedArrayStorageType;
+ Array::Type arrayType = toArrayType(type);
+
+ variant.structureSet().forEach([&] (Structure* structure) {
+ TypedArrayType curType = structure->classInfo()->typedArrayStorageType;
+ arrayType = refineTypedArrayType(arrayType, curType);
+ ASSERT(arrayType != Array::Generic);
+ });
+
+ set(VirtualRegister(resultOperand), addToGraph(GetTypedArrayByteOffset, OpInfo(ArrayMode(arrayType).asWord()), thisNode));
+
+ return true;
+ }
+
+ default:
+ return false;
+ }
+ RELEASE_ASSERT_NOT_REACHED();
+}
+
+template<typename ChecksFunctor>
+bool ByteCodeParser::handleTypedArrayConstructor(
+ int resultOperand, InternalFunction* function, int registerOffset,
+ int argumentCountIncludingThis, TypedArrayType type, const ChecksFunctor& insertChecks)
{
- // If we ever find that we have a lot of internal functions that we specialize for,
- // then we should probably have some sort of hashtable dispatch, or maybe even
- // dispatch straight through the MethodTable of the InternalFunction. But for now,
- // it seems that this case is hit infrequently enough, and the number of functions
- // we know about is small enough, that having just a linear cascade of if statements
- // is good enough.
+ if (!isTypedView(type))
+ return false;
+
+ if (function->classInfo() != constructorClassInfoForType(type))
+ return false;
+
+ if (function->globalObject() != m_inlineStackTop->m_codeBlock->globalObject())
+ return false;
- UNUSED_PARAM(prediction); // Remove this once we do more things.
+ // We only have an intrinsic for the case where you say:
+ //
+ // new FooArray(blah);
+ //
+ // Of course, 'blah' could be any of the following:
+ //
+ // - Integer, indicating that you want to allocate an array of that length.
+ // This is the thing we're hoping for, and what we can actually do meaningful
+ // optimizations for.
+ //
+ // - Array buffer, indicating that you want to create a view onto that _entire_
+ // buffer.
+ //
+ // - Non-buffer object, indicating that you want to create a copy of that
+ // object by pretending that it quacks like an array.
+ //
+ // - Anything else, indicating that you want to have an exception thrown at
+ // you.
+ //
+ // The intrinsic, NewTypedArray, will behave as if it could do any of these
+ // things up until we do Fixup. Thereafter, if child1 (i.e. 'blah') is
+ // predicted Int32, then we lock it in as a normal typed array allocation.
+ // Otherwise, NewTypedArray turns into a totally opaque function call that
+ // may clobber the world - by virtue of it accessing properties on what could
+ // be an object.
+ //
+ // Note that although the generic form of NewTypedArray sounds sort of awful,
+ // it is actually quite likely to be more efficient than a fully generic
+ // Construct. So, we might want to think about making NewTypedArray variadic,
+ // or else making Construct not super slow.
- if (function->classInfo() == &ArrayConstructor::s_info) {
+ if (argumentCountIncludingThis != 2)
+ return false;
+
+ insertChecks();
+ set(VirtualRegister(resultOperand),
+ addToGraph(NewTypedArray, OpInfo(type), get(virtualRegisterForArgument(1, registerOffset))));
+ return true;
+}
+
+template<typename ChecksFunctor>
+bool ByteCodeParser::handleConstantInternalFunction(
+ Node* callTargetNode, int resultOperand, InternalFunction* function, int registerOffset,
+ int argumentCountIncludingThis, CodeSpecializationKind kind, const ChecksFunctor& insertChecks)
+{
+ if (verbose)
+ dataLog(" Handling constant internal function ", JSValue(function), "\n");
+
+ if (kind == CodeForConstruct) {
+ Node* newTargetNode = get(virtualRegisterForArgument(0, registerOffset));
+ // We cannot handle the case where new.target != callee (i.e. a construct from a super call) because we
+ // don't know what the prototype of the constructed object will be.
+ // FIXME: If we have inlined super calls up to the call site, however, we should be able to figure out the structure. https://bugs.webkit.org/show_bug.cgi?id=152700
+ if (newTargetNode != callTargetNode)
+ return false;
+ }
+
+ if (function->classInfo() == ArrayConstructor::info()) {
+ if (function->globalObject() != m_inlineStackTop->m_codeBlock->globalObject())
+ return false;
+
+ insertChecks();
if (argumentCountIncludingThis == 2) {
- setIntrinsicResult(
- usesResult, resultOperand,
- addToGraph(NewArrayWithSize, OpInfo(ArrayWithUndecided), get(registerOffset + argumentToOperand(1))));
+ set(VirtualRegister(resultOperand),
+ addToGraph(NewArrayWithSize, OpInfo(ArrayWithUndecided), get(virtualRegisterForArgument(1, registerOffset))));
return true;
}
for (int i = 1; i < argumentCountIncludingThis; ++i)
- addVarArgChild(get(registerOffset + argumentToOperand(i)));
- setIntrinsicResult(
- usesResult, resultOperand,
+ addVarArgChild(get(virtualRegisterForArgument(i, registerOffset)));
+ set(VirtualRegister(resultOperand),
addToGraph(Node::VarArg, NewArray, OpInfo(ArrayWithUndecided), OpInfo(0)));
return true;
- } else if (function->classInfo() == &StringConstructor::s_info) {
+ }
+
+ if (function->classInfo() == StringConstructor::info()) {
+ insertChecks();
+
Node* result;
if (argumentCountIncludingThis <= 1)
- result = cellConstant(m_vm->smallStrings.emptyString());
+ result = jsConstant(m_vm->smallStrings.emptyString());
else
- result = addToGraph(ToString, get(registerOffset + argumentToOperand(1)));
+ result = addToGraph(CallStringConstructor, get(virtualRegisterForArgument(1, registerOffset)));
if (kind == CodeForConstruct)
result = addToGraph(NewStringObject, OpInfo(function->globalObject()->stringObjectStructure()), result);
- setIntrinsicResult(usesResult, resultOperand, result);
+ set(VirtualRegister(resultOperand), result);
return true;
}
+ for (unsigned typeIndex = 0; typeIndex < NUMBER_OF_TYPED_ARRAY_TYPES; ++typeIndex) {
+ bool result = handleTypedArrayConstructor(
+ resultOperand, function, registerOffset, argumentCountIncludingThis,
+ indexToTypedArrayType(typeIndex), insertChecks);
+ if (result)
+ return true;
+ }
+
return false;
}
-Node* ByteCodeParser::handleGetByOffset(SpeculatedType prediction, Node* base, unsigned identifierNumber, PropertyOffset offset)
+Node* ByteCodeParser::handleGetByOffset(
+ SpeculatedType prediction, Node* base, unsigned identifierNumber, PropertyOffset offset,
+ const InferredType::Descriptor& inferredType, NodeType op)
{
Node* propertyStorage;
if (isInlineOffset(offset))
propertyStorage = base;
else
propertyStorage = addToGraph(GetButterfly, base);
- // FIXME: It would be far more efficient for load elimination (and safer from
- // an OSR standpoint) if GetByOffset also referenced the object we were loading
- // from, and if we could load eliminate a GetByOffset even if the butterfly
- // had changed. That would be a great success.
- Node* getByOffset = addToGraph(GetByOffset, OpInfo(m_graph.m_storageAccessData.size()), OpInfo(prediction), propertyStorage);
-
- StorageAccessData storageAccessData;
- storageAccessData.offset = indexRelativeToBase(offset);
- storageAccessData.identifierNumber = identifierNumber;
- m_graph.m_storageAccessData.append(storageAccessData);
+
+ StorageAccessData* data = m_graph.m_storageAccessData.add();
+ data->offset = offset;
+ data->identifierNumber = identifierNumber;
+ data->inferredType = inferredType;
+ m_graph.registerInferredType(inferredType);
+
+ Node* getByOffset = addToGraph(op, OpInfo(data), OpInfo(prediction), propertyStorage, base);
return getByOffset;
}
-void ByteCodeParser::handleGetByOffset(
- int destinationOperand, SpeculatedType prediction, Node* base, unsigned identifierNumber,
- PropertyOffset offset)
+Node* ByteCodeParser::handlePutByOffset(
+ Node* base, unsigned identifier, PropertyOffset offset, const InferredType::Descriptor& inferredType,
+ Node* value)
{
- set(destinationOperand, handleGetByOffset(prediction, base, identifierNumber, offset));
+ Node* propertyStorage;
+ if (isInlineOffset(offset))
+ propertyStorage = base;
+ else
+ propertyStorage = addToGraph(GetButterfly, base);
+
+ StorageAccessData* data = m_graph.m_storageAccessData.add();
+ data->offset = offset;
+ data->identifierNumber = identifier;
+ data->inferredType = inferredType;
+ m_graph.registerInferredType(inferredType);
+
+ Node* result = addToGraph(PutByOffset, OpInfo(data), propertyStorage, base, value);
+
+ return result;
}
-void ByteCodeParser::handleGetById(
- int destinationOperand, SpeculatedType prediction, Node* base, unsigned identifierNumber,
- const GetByIdStatus& getByIdStatus)
+bool ByteCodeParser::check(const ObjectPropertyCondition& condition)
{
- if (!getByIdStatus.isSimple()
- || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache)
- || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadWeakConstantCache)) {
- set(destinationOperand,
- addToGraph(
- getByIdStatus.makesCalls() ? GetByIdFlush : GetById,
- OpInfo(identifierNumber), OpInfo(prediction), base));
- return;
- }
+ if (!condition)
+ return false;
- ASSERT(getByIdStatus.structureSet().size());
-
- // The implementation of GetByOffset does not know to terminate speculative
- // execution if it doesn't have a prediction, so we do it manually.
- if (prediction == SpecNone)
- addToGraph(ForceOSRExit);
- else if (m_graph.m_compilation)
- m_graph.m_compilation->noticeInlinedGetById();
+ if (m_graph.watchCondition(condition))
+ return true;
- Node* originalBaseForBaselineJIT = base;
-
- addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(getByIdStatus.structureSet())), base);
+ Structure* structure = condition.object()->structure();
+ if (!condition.structureEnsuresValidity(structure))
+ return false;
- if (!getByIdStatus.chain().isEmpty()) {
- Structure* currentStructure = getByIdStatus.structureSet().singletonStructure();
- JSObject* currentObject = 0;
- for (unsigned i = 0; i < getByIdStatus.chain().size(); ++i) {
- currentObject = asObject(currentStructure->prototypeForLookup(m_inlineStackTop->m_codeBlock));
- currentStructure = getByIdStatus.chain()[i];
- base = addStructureTransitionCheck(currentObject, currentStructure);
- }
+ addToGraph(
+ CheckStructure,
+ OpInfo(m_graph.addStructureSet(structure)),
+ weakJSConstant(condition.object()));
+ return true;
+}
+
+GetByOffsetMethod ByteCodeParser::promoteToConstant(GetByOffsetMethod method)
+{
+ if (method.kind() == GetByOffsetMethod::LoadFromPrototype
+ && method.prototype()->structure()->dfgShouldWatch()) {
+ if (JSValue constant = m_graph.tryGetConstantProperty(method.prototype()->value(), method.prototype()->structure(), method.offset()))
+ return GetByOffsetMethod::constant(m_graph.freeze(constant));
}
- // Unless we want bugs like https://bugs.webkit.org/show_bug.cgi?id=88783, we need to
- // ensure that the base of the original get_by_id is kept alive until we're done with
- // all of the speculations. We only insert the Phantom if there had been a CheckStructure
- // on something other than the base following the CheckStructure on base, or if the
- // access was compiled to a WeakJSConstant specific value, in which case we might not
- // have any explicit use of the base at all.
- if (getByIdStatus.specificValue() || originalBaseForBaselineJIT != base)
- addToGraph(Phantom, originalBaseForBaselineJIT);
+ return method;
+}
+
+GetByOffsetMethod ByteCodeParser::planLoad(const ObjectPropertyCondition& condition)
+{
+ if (verbose)
+ dataLog("Planning a load: ", condition, "\n");
- if (getByIdStatus.specificValue()) {
- ASSERT(getByIdStatus.specificValue().isCell());
-
- set(destinationOperand, cellConstant(getByIdStatus.specificValue().asCell()));
- return;
- }
+ // We might promote this to Equivalence, and a later DFG pass might also do such promotion
+ // even if we fail, but for simplicity this cannot be asked to load an equivalence condition.
+ // None of the clients of this method will request a load of an Equivalence condition anyway,
+ // and supporting it would complicate the heuristics below.
+ RELEASE_ASSERT(condition.kind() == PropertyCondition::Presence);
+
+ // Here's the ranking of how to handle this, from most preferred to least preferred:
+ //
+ // 1) Watchpoint on an equivalence condition and return a constant node for the loaded value.
+ // No other code is emitted, and the structure of the base object is never registered.
+ // Hence this results in zero code and we won't jettison this compilation if the object
+ // transitions, even if the structure is watchable right now.
+ //
+ // 2) Need to emit a load, and the current structure of the base is going to be watched by the
+ // DFG anyway (i.e. dfgShouldWatch). Watch the structure and emit the load. Don't watch the
+ // condition, since the act of turning the base into a constant in IR will cause the DFG to
+ // watch the structure anyway and doing so would subsume watching the condition.
+ //
+ // 3) Need to emit a load, and the current structure of the base is watchable but not by the
+ // DFG (i.e. transitionWatchpointSetIsStillValid() and !dfgShouldWatchIfPossible()). Watch
+ // the condition, and emit a load.
+ //
+ // 4) Need to emit a load, and the current structure of the base is not watchable. Emit a
+ // structure check, and emit a load.
+ //
+ // 5) The condition does not hold. Give up and return null.
+
+ // First, try to promote Presence to Equivalence. We do this before doing anything else
+ // because it's the most profitable. Also, there are cases where the presence is watchable but
+ // we don't want to watch it unless it became an equivalence (see the relationship between
+ // (1), (2), and (3) above).
+ ObjectPropertyCondition equivalenceCondition = condition.attemptToMakeEquivalenceWithoutBarrier();
+ if (m_graph.watchCondition(equivalenceCondition))
+ return GetByOffsetMethod::constant(m_graph.freeze(equivalenceCondition.requiredValue()));
+
+ // At this point, we'll have to materialize the condition's base as a constant in DFG IR. Once
+ // we do this, the frozen value will have its own idea of what the structure is. Use that from
+ // now on just because it's less confusing.
+ FrozenValue* base = m_graph.freeze(condition.object());
+ Structure* structure = base->structure();
+
+ // Check if the structure that we've registered makes the condition hold. If not, just give
+ // up. This is case (5) above.
+ if (!condition.structureEnsuresValidity(structure))
+ return GetByOffsetMethod();
- handleGetByOffset(
- destinationOperand, prediction, base, identifierNumber, getByIdStatus.offset());
+ // If the structure is watched by the DFG already, then just use this fact to emit the load.
+ // This is case (2) above.
+ if (structure->dfgShouldWatch())
+ return promoteToConstant(GetByOffsetMethod::loadFromPrototype(base, condition.offset()));
+
+ // If we can watch the condition right now, then we can emit the load after watching it. This
+ // is case (3) above.
+ if (m_graph.watchCondition(condition))
+ return promoteToConstant(GetByOffsetMethod::loadFromPrototype(base, condition.offset()));
+
+ // We can't watch anything but we know that the current structure satisfies the condition. So,
+ // check for that structure and then emit the load.
+ addToGraph(
+ CheckStructure,
+ OpInfo(m_graph.addStructureSet(structure)),
+ addToGraph(JSConstant, OpInfo(base)));
+ return promoteToConstant(GetByOffsetMethod::loadFromPrototype(base, condition.offset()));
}
-void ByteCodeParser::prepareToParseBlock()
+Node* ByteCodeParser::load(
+ SpeculatedType prediction, unsigned identifierNumber, const GetByOffsetMethod& method,
+ NodeType op)
{
- for (unsigned i = 0; i < m_constants.size(); ++i)
- m_constants[i] = ConstantRecord();
- m_cellConstantNodes.clear();
+ switch (method.kind()) {
+ case GetByOffsetMethod::Invalid:
+ return nullptr;
+ case GetByOffsetMethod::Constant:
+ return addToGraph(JSConstant, OpInfo(method.constant()));
+ case GetByOffsetMethod::LoadFromPrototype: {
+ Node* baseNode = addToGraph(JSConstant, OpInfo(method.prototype()));
+ return handleGetByOffset(
+ prediction, baseNode, identifierNumber, method.offset(), InferredType::Top, op);
+ }
+ case GetByOffsetMethod::Load:
+ // Will never see this from planLoad().
+ RELEASE_ASSERT_NOT_REACHED();
+ return nullptr;
+ }
+
+ RELEASE_ASSERT_NOT_REACHED();
+ return nullptr;
}
-Node* ByteCodeParser::getScope(bool skipTop, unsigned skipCount)
+Node* ByteCodeParser::load(
+ SpeculatedType prediction, const ObjectPropertyCondition& condition, NodeType op)
{
- Node* localBase;
- if (inlineCallFrame() && !inlineCallFrame()->isClosureCall()) {
- ASSERT(inlineCallFrame()->callee);
- localBase = cellConstant(inlineCallFrame()->callee->scope());
- } else
- localBase = addToGraph(GetMyScope);
- if (skipTop) {
- ASSERT(!inlineCallFrame());
- localBase = addToGraph(SkipTopScope, localBase);
- }
- for (unsigned n = skipCount; n--;)
- localBase = addToGraph(SkipScope, localBase);
- return localBase;
+ GetByOffsetMethod method = planLoad(condition);
+ return load(prediction, m_graph.identifiers().ensure(condition.uid()), method, op);
}
-bool ByteCodeParser::parseResolveOperations(SpeculatedType prediction, unsigned identifier, ResolveOperations* resolveOperations, PutToBaseOperation* putToBaseOperation, Node** base, Node** value)
+bool ByteCodeParser::check(const ObjectPropertyConditionSet& conditionSet)
{
- if (resolveOperations->isEmpty()) {
- addToGraph(ForceOSRExit);
- return false;
+ for (const ObjectPropertyCondition condition : conditionSet) {
+ if (!check(condition))
+ return false;
}
- JSGlobalObject* globalObject = m_inlineStackTop->m_codeBlock->globalObject();
- int skipCount = 0;
- bool skipTop = false;
- bool skippedScopes = false;
- bool setBase = false;
- ResolveOperation* pc = resolveOperations->data();
- Node* localBase = 0;
- bool resolvingBase = true;
- while (resolvingBase) {
- switch (pc->m_operation) {
- case ResolveOperation::ReturnGlobalObjectAsBase:
- *base = cellConstant(globalObject);
- ASSERT(!value);
- return true;
+ return true;
+}
- case ResolveOperation::SetBaseToGlobal:
- *base = cellConstant(globalObject);
- setBase = true;
- resolvingBase = false;
- ++pc;
+GetByOffsetMethod ByteCodeParser::planLoad(const ObjectPropertyConditionSet& conditionSet)
+{
+ if (verbose)
+ dataLog("conditionSet = ", conditionSet, "\n");
+
+ GetByOffsetMethod result;
+ for (const ObjectPropertyCondition condition : conditionSet) {
+ switch (condition.kind()) {
+ case PropertyCondition::Presence:
+ RELEASE_ASSERT(!result); // Should only see exactly one of these.
+ result = planLoad(condition);
+ if (!result)
+ return GetByOffsetMethod();
break;
-
- case ResolveOperation::SetBaseToUndefined:
- *base = constantUndefined();
- setBase = true;
- resolvingBase = false;
- ++pc;
+ default:
+ if (!check(condition))
+ return GetByOffsetMethod();
break;
+ }
+ }
+ RELEASE_ASSERT(!!result);
+ return result;
+}
- case ResolveOperation::SetBaseToScope:
- localBase = getScope(skipTop, skipCount);
- *base = localBase;
- setBase = true;
-
- resolvingBase = false;
-
- // Reset the scope skipping as we've already loaded it
- skippedScopes = false;
- ++pc;
- break;
- case ResolveOperation::ReturnScopeAsBase:
- *base = getScope(skipTop, skipCount);
- ASSERT(!value);
- return true;
+Node* ByteCodeParser::load(
+ SpeculatedType prediction, const ObjectPropertyConditionSet& conditionSet, NodeType op)
+{
+ GetByOffsetMethod method = planLoad(conditionSet);
+ return load(
+ prediction,
+ m_graph.identifiers().ensure(conditionSet.slotBaseCondition().uid()),
+ method, op);
+}
- case ResolveOperation::SkipTopScopeNode:
- ASSERT(!inlineCallFrame());
- skipTop = true;
- skippedScopes = true;
- ++pc;
- break;
+ObjectPropertyCondition ByteCodeParser::presenceLike(
+ JSObject* knownBase, UniquedStringImpl* uid, PropertyOffset offset, const StructureSet& set)
+{
+ if (set.isEmpty())
+ return ObjectPropertyCondition();
+ unsigned attributes;
+ PropertyOffset firstOffset = set[0]->getConcurrently(uid, attributes);
+ if (firstOffset != offset)
+ return ObjectPropertyCondition();
+ for (unsigned i = 1; i < set.size(); ++i) {
+ unsigned otherAttributes;
+ PropertyOffset otherOffset = set[i]->getConcurrently(uid, otherAttributes);
+ if (otherOffset != offset || otherAttributes != attributes)
+ return ObjectPropertyCondition();
+ }
+ return ObjectPropertyCondition::presenceWithoutBarrier(knownBase, uid, offset, attributes);
+}
- case ResolveOperation::SkipScopes:
- skipCount += pc->m_scopesToSkip;
- skippedScopes = true;
- ++pc;
- break;
+bool ByteCodeParser::checkPresenceLike(
+ JSObject* knownBase, UniquedStringImpl* uid, PropertyOffset offset, const StructureSet& set)
+{
+ return check(presenceLike(knownBase, uid, offset, set));
+}
- case ResolveOperation::CheckForDynamicEntriesBeforeGlobalScope:
- return false;
+void ByteCodeParser::checkPresenceLike(
+ Node* base, UniquedStringImpl* uid, PropertyOffset offset, const StructureSet& set)
+{
+ if (JSObject* knownBase = base->dynamicCastConstant<JSObject*>()) {
+ if (checkPresenceLike(knownBase, uid, offset, set))
+ return;
+ }
- case ResolveOperation::Fail:
- return false;
+ addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(set)), base);
+}
- default:
- resolvingBase = false;
+template<typename VariantType>
+Node* ByteCodeParser::load(
+ SpeculatedType prediction, Node* base, unsigned identifierNumber, const VariantType& variant)
+{
+ // Make sure backwards propagation knows that we've used base.
+ addToGraph(Phantom, base);
+
+ bool needStructureCheck = true;
+
+ UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber];
+
+ if (JSObject* knownBase = base->dynamicCastConstant<JSObject*>()) {
+ // Try to optimize away the structure check. Note that it's not worth doing anything about this
+ // if the base's structure is watched.
+ Structure* structure = base->constant()->structure();
+ if (!structure->dfgShouldWatch()) {
+ if (!variant.conditionSet().isEmpty()) {
+ // This means that we're loading from a prototype. We expect the base not to have the
+ // property. We can only use ObjectPropertyCondition if all of the structures in the
+ // variant.structureSet() agree on the prototype (it would be hilariously rare if they
+ // didn't). Note that we are relying on structureSet() having at least one element. That
+ // will always be true here because of how GetByIdStatus/PutByIdStatus work.
+ JSObject* prototype = variant.structureSet()[0]->storedPrototypeObject();
+ bool allAgree = true;
+ for (unsigned i = 1; i < variant.structureSet().size(); ++i) {
+ if (variant.structureSet()[i]->storedPrototypeObject() != prototype) {
+ allAgree = false;
+ break;
+ }
+ }
+ if (allAgree) {
+ ObjectPropertyCondition condition = ObjectPropertyCondition::absenceWithoutBarrier(
+ knownBase, uid, prototype);
+ if (check(condition))
+ needStructureCheck = false;
+ }
+ } else {
+ // This means we're loading directly from base. We can avoid all of the code that follows
+ // if we can prove that the property is a constant. Otherwise, we try to prove that the
+ // property is watchably present, in which case we get rid of the structure check.
+
+ ObjectPropertyCondition presenceCondition =
+ presenceLike(knownBase, uid, variant.offset(), variant.structureSet());
+ if (presenceCondition) {
+ ObjectPropertyCondition equivalenceCondition =
+ presenceCondition.attemptToMakeEquivalenceWithoutBarrier();
+ if (m_graph.watchCondition(equivalenceCondition))
+ return weakJSConstant(equivalenceCondition.requiredValue());
+
+ if (check(presenceCondition))
+ needStructureCheck = false;
+ }
+ }
}
}
- if (skippedScopes)
- localBase = getScope(skipTop, skipCount);
- if (base && !setBase)
- *base = localBase;
+ if (needStructureCheck)
+ addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(variant.structureSet())), base);
+
+ SpeculatedType loadPrediction;
+ NodeType loadOp;
+ if (variant.callLinkStatus() || variant.intrinsic() != NoIntrinsic) {
+ loadPrediction = SpecCellOther;
+ loadOp = GetGetterSetterByOffset;
+ } else {
+ loadPrediction = prediction;
+ loadOp = GetByOffset;
+ }
+
+ Node* loadedValue;
+ if (!variant.conditionSet().isEmpty())
+ loadedValue = load(loadPrediction, variant.conditionSet(), loadOp);
+ else {
+ if (needStructureCheck && base->hasConstant()) {
+ // We did emit a structure check. That means that we have an opportunity to do constant folding
+ // here, since we didn't do it above.
+ JSValue constant = m_graph.tryGetConstantProperty(
+ base->asJSValue(), variant.structureSet(), variant.offset());
+ if (constant)
+ return weakJSConstant(constant);
+ }
+
+ InferredType::Descriptor inferredType;
+ if (needStructureCheck) {
+ for (Structure* structure : variant.structureSet()) {
+ InferredType::Descriptor thisType = m_graph.inferredTypeForProperty(structure, uid);
+ inferredType.merge(thisType);
+ }
+ } else
+ inferredType = InferredType::Top;
+
+ loadedValue = handleGetByOffset(
+ loadPrediction, base, identifierNumber, variant.offset(), inferredType, loadOp);
+ }
+
+ return loadedValue;
+}
- ASSERT(value);
- ResolveOperation* resolveValueOperation = pc;
- switch (resolveValueOperation->m_operation) {
- case ResolveOperation::GetAndReturnGlobalProperty: {
- ResolveGlobalStatus status = ResolveGlobalStatus::computeFor(m_inlineStackTop->m_profiledBlock, m_currentIndex, resolveValueOperation, m_codeBlock->identifier(identifier));
- if (status.isSimple()) {
- ASSERT(status.structure());
+Node* ByteCodeParser::store(Node* base, unsigned identifier, const PutByIdVariant& variant, Node* value)
+{
+ RELEASE_ASSERT(variant.kind() == PutByIdVariant::Replace);
- Node* globalObjectNode = addStructureTransitionCheck(globalObject, status.structure());
+ checkPresenceLike(base, m_graph.identifiers()[identifier], variant.offset(), variant.structure());
+ return handlePutByOffset(base, identifier, variant.offset(), variant.requiredType(), value);
+}
- if (status.specificValue()) {
- ASSERT(status.specificValue().isCell());
- *value = cellConstant(status.specificValue().asCell());
- } else
- *value = handleGetByOffset(prediction, globalObjectNode, identifier, status.offset());
- return true;
+void ByteCodeParser::handleGetById(
+ int destinationOperand, SpeculatedType prediction, Node* base, unsigned identifierNumber,
+ const GetByIdStatus& getByIdStatus)
+{
+ NodeType getById = getByIdStatus.makesCalls() ? GetByIdFlush : GetById;
+
+ if (!getByIdStatus.isSimple() || !getByIdStatus.numVariants() || !Options::useAccessInlining()) {
+ set(VirtualRegister(destinationOperand),
+ addToGraph(getById, OpInfo(identifierNumber), OpInfo(prediction), base));
+ return;
+ }
+
+ if (getByIdStatus.numVariants() > 1) {
+ if (getByIdStatus.makesCalls() || !isFTL(m_graph.m_plan.mode)
+ || !Options::usePolymorphicAccessInlining()) {
+ set(VirtualRegister(destinationOperand),
+ addToGraph(getById, OpInfo(identifierNumber), OpInfo(prediction), base));
+ return;
}
+
+ Vector<MultiGetByOffsetCase, 2> cases;
+
+ // 1) Emit prototype structure checks for all chains. This could sort of maybe not be
+ // optimal, if there is some rarely executed case in the chain that requires a lot
+ // of checks and those checks are not watchpointable.
+ for (const GetByIdVariant& variant : getByIdStatus.variants()) {
+ if (variant.intrinsic() != NoIntrinsic) {
+ set(VirtualRegister(destinationOperand),
+ addToGraph(getById, OpInfo(identifierNumber), OpInfo(prediction), base));
+ return;
+ }
- Node* resolve = addToGraph(ResolveGlobal, OpInfo(m_graph.m_resolveGlobalData.size()), OpInfo(prediction));
- m_graph.m_resolveGlobalData.append(ResolveGlobalData());
- ResolveGlobalData& data = m_graph.m_resolveGlobalData.last();
- data.identifierNumber = identifier;
- data.resolveOperations = resolveOperations;
- data.putToBaseOperation = putToBaseOperation;
- data.resolvePropertyIndex = resolveValueOperation - resolveOperations->data();
- *value = resolve;
- return true;
+ if (variant.conditionSet().isEmpty()) {
+ cases.append(
+ MultiGetByOffsetCase(
+ variant.structureSet(),
+ GetByOffsetMethod::load(variant.offset())));
+ continue;
+ }
+
+ GetByOffsetMethod method = planLoad(variant.conditionSet());
+ if (!method) {
+ set(VirtualRegister(destinationOperand),
+ addToGraph(getById, OpInfo(identifierNumber), OpInfo(prediction), base));
+ return;
+ }
+
+ cases.append(MultiGetByOffsetCase(variant.structureSet(), method));
+ }
+
+ if (m_graph.compilation())
+ m_graph.compilation()->noticeInlinedGetById();
+
+ // 2) Emit a MultiGetByOffset
+ MultiGetByOffsetData* data = m_graph.m_multiGetByOffsetData.add();
+ data->cases = cases;
+ data->identifierNumber = identifierNumber;
+ set(VirtualRegister(destinationOperand),
+ addToGraph(MultiGetByOffset, OpInfo(data), OpInfo(prediction), base));
+ return;
}
- case ResolveOperation::GetAndReturnGlobalVar: {
- *value = addToGraph(
- GetGlobalVar,
- OpInfo(globalObject->assertRegisterIsInThisObject(pc->m_registerAddress)),
- OpInfo(prediction));
- return true;
+
+ ASSERT(getByIdStatus.numVariants() == 1);
+ GetByIdVariant variant = getByIdStatus[0];
+
+ Node* loadedValue = load(prediction, base, identifierNumber, variant);
+ if (!loadedValue) {
+ set(VirtualRegister(destinationOperand),
+ addToGraph(getById, OpInfo(identifierNumber), OpInfo(prediction), base));
+ return;
}
- case ResolveOperation::GetAndReturnGlobalVarWatchable: {
- SpeculatedType prediction = getPrediction();
- JSGlobalObject* globalObject = m_inlineStackTop->m_codeBlock->globalObject();
+ if (m_graph.compilation())
+ m_graph.compilation()->noticeInlinedGetById();
- Identifier ident = m_codeBlock->identifier(identifier);
- SymbolTableEntry entry = globalObject->symbolTable()->get(ident.impl());
- if (!entry.couldBeWatched()) {
- *value = addToGraph(GetGlobalVar, OpInfo(globalObject->assertRegisterIsInThisObject(pc->m_registerAddress)), OpInfo(prediction));
- return true;
- }
+ if (!variant.callLinkStatus() && variant.intrinsic() == NoIntrinsic) {
+ set(VirtualRegister(destinationOperand), loadedValue);
+ return;
+ }
+
+ Node* getter = addToGraph(GetGetter, loadedValue);
+
+ if (handleIntrinsicGetter(destinationOperand, variant, base,
+ [&] () {
+ addToGraph(CheckCell, OpInfo(m_graph.freeze(variant.intrinsicFunction())), getter, base);
+ })) {
+ addToGraph(Phantom, getter);
+ return;
+ }
+
+ if (variant.intrinsic() != NoIntrinsic)
+ ASSERT(variant.intrinsic() == NoIntrinsic);
- // The watchpoint is still intact! This means that we will get notified if the
- // current value in the global variable changes. So, we can inline that value.
- // Moreover, currently we can assume that this value is a JSFunction*, which
- // implies that it's a cell. This simplifies things, since in general we'd have
- // to use a JSConstant for non-cells and a WeakJSConstant for cells. So instead
- // of having both cases we just assert that the value is a cell.
+ // Make a call. We don't try to get fancy with using the smallest operand number because
+ // the stack layout phase should compress the stack anyway.
+
+ unsigned numberOfParameters = 0;
+ numberOfParameters++; // The 'this' argument.
+ numberOfParameters++; // True return PC.
+
+ // Start with a register offset that corresponds to the last in-use register.
+ int registerOffset = virtualRegisterForLocal(
+ m_inlineStackTop->m_profiledBlock->m_numCalleeLocals - 1).offset();
+ registerOffset -= numberOfParameters;
+ registerOffset -= JSStack::CallFrameHeaderSize;
+
+ // Get the alignment right.
+ registerOffset = -WTF::roundUpToMultipleOf(
+ stackAlignmentRegisters(),
+ -registerOffset);
+
+ ensureLocals(
+ m_inlineStackTop->remapOperand(
+ VirtualRegister(registerOffset)).toLocal());
+
+ // Issue SetLocals. This has two effects:
+ // 1) That's how handleCall() sees the arguments.
+ // 2) If we inline then this ensures that the arguments are flushed so that if you use
+ // the dreaded arguments object on the getter, the right things happen. Well, sort of -
+ // since we only really care about 'this' in this case. But we're not going to take that
+ // shortcut.
+ int nextRegister = registerOffset + JSStack::CallFrameHeaderSize;
+ set(VirtualRegister(nextRegister++), base, ImmediateNakedSet);
+
+ // We've set some locals, but they are not user-visible. It's still OK to exit from here.
+ m_exitOK = true;
+ addToGraph(ExitOK);
+
+ handleCall(
+ destinationOperand, Call, InlineCallFrame::GetterCall, OPCODE_LENGTH(op_get_by_id),
+ getter, numberOfParameters - 1, registerOffset, *variant.callLinkStatus(), prediction);
+}
- // NB. If it wasn't for CSE, GlobalVarWatchpoint would have no need for the
- // register pointer. But CSE tracks effects on global variables by comparing
- // register pointers. Because CSE executes multiple times while the backend
- // executes once, we use the following performance trade-off:
- // - The node refers directly to the register pointer to make CSE super cheap.
- // - To perform backend code generation, the node only contains the identifier
- // number, from which it is possible to get (via a few average-time O(1)
- // lookups) to the WatchpointSet.
+void ByteCodeParser::emitPutById(
+ Node* base, unsigned identifierNumber, Node* value, const PutByIdStatus& putByIdStatus, bool isDirect)
+{
+ if (isDirect)
+ addToGraph(PutByIdDirect, OpInfo(identifierNumber), base, value);
+ else
+ addToGraph(putByIdStatus.makesCalls() ? PutByIdFlush : PutById, OpInfo(identifierNumber), base, value);
+}
- addToGraph(GlobalVarWatchpoint, OpInfo(globalObject->assertRegisterIsInThisObject(pc->m_registerAddress)), OpInfo(identifier));
+void ByteCodeParser::handlePutById(
+ Node* base, unsigned identifierNumber, Node* value,
+ const PutByIdStatus& putByIdStatus, bool isDirect)
+{
+ if (!putByIdStatus.isSimple() || !putByIdStatus.numVariants() || !Options::useAccessInlining()) {
+ if (!putByIdStatus.isSet())
+ addToGraph(ForceOSRExit);
+ emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
+ return;
+ }
+
+ if (putByIdStatus.numVariants() > 1) {
+ if (!isFTL(m_graph.m_plan.mode) || putByIdStatus.makesCalls()
+ || !Options::usePolymorphicAccessInlining()) {
+ emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
+ return;
+ }
+
+ if (!isDirect) {
+ for (unsigned variantIndex = putByIdStatus.numVariants(); variantIndex--;) {
+ if (putByIdStatus[variantIndex].kind() != PutByIdVariant::Transition)
+ continue;
+ if (!check(putByIdStatus[variantIndex].conditionSet())) {
+ emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
+ return;
+ }
+ }
+ }
+
+ if (m_graph.compilation())
+ m_graph.compilation()->noticeInlinedPutById();
- JSValue specificValue = globalObject->registerAt(entry.getIndex()).get();
- ASSERT(specificValue.isCell());
- *value = cellConstant(specificValue.asCell());
- return true;
+ for (const PutByIdVariant& variant : putByIdStatus.variants())
+ m_graph.registerInferredType(variant.requiredType());
+
+ MultiPutByOffsetData* data = m_graph.m_multiPutByOffsetData.add();
+ data->variants = putByIdStatus.variants();
+ data->identifierNumber = identifierNumber;
+ addToGraph(MultiPutByOffset, OpInfo(data), base, value);
+ return;
}
- case ResolveOperation::GetAndReturnScopedVar: {
- Node* getScopeRegisters = addToGraph(GetScopeRegisters, localBase);
- *value = addToGraph(GetScopedVar, OpInfo(resolveValueOperation->m_offset), OpInfo(prediction), getScopeRegisters);
- return true;
+
+ ASSERT(putByIdStatus.numVariants() == 1);
+ const PutByIdVariant& variant = putByIdStatus[0];
+
+ switch (variant.kind()) {
+ case PutByIdVariant::Replace: {
+ store(base, identifierNumber, variant, value);
+ if (m_graph.compilation())
+ m_graph.compilation()->noticeInlinedPutById();
+ return;
}
- default:
- CRASH();
- return false;
+
+ case PutByIdVariant::Transition: {
+ addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(variant.oldStructure())), base);
+ if (!check(variant.conditionSet())) {
+ emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
+ return;
+ }
+
+ ASSERT(variant.oldStructureForTransition()->transitionWatchpointSetHasBeenInvalidated());
+
+ Node* propertyStorage;
+ Transition* transition = m_graph.m_transitions.add(
+ variant.oldStructureForTransition(), variant.newStructure());
+
+ if (variant.reallocatesStorage()) {
+
+ // If we're growing the property storage then it must be because we're
+ // storing into the out-of-line storage.
+ ASSERT(!isInlineOffset(variant.offset()));
+
+ if (!variant.oldStructureForTransition()->outOfLineCapacity()) {
+ propertyStorage = addToGraph(
+ AllocatePropertyStorage, OpInfo(transition), base);
+ } else {
+ propertyStorage = addToGraph(
+ ReallocatePropertyStorage, OpInfo(transition),
+ base, addToGraph(GetButterfly, base));
+ }
+ } else {
+ if (isInlineOffset(variant.offset()))
+ propertyStorage = base;
+ else
+ propertyStorage = addToGraph(GetButterfly, base);
+ }
+
+ StorageAccessData* data = m_graph.m_storageAccessData.add();
+ data->offset = variant.offset();
+ data->identifierNumber = identifierNumber;
+ data->inferredType = variant.requiredType();
+ m_graph.registerInferredType(data->inferredType);
+
+ addToGraph(
+ PutByOffset,
+ OpInfo(data),
+ propertyStorage,
+ base,
+ value);
+
+ // FIXME: PutStructure goes last until we fix either
+ // https://bugs.webkit.org/show_bug.cgi?id=142921 or
+ // https://bugs.webkit.org/show_bug.cgi?id=142924.
+ addToGraph(PutStructure, OpInfo(transition), base);
+
+ if (m_graph.compilation())
+ m_graph.compilation()->noticeInlinedPutById();
+ return;
+ }
+
+ case PutByIdVariant::Setter: {
+ Node* loadedValue = load(SpecCellOther, base, identifierNumber, variant);
+ if (!loadedValue) {
+ emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
+ return;
+ }
+
+ Node* setter = addToGraph(GetSetter, loadedValue);
+
+ // Make a call. We don't try to get fancy with using the smallest operand number because
+ // the stack layout phase should compress the stack anyway.
+
+ unsigned numberOfParameters = 0;
+ numberOfParameters++; // The 'this' argument.
+ numberOfParameters++; // The new value.
+ numberOfParameters++; // True return PC.
+
+ // Start with a register offset that corresponds to the last in-use register.
+ int registerOffset = virtualRegisterForLocal(
+ m_inlineStackTop->m_profiledBlock->m_numCalleeLocals - 1).offset();
+ registerOffset -= numberOfParameters;
+ registerOffset -= JSStack::CallFrameHeaderSize;
+
+ // Get the alignment right.
+ registerOffset = -WTF::roundUpToMultipleOf(
+ stackAlignmentRegisters(),
+ -registerOffset);
+
+ ensureLocals(
+ m_inlineStackTop->remapOperand(
+ VirtualRegister(registerOffset)).toLocal());
+
+ int nextRegister = registerOffset + JSStack::CallFrameHeaderSize;
+ set(VirtualRegister(nextRegister++), base, ImmediateNakedSet);
+ set(VirtualRegister(nextRegister++), value, ImmediateNakedSet);
+
+ // We've set some locals, but they are not user-visible. It's still OK to exit from here.
+ m_exitOK = true;
+ addToGraph(ExitOK);
+
+ handleCall(
+ VirtualRegister().offset(), Call, InlineCallFrame::SetterCall,
+ OPCODE_LENGTH(op_put_by_id), setter, numberOfParameters - 1, registerOffset,
+ *variant.callLinkStatus(), SpecOther);
+ return;
}
+
+ default: {
+ emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
+ return;
+ } }
+}
+void ByteCodeParser::prepareToParseBlock()
+{
+ clearCaches();
+ ASSERT(m_setLocalQueue.isEmpty());
+}
+
+void ByteCodeParser::clearCaches()
+{
+ m_constants.resize(0);
}
bool ByteCodeParser::parseBlock(unsigned limit)
@@ -1953,17 +3189,22 @@ bool ByteCodeParser::parseBlock(unsigned limit)
Interpreter* interpreter = m_vm->interpreter;
Instruction* instructionsBegin = m_inlineStackTop->m_codeBlock->instructions().begin();
unsigned blockBegin = m_currentIndex;
-
+
// If we are the first basic block, introduce markers for arguments. This allows
// us to track if a use of an argument may use the actual argument passed, as
// opposed to using a value we set explicitly.
- if (m_currentBlock == m_graph.m_blocks[0].get() && !inlineCallFrame()) {
+ if (m_currentBlock == m_graph.block(0) && !inlineCallFrame()) {
m_graph.m_arguments.resize(m_numArguments);
+ // We will emit SetArgument nodes. They don't exit, but we're at the top of an op_enter so
+ // exitOK = true.
+ m_exitOK = true;
for (unsigned argument = 0; argument < m_numArguments; ++argument) {
VariableAccessData* variable = newVariableAccessData(
- argumentToOperand(argument), m_codeBlock->isCaptured(argumentToOperand(argument)));
+ virtualRegisterForArgument(argument));
variable->mergeStructureCheckHoistingFailed(
m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache));
+ variable->mergeCheckArrayHoistingFailed(
+ m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadIndexingType));
Node* setArgument = addToGraph(SetArgument, OpInfo(variable));
m_graph.m_arguments[argument] = setArgument;
@@ -1972,8 +3213,12 @@ bool ByteCodeParser::parseBlock(unsigned limit)
}
while (true) {
- m_currentProfilingIndex = m_currentIndex;
-
+ // We're staring a new bytecode instruction. Hence, we once again have a place that we can exit
+ // to.
+ m_exitOK = true;
+
+ processSetLocalQueue();
+
// Don't extend over jump destinations.
if (m_currentIndex == limit) {
// Ordinarily we want to plant a jump. But refuse to do this if the block is
@@ -1983,13 +3228,11 @@ bool ByteCodeParser::parseBlock(unsigned limit)
// logic relies on every bytecode resulting in one or more nodes, which would
// be true anyway except for op_loop_hint, which emits a Phantom to force this
// to be true.
+ // We also don't insert a jump if the block already has a terminal,
+ // which could happen after a tail call.
+ ASSERT(m_currentBlock->isEmpty() || !m_currentBlock->terminal());
if (!m_currentBlock->isEmpty())
addToGraph(Jump, OpInfo(m_currentIndex));
- else {
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLogF("Refusing to plant jump at limit %u because block %p is empty.\n", limit, m_currentBlock);
-#endif
- }
return shouldContinueParsing;
}
@@ -1998,8 +3241,11 @@ bool ByteCodeParser::parseBlock(unsigned limit)
m_currentInstruction = currentInstruction; // Some methods want to use this, and we'd rather not thread it through calls.
OpcodeID opcodeID = interpreter->getOpcodeID(currentInstruction->u.opcode);
- if (m_graph.m_compilation && opcodeID != op_call_put_result) {
- addToGraph(CountExecution, OpInfo(m_graph.m_compilation->executionCounterFor(
+ if (Options::verboseDFGByteCodeParsing())
+ dataLog(" parsing ", currentCodeOrigin(), ": ", opcodeID, "\n");
+
+ if (m_graph.compilation()) {
+ addToGraph(CountExecution, OpInfo(m_graph.compilation()->executionCounterFor(
Profiler::OriginStack(*m_vm->m_perBytecodeProfiler, m_codeBlock, currentCodeOrigin()))));
}
@@ -2007,65 +3253,76 @@ bool ByteCodeParser::parseBlock(unsigned limit)
// === Function entry opcodes ===
- case op_enter:
+ case op_enter: {
+ Node* undefined = addToGraph(JSConstant, OpInfo(m_constantUndefined));
// Initialize all locals to undefined.
for (int i = 0; i < m_inlineStackTop->m_codeBlock->m_numVars; ++i)
- set(i, constantUndefined(), SetOnEntry);
+ set(virtualRegisterForLocal(i), undefined, ImmediateNakedSet);
NEXT_OPCODE(op_enter);
-
- case op_convert_this: {
+ }
+
+ case op_to_this: {
Node* op1 = getThis();
- if (op1->op() != ConvertThis) {
- ValueProfile* profile =
- m_inlineStackTop->m_profiledBlock->valueProfileForBytecodeOffset(m_currentProfilingIndex);
- profile->computeUpdatedPrediction();
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLogF("[bc#%u]: profile %p: ", m_currentProfilingIndex, profile);
- profile->dump(WTF::dataFile());
- dataLogF("\n");
-#endif
- if (profile->m_singletonValueIsTop
- || !profile->m_singletonValue
- || !profile->m_singletonValue.isCell()
- || profile->m_singletonValue.asCell()->classInfo() != &Structure::s_info)
- setThis(addToGraph(ConvertThis, op1));
- else {
+ if (op1->op() != ToThis) {
+ Structure* cachedStructure = currentInstruction[2].u.structure.get();
+ if (currentInstruction[2].u.toThisStatus != ToThisOK
+ || !cachedStructure
+ || cachedStructure->classInfo()->methodTable.toThis != JSObject::info()->methodTable.toThis
+ || m_inlineStackTop->m_profiledBlock->couldTakeSlowCase(m_currentIndex)
+ || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache)
+ || (op1->op() == GetLocal && op1->variableAccessData()->structureCheckHoistingFailed())) {
+ setThis(addToGraph(ToThis, op1));
+ } else {
addToGraph(
CheckStructure,
- OpInfo(m_graph.addStructureSet(jsCast<Structure*>(profile->m_singletonValue.asCell()))),
+ OpInfo(m_graph.addStructureSet(cachedStructure)),
op1);
}
}
- NEXT_OPCODE(op_convert_this);
+ NEXT_OPCODE(op_to_this);
}
case op_create_this: {
int calleeOperand = currentInstruction[2].u.operand;
- Node* callee = get(calleeOperand);
+ Node* callee = get(VirtualRegister(calleeOperand));
+
+ JSFunction* function = callee->dynamicCastConstant<JSFunction*>();
+ if (!function) {
+ JSCell* cachedFunction = currentInstruction[4].u.jsCell.unvalidatedGet();
+ if (cachedFunction
+ && cachedFunction != JSCell::seenMultipleCalleeObjects()
+ && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCell)) {
+ ASSERT(cachedFunction->inherits(JSFunction::info()));
+
+ FrozenValue* frozen = m_graph.freeze(cachedFunction);
+ addToGraph(CheckCell, OpInfo(frozen), callee);
+
+ function = static_cast<JSFunction*>(cachedFunction);
+ }
+ }
+
bool alreadyEmitted = false;
- if (callee->op() == WeakJSConstant) {
- JSCell* cell = callee->weakConstant();
- ASSERT(cell->inherits(&JSFunction::s_info));
-
- JSFunction* function = jsCast<JSFunction*>(cell);
- ObjectAllocationProfile* allocationProfile = function->tryGetAllocationProfile();
- if (allocationProfile) {
- addToGraph(AllocationProfileWatchpoint, OpInfo(function));
- // The callee is still live up to this point.
- addToGraph(Phantom, callee);
- set(currentInstruction[1].u.operand,
- addToGraph(NewObject, OpInfo(allocationProfile->structure())));
- alreadyEmitted = true;
+ if (function) {
+ if (FunctionRareData* rareData = function->rareData()) {
+ if (Structure* structure = rareData->objectAllocationStructure()) {
+ m_graph.freeze(rareData);
+ m_graph.watchpoints().addLazily(rareData->allocationProfileWatchpointSet());
+ // The callee is still live up to this point.
+ addToGraph(Phantom, callee);
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewObject, OpInfo(structure)));
+ alreadyEmitted = true;
+ }
}
}
- if (!alreadyEmitted)
- set(currentInstruction[1].u.operand,
+ if (!alreadyEmitted) {
+ set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(CreateThis, OpInfo(currentInstruction[3].u.operand), callee));
+ }
NEXT_OPCODE(op_create_this);
}
case op_new_object: {
- set(currentInstruction[1].u.operand,
+ set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(NewObject,
OpInfo(currentInstruction[3].u.objectAllocationProfile->structure())));
NEXT_OPCODE(op_new_object);
@@ -2075,16 +3332,16 @@ bool ByteCodeParser::parseBlock(unsigned limit)
int startOperand = currentInstruction[2].u.operand;
int numOperands = currentInstruction[3].u.operand;
ArrayAllocationProfile* profile = currentInstruction[4].u.arrayAllocationProfile;
- for (int operandIdx = startOperand; operandIdx < startOperand + numOperands; ++operandIdx)
- addVarArgChild(get(operandIdx));
- set(currentInstruction[1].u.operand, addToGraph(Node::VarArg, NewArray, OpInfo(profile->selectIndexingType()), OpInfo(0)));
+ for (int operandIdx = startOperand; operandIdx > startOperand - numOperands; --operandIdx)
+ addVarArgChild(get(VirtualRegister(operandIdx)));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(Node::VarArg, NewArray, OpInfo(profile->selectIndexingType()), OpInfo(0)));
NEXT_OPCODE(op_new_array);
}
case op_new_array_with_size: {
int lengthOperand = currentInstruction[2].u.operand;
ArrayAllocationProfile* profile = currentInstruction[3].u.arrayAllocationProfile;
- set(currentInstruction[1].u.operand, addToGraph(NewArrayWithSize, OpInfo(profile->selectIndexingType()), get(lengthOperand)));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewArrayWithSize, OpInfo(profile->selectIndexingType()), get(VirtualRegister(lengthOperand))));
NEXT_OPCODE(op_new_array_with_size);
}
@@ -2106,239 +3363,267 @@ bool ByteCodeParser::parseBlock(unsigned limit)
}
m_graph.m_newArrayBufferData.append(data);
- set(currentInstruction[1].u.operand, addToGraph(NewArrayBuffer, OpInfo(&m_graph.m_newArrayBufferData.last())));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewArrayBuffer, OpInfo(&m_graph.m_newArrayBufferData.last())));
NEXT_OPCODE(op_new_array_buffer);
}
case op_new_regexp: {
- set(currentInstruction[1].u.operand, addToGraph(NewRegexp, OpInfo(currentInstruction[2].u.operand)));
+ // FIXME: We really should be able to inline code that uses NewRegexp. That means
+ // using something other than the index into the CodeBlock here.
+ // https://bugs.webkit.org/show_bug.cgi?id=154808
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewRegexp, OpInfo(currentInstruction[2].u.operand)));
NEXT_OPCODE(op_new_regexp);
}
-
- case op_get_callee: {
- ValueProfile* profile = currentInstruction[2].u.profile;
- profile->computeUpdatedPrediction();
- if (profile->m_singletonValueIsTop
- || !profile->m_singletonValue
- || !profile->m_singletonValue.isCell())
- set(currentInstruction[1].u.operand, get(JSStack::Callee));
- else {
- ASSERT(profile->m_singletonValue.asCell()->inherits(&JSFunction::s_info));
- Node* actualCallee = get(JSStack::Callee);
- addToGraph(CheckFunction, OpInfo(profile->m_singletonValue.asCell()), actualCallee);
- set(currentInstruction[1].u.operand, addToGraph(WeakJSConstant, OpInfo(profile->m_singletonValue.asCell())));
- }
- NEXT_OPCODE(op_get_callee);
+
+ case op_get_rest_length: {
+ InlineCallFrame* inlineCallFrame = this->inlineCallFrame();
+ Node* length;
+ if (inlineCallFrame && !inlineCallFrame->isVarargs()) {
+ unsigned argumentsLength = inlineCallFrame->arguments.size() - 1;
+ unsigned numParamsToSkip = currentInstruction[2].u.unsignedValue;
+ JSValue restLength;
+ if (argumentsLength <= numParamsToSkip)
+ restLength = jsNumber(0);
+ else
+ restLength = jsNumber(argumentsLength - numParamsToSkip);
+
+ length = jsConstant(restLength);
+ } else
+ length = addToGraph(GetRestLength, OpInfo(currentInstruction[2].u.unsignedValue));
+ set(VirtualRegister(currentInstruction[1].u.operand), length);
+ NEXT_OPCODE(op_get_rest_length);
}
+ case op_copy_rest: {
+ noticeArgumentsUse();
+ Node* array = get(VirtualRegister(currentInstruction[1].u.operand));
+ Node* arrayLength = get(VirtualRegister(currentInstruction[2].u.operand));
+ addToGraph(CopyRest, OpInfo(currentInstruction[3].u.unsignedValue),
+ array, arrayLength);
+ NEXT_OPCODE(op_copy_rest);
+ }
+
// === Bitwise operations ===
case op_bitand: {
- Node* op1 = getToInt32(currentInstruction[2].u.operand);
- Node* op2 = getToInt32(currentInstruction[3].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(BitAnd, op1, op2));
+ Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(BitAnd, op1, op2));
NEXT_OPCODE(op_bitand);
}
case op_bitor: {
- Node* op1 = getToInt32(currentInstruction[2].u.operand);
- Node* op2 = getToInt32(currentInstruction[3].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(BitOr, op1, op2));
+ Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(BitOr, op1, op2));
NEXT_OPCODE(op_bitor);
}
case op_bitxor: {
- Node* op1 = getToInt32(currentInstruction[2].u.operand);
- Node* op2 = getToInt32(currentInstruction[3].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(BitXor, op1, op2));
+ Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(BitXor, op1, op2));
NEXT_OPCODE(op_bitxor);
}
case op_rshift: {
- Node* op1 = getToInt32(currentInstruction[2].u.operand);
- Node* op2 = getToInt32(currentInstruction[3].u.operand);
- Node* result;
- // Optimize out shifts by zero.
- if (isInt32Constant(op2) && !(valueOfInt32Constant(op2) & 0x1f))
- result = op1;
- else
- result = addToGraph(BitRShift, op1, op2);
- set(currentInstruction[1].u.operand, result);
+ Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand),
+ addToGraph(BitRShift, op1, op2));
NEXT_OPCODE(op_rshift);
}
case op_lshift: {
- Node* op1 = getToInt32(currentInstruction[2].u.operand);
- Node* op2 = getToInt32(currentInstruction[3].u.operand);
- Node* result;
- // Optimize out shifts by zero.
- if (isInt32Constant(op2) && !(valueOfInt32Constant(op2) & 0x1f))
- result = op1;
- else
- result = addToGraph(BitLShift, op1, op2);
- set(currentInstruction[1].u.operand, result);
+ Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand),
+ addToGraph(BitLShift, op1, op2));
NEXT_OPCODE(op_lshift);
}
case op_urshift: {
- Node* op1 = getToInt32(currentInstruction[2].u.operand);
- Node* op2 = getToInt32(currentInstruction[3].u.operand);
- Node* result;
- // The result of a zero-extending right shift is treated as an unsigned value.
- // This means that if the top bit is set, the result is not in the int32 range,
- // and as such must be stored as a double. If the shift amount is a constant,
- // we may be able to optimize.
- if (isInt32Constant(op2)) {
- // If we know we are shifting by a non-zero amount, then since the operation
- // zero fills we know the top bit of the result must be zero, and as such the
- // result must be within the int32 range. Conversely, if this is a shift by
- // zero, then the result may be changed by the conversion to unsigned, but it
- // is not necessary to perform the shift!
- if (valueOfInt32Constant(op2) & 0x1f)
- result = addToGraph(BitURShift, op1, op2);
- else
- result = makeSafe(addToGraph(UInt32ToNumber, op1));
- } else {
- // Cannot optimize at this stage; shift & potentially rebox as a double.
- result = addToGraph(BitURShift, op1, op2);
- result = makeSafe(addToGraph(UInt32ToNumber, result));
- }
- set(currentInstruction[1].u.operand, result);
+ Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand),
+ addToGraph(BitURShift, op1, op2));
NEXT_OPCODE(op_urshift);
}
+
+ case op_unsigned: {
+ set(VirtualRegister(currentInstruction[1].u.operand),
+ makeSafe(addToGraph(UInt32ToNumber, get(VirtualRegister(currentInstruction[2].u.operand)))));
+ NEXT_OPCODE(op_unsigned);
+ }
// === Increment/Decrement opcodes ===
case op_inc: {
- unsigned srcDst = currentInstruction[1].u.operand;
- Node* op = get(srcDst);
- set(srcDst, makeSafe(addToGraph(ArithAdd, op, one())));
+ int srcDst = currentInstruction[1].u.operand;
+ VirtualRegister srcDstVirtualRegister = VirtualRegister(srcDst);
+ Node* op = get(srcDstVirtualRegister);
+ set(srcDstVirtualRegister, makeSafe(addToGraph(ArithAdd, op, addToGraph(JSConstant, OpInfo(m_constantOne)))));
NEXT_OPCODE(op_inc);
}
case op_dec: {
- unsigned srcDst = currentInstruction[1].u.operand;
- Node* op = get(srcDst);
- set(srcDst, makeSafe(addToGraph(ArithSub, op, one())));
+ int srcDst = currentInstruction[1].u.operand;
+ VirtualRegister srcDstVirtualRegister = VirtualRegister(srcDst);
+ Node* op = get(srcDstVirtualRegister);
+ set(srcDstVirtualRegister, makeSafe(addToGraph(ArithSub, op, addToGraph(JSConstant, OpInfo(m_constantOne)))));
NEXT_OPCODE(op_dec);
}
// === Arithmetic operations ===
case op_add: {
- Node* op1 = get(currentInstruction[2].u.operand);
- Node* op2 = get(currentInstruction[3].u.operand);
+ Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
if (op1->hasNumberResult() && op2->hasNumberResult())
- set(currentInstruction[1].u.operand, makeSafe(addToGraph(ArithAdd, op1, op2)));
+ set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithAdd, op1, op2)));
else
- set(currentInstruction[1].u.operand, makeSafe(addToGraph(ValueAdd, op1, op2)));
+ set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ValueAdd, op1, op2)));
NEXT_OPCODE(op_add);
}
case op_sub: {
- Node* op1 = get(currentInstruction[2].u.operand);
- Node* op2 = get(currentInstruction[3].u.operand);
- set(currentInstruction[1].u.operand, makeSafe(addToGraph(ArithSub, op1, op2)));
+ Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithSub, op1, op2)));
NEXT_OPCODE(op_sub);
}
case op_negate: {
- Node* op1 = get(currentInstruction[2].u.operand);
- set(currentInstruction[1].u.operand, makeSafe(addToGraph(ArithNegate, op1)));
+ Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithNegate, op1)));
NEXT_OPCODE(op_negate);
}
case op_mul: {
// Multiply requires that the inputs are not truncated, unfortunately.
- Node* op1 = get(currentInstruction[2].u.operand);
- Node* op2 = get(currentInstruction[3].u.operand);
- set(currentInstruction[1].u.operand, makeSafe(addToGraph(ArithMul, op1, op2)));
+ Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithMul, op1, op2)));
NEXT_OPCODE(op_mul);
}
case op_mod: {
- Node* op1 = get(currentInstruction[2].u.operand);
- Node* op2 = get(currentInstruction[3].u.operand);
- set(currentInstruction[1].u.operand, makeSafe(addToGraph(ArithMod, op1, op2)));
+ Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithMod, op1, op2)));
NEXT_OPCODE(op_mod);
}
case op_div: {
- Node* op1 = get(currentInstruction[2].u.operand);
- Node* op2 = get(currentInstruction[3].u.operand);
- set(currentInstruction[1].u.operand, makeDivSafe(addToGraph(ArithDiv, op1, op2)));
+ Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), makeDivSafe(addToGraph(ArithDiv, op1, op2)));
NEXT_OPCODE(op_div);
}
// === Misc operations ===
-#if ENABLE(DEBUG_WITH_BREAKPOINT)
case op_debug:
addToGraph(Breakpoint);
NEXT_OPCODE(op_debug);
-#endif
+
+ case op_profile_will_call: {
+ addToGraph(ProfileWillCall);
+ NEXT_OPCODE(op_profile_will_call);
+ }
+
+ case op_profile_did_call: {
+ addToGraph(ProfileDidCall);
+ NEXT_OPCODE(op_profile_did_call);
+ }
+
case op_mov: {
- Node* op = get(currentInstruction[2].u.operand);
- set(currentInstruction[1].u.operand, op);
+ Node* op = get(VirtualRegister(currentInstruction[2].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), op);
NEXT_OPCODE(op_mov);
}
- case op_check_has_instance:
- addToGraph(CheckHasInstance, get(currentInstruction[3].u.operand));
- NEXT_OPCODE(op_check_has_instance);
+ case op_check_tdz: {
+ addToGraph(CheckNotEmpty, get(VirtualRegister(currentInstruction[1].u.operand)));
+ NEXT_OPCODE(op_check_tdz);
+ }
+
+ case op_overrides_has_instance: {
+ JSFunction* defaultHasInstanceSymbolFunction = m_inlineStackTop->m_codeBlock->globalObjectFor(currentCodeOrigin())->functionProtoHasInstanceSymbolFunction();
+
+ Node* constructor = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* hasInstanceValue = get(VirtualRegister(currentInstruction[3].u.operand));
+
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(OverridesHasInstance, OpInfo(m_graph.freeze(defaultHasInstanceSymbolFunction)), constructor, hasInstanceValue));
+ NEXT_OPCODE(op_overrides_has_instance);
+ }
case op_instanceof: {
- Node* value = get(currentInstruction[2].u.operand);
- Node* prototype = get(currentInstruction[3].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(InstanceOf, value, prototype));
+ Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* prototype = get(VirtualRegister(currentInstruction[3].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(InstanceOf, value, prototype));
NEXT_OPCODE(op_instanceof);
}
-
+
+ case op_instanceof_custom: {
+ Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* constructor = get(VirtualRegister(currentInstruction[3].u.operand));
+ Node* hasInstanceValue = get(VirtualRegister(currentInstruction[4].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(InstanceOfCustom, value, constructor, hasInstanceValue));
+ NEXT_OPCODE(op_instanceof_custom);
+ }
+
case op_is_undefined: {
- Node* value = get(currentInstruction[2].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(IsUndefined, value));
+ Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsUndefined, value));
NEXT_OPCODE(op_is_undefined);
}
case op_is_boolean: {
- Node* value = get(currentInstruction[2].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(IsBoolean, value));
+ Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsBoolean, value));
NEXT_OPCODE(op_is_boolean);
}
case op_is_number: {
- Node* value = get(currentInstruction[2].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(IsNumber, value));
+ Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsNumber, value));
NEXT_OPCODE(op_is_number);
}
case op_is_string: {
- Node* value = get(currentInstruction[2].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(IsString, value));
+ Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsString, value));
NEXT_OPCODE(op_is_string);
}
case op_is_object: {
- Node* value = get(currentInstruction[2].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(IsObject, value));
+ Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsObject, value));
NEXT_OPCODE(op_is_object);
}
+ case op_is_object_or_null: {
+ Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsObjectOrNull, value));
+ NEXT_OPCODE(op_is_object_or_null);
+ }
+
case op_is_function: {
- Node* value = get(currentInstruction[2].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(IsFunction, value));
+ Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsFunction, value));
NEXT_OPCODE(op_is_function);
}
case op_not: {
- Node* value = get(currentInstruction[2].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(LogicalNot, value));
+ Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, value));
NEXT_OPCODE(op_not);
}
case op_to_primitive: {
- Node* value = get(currentInstruction[2].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(ToPrimitive, value));
+ Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(ToPrimitive, value));
NEXT_OPCODE(op_to_primitive);
}
@@ -2346,747 +3631,535 @@ bool ByteCodeParser::parseBlock(unsigned limit)
int startOperand = currentInstruction[2].u.operand;
int numOperands = currentInstruction[3].u.operand;
#if CPU(X86)
- // X86 doesn't have enough registers to compile MakeRope with three arguments.
- // Rather than try to be clever, we just make MakeRope dumber on this processor.
- const unsigned maxRopeArguments = 2;
+ // X86 doesn't have enough registers to compile MakeRope with three arguments. The
+ // StrCat we emit here may be turned into a MakeRope. Rather than try to be clever,
+ // we just make StrCat dumber on this processor.
+ const unsigned maxArguments = 2;
#else
- const unsigned maxRopeArguments = 3;
+ const unsigned maxArguments = 3;
#endif
- OwnArrayPtr<Node*> toStringNodes = adoptArrayPtr(new Node*[numOperands]);
- for (int i = 0; i < numOperands; i++)
- toStringNodes[i] = addToGraph(ToString, get(startOperand + i));
-
- for (int i = 0; i < numOperands; i++)
- addToGraph(Phantom, toStringNodes[i]);
-
Node* operands[AdjacencyList::Size];
unsigned indexInOperands = 0;
for (unsigned i = 0; i < AdjacencyList::Size; ++i)
operands[i] = 0;
for (int operandIdx = 0; operandIdx < numOperands; ++operandIdx) {
- if (indexInOperands == maxRopeArguments) {
- operands[0] = addToGraph(MakeRope, operands[0], operands[1], operands[2]);
+ if (indexInOperands == maxArguments) {
+ operands[0] = addToGraph(StrCat, operands[0], operands[1], operands[2]);
for (unsigned i = 1; i < AdjacencyList::Size; ++i)
operands[i] = 0;
indexInOperands = 1;
}
ASSERT(indexInOperands < AdjacencyList::Size);
- ASSERT(indexInOperands < maxRopeArguments);
- operands[indexInOperands++] = toStringNodes[operandIdx];
+ ASSERT(indexInOperands < maxArguments);
+ operands[indexInOperands++] = get(VirtualRegister(startOperand - operandIdx));
}
- set(currentInstruction[1].u.operand,
- addToGraph(MakeRope, operands[0], operands[1], operands[2]));
+ set(VirtualRegister(currentInstruction[1].u.operand),
+ addToGraph(StrCat, operands[0], operands[1], operands[2]));
NEXT_OPCODE(op_strcat);
}
case op_less: {
- Node* op1 = get(currentInstruction[2].u.operand);
- Node* op2 = get(currentInstruction[3].u.operand);
- if (canFold(op1) && canFold(op2)) {
- JSValue a = valueOfJSConstant(op1);
- JSValue b = valueOfJSConstant(op2);
- if (a.isNumber() && b.isNumber()) {
- set(currentInstruction[1].u.operand,
- getJSConstantForValue(jsBoolean(a.asNumber() < b.asNumber())));
- NEXT_OPCODE(op_less);
- }
- }
- set(currentInstruction[1].u.operand, addToGraph(CompareLess, op1, op2));
+ Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareLess, op1, op2));
NEXT_OPCODE(op_less);
}
case op_lesseq: {
- Node* op1 = get(currentInstruction[2].u.operand);
- Node* op2 = get(currentInstruction[3].u.operand);
- if (canFold(op1) && canFold(op2)) {
- JSValue a = valueOfJSConstant(op1);
- JSValue b = valueOfJSConstant(op2);
- if (a.isNumber() && b.isNumber()) {
- set(currentInstruction[1].u.operand,
- getJSConstantForValue(jsBoolean(a.asNumber() <= b.asNumber())));
- NEXT_OPCODE(op_lesseq);
- }
- }
- set(currentInstruction[1].u.operand, addToGraph(CompareLessEq, op1, op2));
+ Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareLessEq, op1, op2));
NEXT_OPCODE(op_lesseq);
}
case op_greater: {
- Node* op1 = get(currentInstruction[2].u.operand);
- Node* op2 = get(currentInstruction[3].u.operand);
- if (canFold(op1) && canFold(op2)) {
- JSValue a = valueOfJSConstant(op1);
- JSValue b = valueOfJSConstant(op2);
- if (a.isNumber() && b.isNumber()) {
- set(currentInstruction[1].u.operand,
- getJSConstantForValue(jsBoolean(a.asNumber() > b.asNumber())));
- NEXT_OPCODE(op_greater);
- }
- }
- set(currentInstruction[1].u.operand, addToGraph(CompareGreater, op1, op2));
+ Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareGreater, op1, op2));
NEXT_OPCODE(op_greater);
}
case op_greatereq: {
- Node* op1 = get(currentInstruction[2].u.operand);
- Node* op2 = get(currentInstruction[3].u.operand);
- if (canFold(op1) && canFold(op2)) {
- JSValue a = valueOfJSConstant(op1);
- JSValue b = valueOfJSConstant(op2);
- if (a.isNumber() && b.isNumber()) {
- set(currentInstruction[1].u.operand,
- getJSConstantForValue(jsBoolean(a.asNumber() >= b.asNumber())));
- NEXT_OPCODE(op_greatereq);
- }
- }
- set(currentInstruction[1].u.operand, addToGraph(CompareGreaterEq, op1, op2));
+ Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareGreaterEq, op1, op2));
NEXT_OPCODE(op_greatereq);
}
case op_eq: {
- Node* op1 = get(currentInstruction[2].u.operand);
- Node* op2 = get(currentInstruction[3].u.operand);
- if (canFold(op1) && canFold(op2)) {
- JSValue a = valueOfJSConstant(op1);
- JSValue b = valueOfJSConstant(op2);
- set(currentInstruction[1].u.operand,
- getJSConstantForValue(jsBoolean(JSValue::equal(m_codeBlock->globalObject()->globalExec(), a, b))));
- NEXT_OPCODE(op_eq);
- }
- set(currentInstruction[1].u.operand, addToGraph(CompareEq, op1, op2));
+ Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareEq, op1, op2));
NEXT_OPCODE(op_eq);
}
case op_eq_null: {
- Node* value = get(currentInstruction[2].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(CompareEqConstant, value, constantNull()));
+ Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* nullConstant = addToGraph(JSConstant, OpInfo(m_constantNull));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareEq, value, nullConstant));
NEXT_OPCODE(op_eq_null);
}
case op_stricteq: {
- Node* op1 = get(currentInstruction[2].u.operand);
- Node* op2 = get(currentInstruction[3].u.operand);
- if (canFold(op1) && canFold(op2)) {
- JSValue a = valueOfJSConstant(op1);
- JSValue b = valueOfJSConstant(op2);
- set(currentInstruction[1].u.operand,
- getJSConstantForValue(jsBoolean(JSValue::strictEqual(m_codeBlock->globalObject()->globalExec(), a, b))));
- NEXT_OPCODE(op_stricteq);
- }
- if (isConstantForCompareStrictEq(op1))
- set(currentInstruction[1].u.operand, addToGraph(CompareStrictEqConstant, op2, op1));
- else if (isConstantForCompareStrictEq(op2))
- set(currentInstruction[1].u.operand, addToGraph(CompareStrictEqConstant, op1, op2));
- else
- set(currentInstruction[1].u.operand, addToGraph(CompareStrictEq, op1, op2));
+ Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareStrictEq, op1, op2));
NEXT_OPCODE(op_stricteq);
}
case op_neq: {
- Node* op1 = get(currentInstruction[2].u.operand);
- Node* op2 = get(currentInstruction[3].u.operand);
- if (canFold(op1) && canFold(op2)) {
- JSValue a = valueOfJSConstant(op1);
- JSValue b = valueOfJSConstant(op2);
- set(currentInstruction[1].u.operand,
- getJSConstantForValue(jsBoolean(!JSValue::equal(m_codeBlock->globalObject()->globalExec(), a, b))));
- NEXT_OPCODE(op_neq);
- }
- set(currentInstruction[1].u.operand, addToGraph(LogicalNot, addToGraph(CompareEq, op1, op2)));
+ Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, addToGraph(CompareEq, op1, op2)));
NEXT_OPCODE(op_neq);
}
case op_neq_null: {
- Node* value = get(currentInstruction[2].u.operand);
- set(currentInstruction[1].u.operand, addToGraph(LogicalNot, addToGraph(CompareEqConstant, value, constantNull())));
+ Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* nullConstant = addToGraph(JSConstant, OpInfo(m_constantNull));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, addToGraph(CompareEq, value, nullConstant)));
NEXT_OPCODE(op_neq_null);
}
case op_nstricteq: {
- Node* op1 = get(currentInstruction[2].u.operand);
- Node* op2 = get(currentInstruction[3].u.operand);
- if (canFold(op1) && canFold(op2)) {
- JSValue a = valueOfJSConstant(op1);
- JSValue b = valueOfJSConstant(op2);
- set(currentInstruction[1].u.operand,
- getJSConstantForValue(jsBoolean(!JSValue::strictEqual(m_codeBlock->globalObject()->globalExec(), a, b))));
- NEXT_OPCODE(op_nstricteq);
- }
+ Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
Node* invertedResult;
- if (isConstantForCompareStrictEq(op1))
- invertedResult = addToGraph(CompareStrictEqConstant, op2, op1);
- else if (isConstantForCompareStrictEq(op2))
- invertedResult = addToGraph(CompareStrictEqConstant, op1, op2);
- else
- invertedResult = addToGraph(CompareStrictEq, op1, op2);
- set(currentInstruction[1].u.operand, addToGraph(LogicalNot, invertedResult));
+ invertedResult = addToGraph(CompareStrictEq, op1, op2);
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, invertedResult));
NEXT_OPCODE(op_nstricteq);
}
// === Property access operations ===
case op_get_by_val: {
- SpeculatedType prediction = getPrediction();
-
- Node* base = get(currentInstruction[2].u.operand);
- ArrayMode arrayMode = getArrayModeAndEmitChecks(currentInstruction[4].u.arrayProfile, Array::Read, base);
- Node* property = get(currentInstruction[3].u.operand);
- Node* getByVal = addToGraph(GetByVal, OpInfo(arrayMode.asWord()), OpInfo(prediction), base, property);
- set(currentInstruction[1].u.operand, getByVal);
+ SpeculatedType prediction = getPredictionWithoutOSRExit();
+
+ Node* base = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* property = get(VirtualRegister(currentInstruction[3].u.operand));
+ bool compiledAsGetById = false;
+ {
+ ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
+ ByValInfo* byValInfo = m_inlineStackTop->m_byValInfos.get(CodeOrigin(currentCodeOrigin().bytecodeIndex));
+ // FIXME: When the bytecode is not compiled in the baseline JIT, byValInfo becomes null.
+ // At that time, there is no information.
+ if (byValInfo && byValInfo->stubInfo && !byValInfo->tookSlowPath && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadIdent)) {
+ compiledAsGetById = true;
+ unsigned identifierNumber = m_graph.identifiers().ensure(byValInfo->cachedId.impl());
+ UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber];
+
+ addToGraph(CheckIdent, OpInfo(uid), property);
+
+ GetByIdStatus getByIdStatus = GetByIdStatus::computeForStubInfo(
+ locker, m_inlineStackTop->m_profiledBlock,
+ byValInfo->stubInfo, currentCodeOrigin(), uid);
+
+ handleGetById(currentInstruction[1].u.operand, prediction, base, identifierNumber, getByIdStatus);
+ }
+ }
+
+ if (!compiledAsGetById) {
+ ArrayMode arrayMode = getArrayMode(currentInstruction[4].u.arrayProfile, Array::Read);
+ Node* getByVal = addToGraph(GetByVal, OpInfo(arrayMode.asWord()), OpInfo(prediction), base, property);
+ m_exitOK = false; // GetByVal must be treated as if it clobbers exit state, since FixupPhase may make it generic.
+ set(VirtualRegister(currentInstruction[1].u.operand), getByVal);
+ }
NEXT_OPCODE(op_get_by_val);
}
+ case op_put_by_val_direct:
case op_put_by_val: {
- Node* base = get(currentInstruction[1].u.operand);
+ Node* base = get(VirtualRegister(currentInstruction[1].u.operand));
+ Node* property = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* value = get(VirtualRegister(currentInstruction[3].u.operand));
+ bool isDirect = opcodeID == op_put_by_val_direct;
+ bool compiledAsPutById = false;
+ {
+ ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
+ ByValInfo* byValInfo = m_inlineStackTop->m_byValInfos.get(CodeOrigin(currentCodeOrigin().bytecodeIndex));
+ // FIXME: When the bytecode is not compiled in the baseline JIT, byValInfo becomes null.
+ // At that time, there is no information.
+ if (byValInfo && byValInfo->stubInfo && !byValInfo->tookSlowPath && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadIdent)) {
+ compiledAsPutById = true;
+ unsigned identifierNumber = m_graph.identifiers().ensure(byValInfo->cachedId.impl());
+ UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber];
+
+ addToGraph(CheckIdent, OpInfo(uid), property);
+
+ PutByIdStatus putByIdStatus = PutByIdStatus::computeForStubInfo(
+ locker, m_inlineStackTop->m_profiledBlock,
+ byValInfo->stubInfo, currentCodeOrigin(), uid);
+
+ handlePutById(base, identifierNumber, value, putByIdStatus, isDirect);
+ }
+ }
- ArrayMode arrayMode = getArrayModeAndEmitChecks(currentInstruction[4].u.arrayProfile, Array::Write, base);
-
- Node* property = get(currentInstruction[2].u.operand);
- Node* value = get(currentInstruction[3].u.operand);
-
- addVarArgChild(base);
- addVarArgChild(property);
- addVarArgChild(value);
- addVarArgChild(0); // Leave room for property storage.
- addToGraph(Node::VarArg, PutByVal, OpInfo(arrayMode.asWord()), OpInfo(0));
+ if (!compiledAsPutById) {
+ ArrayMode arrayMode = getArrayMode(currentInstruction[4].u.arrayProfile, Array::Write);
+
+ addVarArgChild(base);
+ addVarArgChild(property);
+ addVarArgChild(value);
+ addVarArgChild(0); // Leave room for property storage.
+ addVarArgChild(0); // Leave room for length.
+ addToGraph(Node::VarArg, isDirect ? PutByValDirect : PutByVal, OpInfo(arrayMode.asWord()), OpInfo(0));
+ }
NEXT_OPCODE(op_put_by_val);
}
case op_get_by_id:
- case op_get_by_id_out_of_line:
case op_get_array_length: {
SpeculatedType prediction = getPrediction();
- Node* base = get(currentInstruction[2].u.operand);
+ Node* base = get(VirtualRegister(currentInstruction[2].u.operand));
unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand];
- Identifier identifier = m_codeBlock->identifier(identifierNumber);
+ UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber];
GetByIdStatus getByIdStatus = GetByIdStatus::computeFor(
- m_inlineStackTop->m_profiledBlock, m_currentIndex, identifier);
+ m_inlineStackTop->m_profiledBlock, m_dfgCodeBlock,
+ m_inlineStackTop->m_stubInfos, m_dfgStubInfos,
+ currentCodeOrigin(), uid);
handleGetById(
currentInstruction[1].u.operand, prediction, base, identifierNumber, getByIdStatus);
NEXT_OPCODE(op_get_by_id);
}
- case op_put_by_id:
- case op_put_by_id_out_of_line:
- case op_put_by_id_transition_direct:
- case op_put_by_id_transition_normal:
- case op_put_by_id_transition_direct_out_of_line:
- case op_put_by_id_transition_normal_out_of_line: {
- Node* value = get(currentInstruction[3].u.operand);
- Node* base = get(currentInstruction[1].u.operand);
+ case op_put_by_id: {
+ Node* value = get(VirtualRegister(currentInstruction[3].u.operand));
+ Node* base = get(VirtualRegister(currentInstruction[1].u.operand));
unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[2].u.operand];
- bool direct = currentInstruction[8].u.operand;
+ bool direct = currentInstruction[8].u.putByIdFlags & PutByIdIsDirect;
PutByIdStatus putByIdStatus = PutByIdStatus::computeFor(
- m_inlineStackTop->m_profiledBlock,
- m_currentIndex,
- m_codeBlock->identifier(identifierNumber));
- bool canCountAsInlined = true;
- if (!putByIdStatus.isSet()) {
- addToGraph(ForceOSRExit);
- canCountAsInlined = false;
- }
+ m_inlineStackTop->m_profiledBlock, m_dfgCodeBlock,
+ m_inlineStackTop->m_stubInfos, m_dfgStubInfos,
+ currentCodeOrigin(), m_graph.identifiers()[identifierNumber]);
- bool hasExitSite =
- m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache)
- || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadWeakConstantCache);
-
- if (!hasExitSite && putByIdStatus.isSimpleReplace()) {
- addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(putByIdStatus.oldStructure())), base);
- Node* propertyStorage;
- if (isInlineOffset(putByIdStatus.offset()))
- propertyStorage = base;
- else
- propertyStorage = addToGraph(GetButterfly, base);
- addToGraph(PutByOffset, OpInfo(m_graph.m_storageAccessData.size()), propertyStorage, base, value);
-
- StorageAccessData storageAccessData;
- storageAccessData.offset = indexRelativeToBase(putByIdStatus.offset());
- storageAccessData.identifierNumber = identifierNumber;
- m_graph.m_storageAccessData.append(storageAccessData);
- } else if (!hasExitSite
- && putByIdStatus.isSimpleTransition()
- && structureChainIsStillValid(
- direct,
- putByIdStatus.oldStructure(),
- putByIdStatus.structureChain())) {
-
- addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(putByIdStatus.oldStructure())), base);
- if (!direct) {
- if (!putByIdStatus.oldStructure()->storedPrototype().isNull()) {
- addStructureTransitionCheck(
- putByIdStatus.oldStructure()->storedPrototype().asCell());
- }
-
- for (WriteBarrier<Structure>* it = putByIdStatus.structureChain()->head(); *it; ++it) {
- JSValue prototype = (*it)->storedPrototype();
- if (prototype.isNull())
- continue;
- ASSERT(prototype.isCell());
- addStructureTransitionCheck(prototype.asCell());
- }
- }
- ASSERT(putByIdStatus.oldStructure()->transitionWatchpointSetHasBeenInvalidated());
-
- Node* propertyStorage;
- StructureTransitionData* transitionData =
- m_graph.addStructureTransitionData(
- StructureTransitionData(
- putByIdStatus.oldStructure(),
- putByIdStatus.newStructure()));
-
- if (putByIdStatus.oldStructure()->outOfLineCapacity()
- != putByIdStatus.newStructure()->outOfLineCapacity()) {
-
- // If we're growing the property storage then it must be because we're
- // storing into the out-of-line storage.
- ASSERT(!isInlineOffset(putByIdStatus.offset()));
-
- if (!putByIdStatus.oldStructure()->outOfLineCapacity()) {
- propertyStorage = addToGraph(
- AllocatePropertyStorage, OpInfo(transitionData), base);
- } else {
- propertyStorage = addToGraph(
- ReallocatePropertyStorage, OpInfo(transitionData),
- base, addToGraph(GetButterfly, base));
- }
- } else {
- if (isInlineOffset(putByIdStatus.offset()))
- propertyStorage = base;
- else
- propertyStorage = addToGraph(GetButterfly, base);
- }
-
- addToGraph(PutStructure, OpInfo(transitionData), base);
-
- addToGraph(
- PutByOffset,
- OpInfo(m_graph.m_storageAccessData.size()),
- propertyStorage,
- base,
- value);
-
- StorageAccessData storageAccessData;
- storageAccessData.offset = indexRelativeToBase(putByIdStatus.offset());
- storageAccessData.identifierNumber = identifierNumber;
- m_graph.m_storageAccessData.append(storageAccessData);
- } else {
- if (direct)
- addToGraph(PutByIdDirect, OpInfo(identifierNumber), base, value);
- else
- addToGraph(PutById, OpInfo(identifierNumber), base, value);
- canCountAsInlined = false;
- }
-
- if (canCountAsInlined && m_graph.m_compilation)
- m_graph.m_compilation->noticeInlinedPutById();
-
+ handlePutById(base, identifierNumber, value, putByIdStatus, direct);
NEXT_OPCODE(op_put_by_id);
}
- case op_init_global_const_nop: {
- NEXT_OPCODE(op_init_global_const_nop);
+ case op_put_getter_by_id:
+ case op_put_setter_by_id: {
+ Node* base = get(VirtualRegister(currentInstruction[1].u.operand));
+ unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[2].u.operand];
+ unsigned attributes = currentInstruction[3].u.operand;
+ Node* accessor = get(VirtualRegister(currentInstruction[4].u.operand));
+ NodeType op = (opcodeID == op_put_getter_by_id) ? PutGetterById : PutSetterById;
+ addToGraph(op, OpInfo(identifierNumber), OpInfo(attributes), base, accessor);
+ NEXT_OPCODE(op_put_getter_by_id);
}
- case op_init_global_const: {
- Node* value = get(currentInstruction[2].u.operand);
- addToGraph(
- PutGlobalVar,
- OpInfo(m_inlineStackTop->m_codeBlock->globalObject()->assertRegisterIsInThisObject(currentInstruction[1].u.registerPointer)),
- value);
- NEXT_OPCODE(op_init_global_const);
- }
-
- case op_init_global_const_check: {
- Node* value = get(currentInstruction[2].u.operand);
- CodeBlock* codeBlock = m_inlineStackTop->m_codeBlock;
- JSGlobalObject* globalObject = codeBlock->globalObject();
- unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[4].u.operand];
- Identifier identifier = m_codeBlock->identifier(identifierNumber);
- SymbolTableEntry entry = globalObject->symbolTable()->get(identifier.impl());
- if (!entry.couldBeWatched()) {
- addToGraph(
- PutGlobalVar,
- OpInfo(globalObject->assertRegisterIsInThisObject(currentInstruction[1].u.registerPointer)),
- value);
- NEXT_OPCODE(op_init_global_const_check);
- }
- addToGraph(
- PutGlobalVarCheck,
- OpInfo(codeBlock->globalObject()->assertRegisterIsInThisObject(currentInstruction[1].u.registerPointer)),
- OpInfo(identifierNumber),
- value);
- NEXT_OPCODE(op_init_global_const_check);
+ case op_put_getter_setter_by_id: {
+ Node* base = get(VirtualRegister(currentInstruction[1].u.operand));
+ unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[2].u.operand];
+ unsigned attributes = currentInstruction[3].u.operand;
+ Node* getter = get(VirtualRegister(currentInstruction[4].u.operand));
+ Node* setter = get(VirtualRegister(currentInstruction[5].u.operand));
+ addToGraph(PutGetterSetterById, OpInfo(identifierNumber), OpInfo(attributes), base, getter, setter);
+ NEXT_OPCODE(op_put_getter_setter_by_id);
}
+ case op_put_getter_by_val:
+ case op_put_setter_by_val: {
+ Node* base = get(VirtualRegister(currentInstruction[1].u.operand));
+ Node* subscript = get(VirtualRegister(currentInstruction[2].u.operand));
+ unsigned attributes = currentInstruction[3].u.operand;
+ Node* accessor = get(VirtualRegister(currentInstruction[4].u.operand));
+ NodeType op = (opcodeID == op_put_getter_by_val) ? PutGetterByVal : PutSetterByVal;
+ addToGraph(op, OpInfo(attributes), base, subscript, accessor);
+ NEXT_OPCODE(op_put_getter_by_val);
+ }
+
+ case op_profile_type: {
+ Node* valueToProfile = get(VirtualRegister(currentInstruction[1].u.operand));
+ addToGraph(ProfileType, OpInfo(currentInstruction[2].u.location), valueToProfile);
+ NEXT_OPCODE(op_profile_type);
+ }
+
+ case op_profile_control_flow: {
+ BasicBlockLocation* basicBlockLocation = currentInstruction[1].u.basicBlockLocation;
+ addToGraph(ProfileControlFlow, OpInfo(basicBlockLocation));
+ NEXT_OPCODE(op_profile_control_flow);
+ }
// === Block terminators. ===
case op_jmp: {
- unsigned relativeOffset = currentInstruction[1].u.operand;
+ ASSERT(!m_currentBlock->terminal());
+ int relativeOffset = currentInstruction[1].u.operand;
addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
+ if (relativeOffset <= 0)
+ flushForTerminal();
LAST_OPCODE(op_jmp);
}
case op_jtrue: {
unsigned relativeOffset = currentInstruction[2].u.operand;
- Node* condition = get(currentInstruction[1].u.operand);
- if (canFold(condition)) {
- TriState state = valueOfJSConstant(condition).pureToBoolean();
- if (state == TrueTriState) {
- addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
- LAST_OPCODE(op_jtrue);
- } else if (state == FalseTriState) {
- // Emit a placeholder for this bytecode operation but otherwise
- // just fall through.
- addToGraph(Phantom);
- NEXT_OPCODE(op_jtrue);
- }
- }
- addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jtrue)), condition);
+ Node* condition = get(VirtualRegister(currentInstruction[1].u.operand));
+ addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jtrue))), condition);
LAST_OPCODE(op_jtrue);
}
case op_jfalse: {
unsigned relativeOffset = currentInstruction[2].u.operand;
- Node* condition = get(currentInstruction[1].u.operand);
- if (canFold(condition)) {
- TriState state = valueOfJSConstant(condition).pureToBoolean();
- if (state == FalseTriState) {
- addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
- LAST_OPCODE(op_jfalse);
- } else if (state == TrueTriState) {
- // Emit a placeholder for this bytecode operation but otherwise
- // just fall through.
- addToGraph(Phantom);
- NEXT_OPCODE(op_jfalse);
- }
- }
- addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jfalse)), OpInfo(m_currentIndex + relativeOffset), condition);
+ Node* condition = get(VirtualRegister(currentInstruction[1].u.operand));
+ addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jfalse), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jfalse);
}
case op_jeq_null: {
unsigned relativeOffset = currentInstruction[2].u.operand;
- Node* value = get(currentInstruction[1].u.operand);
- Node* condition = addToGraph(CompareEqConstant, value, constantNull());
- addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jeq_null)), condition);
+ Node* value = get(VirtualRegister(currentInstruction[1].u.operand));
+ Node* nullConstant = addToGraph(JSConstant, OpInfo(m_constantNull));
+ Node* condition = addToGraph(CompareEq, value, nullConstant);
+ addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jeq_null))), condition);
LAST_OPCODE(op_jeq_null);
}
case op_jneq_null: {
unsigned relativeOffset = currentInstruction[2].u.operand;
- Node* value = get(currentInstruction[1].u.operand);
- Node* condition = addToGraph(CompareEqConstant, value, constantNull());
- addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jneq_null)), OpInfo(m_currentIndex + relativeOffset), condition);
+ Node* value = get(VirtualRegister(currentInstruction[1].u.operand));
+ Node* nullConstant = addToGraph(JSConstant, OpInfo(m_constantNull));
+ Node* condition = addToGraph(CompareEq, value, nullConstant);
+ addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jneq_null), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jneq_null);
}
case op_jless: {
unsigned relativeOffset = currentInstruction[3].u.operand;
- Node* op1 = get(currentInstruction[1].u.operand);
- Node* op2 = get(currentInstruction[2].u.operand);
- if (canFold(op1) && canFold(op2)) {
- JSValue aValue = valueOfJSConstant(op1);
- JSValue bValue = valueOfJSConstant(op2);
- if (aValue.isNumber() && bValue.isNumber()) {
- double a = aValue.asNumber();
- double b = bValue.asNumber();
- if (a < b) {
- addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
- LAST_OPCODE(op_jless);
- } else {
- // Emit a placeholder for this bytecode operation but otherwise
- // just fall through.
- addToGraph(Phantom);
- NEXT_OPCODE(op_jless);
- }
- }
- }
+ Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareLess, op1, op2);
- addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jless)), condition);
+ addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jless))), condition);
LAST_OPCODE(op_jless);
}
case op_jlesseq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
- Node* op1 = get(currentInstruction[1].u.operand);
- Node* op2 = get(currentInstruction[2].u.operand);
- if (canFold(op1) && canFold(op2)) {
- JSValue aValue = valueOfJSConstant(op1);
- JSValue bValue = valueOfJSConstant(op2);
- if (aValue.isNumber() && bValue.isNumber()) {
- double a = aValue.asNumber();
- double b = bValue.asNumber();
- if (a <= b) {
- addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
- LAST_OPCODE(op_jlesseq);
- } else {
- // Emit a placeholder for this bytecode operation but otherwise
- // just fall through.
- addToGraph(Phantom);
- NEXT_OPCODE(op_jlesseq);
- }
- }
- }
+ Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareLessEq, op1, op2);
- addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jlesseq)), condition);
+ addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jlesseq))), condition);
LAST_OPCODE(op_jlesseq);
}
case op_jgreater: {
unsigned relativeOffset = currentInstruction[3].u.operand;
- Node* op1 = get(currentInstruction[1].u.operand);
- Node* op2 = get(currentInstruction[2].u.operand);
- if (canFold(op1) && canFold(op2)) {
- JSValue aValue = valueOfJSConstant(op1);
- JSValue bValue = valueOfJSConstant(op2);
- if (aValue.isNumber() && bValue.isNumber()) {
- double a = aValue.asNumber();
- double b = bValue.asNumber();
- if (a > b) {
- addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
- LAST_OPCODE(op_jgreater);
- } else {
- // Emit a placeholder for this bytecode operation but otherwise
- // just fall through.
- addToGraph(Phantom);
- NEXT_OPCODE(op_jgreater);
- }
- }
- }
+ Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareGreater, op1, op2);
- addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jgreater)), condition);
+ addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jgreater))), condition);
LAST_OPCODE(op_jgreater);
}
case op_jgreatereq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
- Node* op1 = get(currentInstruction[1].u.operand);
- Node* op2 = get(currentInstruction[2].u.operand);
- if (canFold(op1) && canFold(op2)) {
- JSValue aValue = valueOfJSConstant(op1);
- JSValue bValue = valueOfJSConstant(op2);
- if (aValue.isNumber() && bValue.isNumber()) {
- double a = aValue.asNumber();
- double b = bValue.asNumber();
- if (a >= b) {
- addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
- LAST_OPCODE(op_jgreatereq);
- } else {
- // Emit a placeholder for this bytecode operation but otherwise
- // just fall through.
- addToGraph(Phantom);
- NEXT_OPCODE(op_jgreatereq);
- }
- }
- }
+ Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareGreaterEq, op1, op2);
- addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jgreatereq)), condition);
+ addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jgreatereq))), condition);
LAST_OPCODE(op_jgreatereq);
}
case op_jnless: {
unsigned relativeOffset = currentInstruction[3].u.operand;
- Node* op1 = get(currentInstruction[1].u.operand);
- Node* op2 = get(currentInstruction[2].u.operand);
- if (canFold(op1) && canFold(op2)) {
- JSValue aValue = valueOfJSConstant(op1);
- JSValue bValue = valueOfJSConstant(op2);
- if (aValue.isNumber() && bValue.isNumber()) {
- double a = aValue.asNumber();
- double b = bValue.asNumber();
- if (a < b) {
- // Emit a placeholder for this bytecode operation but otherwise
- // just fall through.
- addToGraph(Phantom);
- NEXT_OPCODE(op_jnless);
- } else {
- addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
- LAST_OPCODE(op_jnless);
- }
- }
- }
+ Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareLess, op1, op2);
- addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jnless)), OpInfo(m_currentIndex + relativeOffset), condition);
+ addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jnless), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jnless);
}
case op_jnlesseq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
- Node* op1 = get(currentInstruction[1].u.operand);
- Node* op2 = get(currentInstruction[2].u.operand);
- if (canFold(op1) && canFold(op2)) {
- JSValue aValue = valueOfJSConstant(op1);
- JSValue bValue = valueOfJSConstant(op2);
- if (aValue.isNumber() && bValue.isNumber()) {
- double a = aValue.asNumber();
- double b = bValue.asNumber();
- if (a <= b) {
- // Emit a placeholder for this bytecode operation but otherwise
- // just fall through.
- addToGraph(Phantom);
- NEXT_OPCODE(op_jnlesseq);
- } else {
- addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
- LAST_OPCODE(op_jnlesseq);
- }
- }
- }
+ Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareLessEq, op1, op2);
- addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jnlesseq)), OpInfo(m_currentIndex + relativeOffset), condition);
+ addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jnlesseq), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jnlesseq);
}
case op_jngreater: {
unsigned relativeOffset = currentInstruction[3].u.operand;
- Node* op1 = get(currentInstruction[1].u.operand);
- Node* op2 = get(currentInstruction[2].u.operand);
- if (canFold(op1) && canFold(op2)) {
- JSValue aValue = valueOfJSConstant(op1);
- JSValue bValue = valueOfJSConstant(op2);
- if (aValue.isNumber() && bValue.isNumber()) {
- double a = aValue.asNumber();
- double b = bValue.asNumber();
- if (a > b) {
- // Emit a placeholder for this bytecode operation but otherwise
- // just fall through.
- addToGraph(Phantom);
- NEXT_OPCODE(op_jngreater);
- } else {
- addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
- LAST_OPCODE(op_jngreater);
- }
- }
- }
+ Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareGreater, op1, op2);
- addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jngreater)), OpInfo(m_currentIndex + relativeOffset), condition);
+ addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jngreater), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jngreater);
}
case op_jngreatereq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
- Node* op1 = get(currentInstruction[1].u.operand);
- Node* op2 = get(currentInstruction[2].u.operand);
- if (canFold(op1) && canFold(op2)) {
- JSValue aValue = valueOfJSConstant(op1);
- JSValue bValue = valueOfJSConstant(op2);
- if (aValue.isNumber() && bValue.isNumber()) {
- double a = aValue.asNumber();
- double b = bValue.asNumber();
- if (a >= b) {
- // Emit a placeholder for this bytecode operation but otherwise
- // just fall through.
- addToGraph(Phantom);
- NEXT_OPCODE(op_jngreatereq);
- } else {
- addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
- LAST_OPCODE(op_jngreatereq);
- }
- }
- }
+ Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
+ Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareGreaterEq, op1, op2);
- addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jngreatereq)), OpInfo(m_currentIndex + relativeOffset), condition);
+ addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jngreatereq), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jngreatereq);
}
+
+ case op_switch_imm: {
+ SwitchData& data = *m_graph.m_switchData.add();
+ data.kind = SwitchImm;
+ data.switchTableIndex = m_inlineStackTop->m_switchRemap[currentInstruction[1].u.operand];
+ data.fallThrough.setBytecodeIndex(m_currentIndex + currentInstruction[2].u.operand);
+ SimpleJumpTable& table = m_codeBlock->switchJumpTable(data.switchTableIndex);
+ for (unsigned i = 0; i < table.branchOffsets.size(); ++i) {
+ if (!table.branchOffsets[i])
+ continue;
+ unsigned target = m_currentIndex + table.branchOffsets[i];
+ if (target == data.fallThrough.bytecodeIndex())
+ continue;
+ data.cases.append(SwitchCase::withBytecodeIndex(m_graph.freeze(jsNumber(static_cast<int32_t>(table.min + i))), target));
+ }
+ addToGraph(Switch, OpInfo(&data), get(VirtualRegister(currentInstruction[3].u.operand)));
+ flushIfTerminal(data);
+ LAST_OPCODE(op_switch_imm);
+ }
+
+ case op_switch_char: {
+ SwitchData& data = *m_graph.m_switchData.add();
+ data.kind = SwitchChar;
+ data.switchTableIndex = m_inlineStackTop->m_switchRemap[currentInstruction[1].u.operand];
+ data.fallThrough.setBytecodeIndex(m_currentIndex + currentInstruction[2].u.operand);
+ SimpleJumpTable& table = m_codeBlock->switchJumpTable(data.switchTableIndex);
+ for (unsigned i = 0; i < table.branchOffsets.size(); ++i) {
+ if (!table.branchOffsets[i])
+ continue;
+ unsigned target = m_currentIndex + table.branchOffsets[i];
+ if (target == data.fallThrough.bytecodeIndex())
+ continue;
+ data.cases.append(
+ SwitchCase::withBytecodeIndex(LazyJSValue::singleCharacterString(table.min + i), target));
+ }
+ addToGraph(Switch, OpInfo(&data), get(VirtualRegister(currentInstruction[3].u.operand)));
+ flushIfTerminal(data);
+ LAST_OPCODE(op_switch_char);
+ }
+
+ case op_switch_string: {
+ SwitchData& data = *m_graph.m_switchData.add();
+ data.kind = SwitchString;
+ data.switchTableIndex = currentInstruction[1].u.operand;
+ data.fallThrough.setBytecodeIndex(m_currentIndex + currentInstruction[2].u.operand);
+ StringJumpTable& table = m_codeBlock->stringSwitchJumpTable(data.switchTableIndex);
+ StringJumpTable::StringOffsetTable::iterator iter;
+ StringJumpTable::StringOffsetTable::iterator end = table.offsetTable.end();
+ for (iter = table.offsetTable.begin(); iter != end; ++iter) {
+ unsigned target = m_currentIndex + iter->value.branchOffset;
+ if (target == data.fallThrough.bytecodeIndex())
+ continue;
+ data.cases.append(
+ SwitchCase::withBytecodeIndex(LazyJSValue::knownStringImpl(iter->key.get()), target));
+ }
+ addToGraph(Switch, OpInfo(&data), get(VirtualRegister(currentInstruction[3].u.operand)));
+ flushIfTerminal(data);
+ LAST_OPCODE(op_switch_string);
+ }
case op_ret:
- flushArgumentsAndCapturedVariables();
+ ASSERT(!m_currentBlock->terminal());
if (inlineCallFrame()) {
- if (m_inlineStackTop->m_returnValue != InvalidVirtualRegister)
- setDirect(m_inlineStackTop->m_returnValue, get(currentInstruction[1].u.operand));
+ flushForReturn();
+ if (m_inlineStackTop->m_returnValue.isValid())
+ setDirect(m_inlineStackTop->m_returnValue, get(VirtualRegister(currentInstruction[1].u.operand)), ImmediateSetWithFlush);
m_inlineStackTop->m_didReturn = true;
if (m_inlineStackTop->m_unlinkedBlocks.isEmpty()) {
// If we're returning from the first block, then we're done parsing.
- ASSERT(m_inlineStackTop->m_callsiteBlockHead == m_graph.m_blocks.size() - 1);
+ ASSERT(m_inlineStackTop->m_callsiteBlockHead == m_graph.lastBlock());
shouldContinueParsing = false;
LAST_OPCODE(op_ret);
} else {
// If inlining created blocks, and we're doing a return, then we need some
// special linking.
- ASSERT(m_inlineStackTop->m_unlinkedBlocks.last().m_blockIndex == m_graph.m_blocks.size() - 1);
+ ASSERT(m_inlineStackTop->m_unlinkedBlocks.last().m_block == m_graph.lastBlock());
m_inlineStackTop->m_unlinkedBlocks.last().m_needsNormalLinking = false;
}
if (m_currentIndex + OPCODE_LENGTH(op_ret) != m_inlineStackTop->m_codeBlock->instructions().size() || m_inlineStackTop->m_didEarlyReturn) {
ASSERT(m_currentIndex + OPCODE_LENGTH(op_ret) <= m_inlineStackTop->m_codeBlock->instructions().size());
- addToGraph(Jump, OpInfo(NoBlock));
+ addToGraph(Jump, OpInfo(0));
m_inlineStackTop->m_unlinkedBlocks.last().m_needsEarlyReturnLinking = true;
m_inlineStackTop->m_didEarlyReturn = true;
}
LAST_OPCODE(op_ret);
}
- addToGraph(Return, get(currentInstruction[1].u.operand));
+ addToGraph(Return, get(VirtualRegister(currentInstruction[1].u.operand)));
+ flushForReturn();
LAST_OPCODE(op_ret);
case op_end:
- flushArgumentsAndCapturedVariables();
ASSERT(!inlineCallFrame());
- addToGraph(Return, get(currentInstruction[1].u.operand));
+ addToGraph(Return, get(VirtualRegister(currentInstruction[1].u.operand)));
+ flushForReturn();
LAST_OPCODE(op_end);
case op_throw:
- addToGraph(Throw, get(currentInstruction[1].u.operand));
- flushAllArgumentsAndCapturedVariablesInInlineStack();
+ addToGraph(Throw, get(VirtualRegister(currentInstruction[1].u.operand)));
+ flushForTerminal();
addToGraph(Unreachable);
LAST_OPCODE(op_throw);
case op_throw_static_error:
addToGraph(ThrowReferenceError);
- flushAllArgumentsAndCapturedVariablesInInlineStack();
+ flushForTerminal();
addToGraph(Unreachable);
LAST_OPCODE(op_throw_static_error);
+
+ case op_catch:
+ m_graph.m_hasExceptionHandlers = true;
+ NEXT_OPCODE(op_catch);
case op_call:
- handleCall(interpreter, currentInstruction, Call, CodeForCall);
+ handleCall(currentInstruction, Call, CallMode::Regular);
+ // Verify that handleCall(), which could have inlined the callee, didn't trash m_currentInstruction.
+ ASSERT(m_currentInstruction == currentInstruction);
NEXT_OPCODE(op_call);
-
+
+ case op_tail_call: {
+ flushForReturn();
+ Terminality terminality = handleCall(currentInstruction, TailCall, CallMode::Tail);
+ // Verify that handleCall(), which could have inlined the callee, didn't trash m_currentInstruction.
+ ASSERT(m_currentInstruction == currentInstruction);
+ // If the call is terminal then we should not parse any further bytecodes as the TailCall will exit the function.
+ // If the call is not terminal, however, then we want the subsequent op_ret/op_jumpt to update metadata and clean
+ // things up.
+ if (terminality == NonTerminal) {
+ NEXT_OPCODE(op_tail_call);
+ } else {
+ LAST_OPCODE(op_tail_call);
+ }
+ }
+
case op_construct:
- handleCall(interpreter, currentInstruction, Construct, CodeForConstruct);
+ handleCall(currentInstruction, Construct, CallMode::Construct);
NEXT_OPCODE(op_construct);
case op_call_varargs: {
- ASSERT(inlineCallFrame());
- ASSERT(currentInstruction[3].u.operand == m_inlineStackTop->m_codeBlock->argumentsRegister());
- ASSERT(!m_inlineStackTop->m_codeBlock->symbolTable()->slowArguments());
- // It would be cool to funnel this into handleCall() so that it can handle
- // inlining. But currently that won't be profitable anyway, since none of the
- // uses of call_varargs will be inlineable. So we set this up manually and
- // without inline/intrinsic detection.
-
- Instruction* putInstruction = currentInstruction + OPCODE_LENGTH(op_call_varargs);
-
- SpeculatedType prediction = SpecNone;
- if (interpreter->getOpcodeID(putInstruction->u.opcode) == op_call_put_result) {
- m_currentProfilingIndex = m_currentIndex + OPCODE_LENGTH(op_call_varargs);
- prediction = getPrediction();
- }
-
- addToGraph(CheckArgumentsNotCreated);
-
- unsigned argCount = inlineCallFrame()->arguments.size();
- if (JSStack::CallFrameHeaderSize + argCount > m_parameterSlots)
- m_parameterSlots = JSStack::CallFrameHeaderSize + argCount;
-
- addVarArgChild(get(currentInstruction[1].u.operand)); // callee
- addVarArgChild(get(currentInstruction[2].u.operand)); // this
- for (unsigned argument = 1; argument < argCount; ++argument)
- addVarArgChild(get(argumentToOperand(argument)));
-
- Node* call = addToGraph(Node::VarArg, Call, OpInfo(0), OpInfo(prediction));
- if (interpreter->getOpcodeID(putInstruction->u.opcode) == op_call_put_result)
- set(putInstruction[1].u.operand, call);
-
+ handleVarargsCall(currentInstruction, CallVarargs, CallMode::Regular);
NEXT_OPCODE(op_call_varargs);
}
+
+ case op_tail_call_varargs: {
+ flushForReturn();
+ Terminality terminality = handleVarargsCall(currentInstruction, TailCallVarargs, CallMode::Tail);
+ // If the call is terminal then we should not parse any further bytecodes as the TailCall will exit the function.
+ // If the call is not terminal, however, then we want the subsequent op_ret/op_jumpt to update metadata and clean
+ // things up.
+ if (terminality == NonTerminal) {
+ NEXT_OPCODE(op_tail_call_varargs);
+ } else {
+ LAST_OPCODE(op_tail_call_varargs);
+ }
+ }
- case op_call_put_result:
- NEXT_OPCODE(op_call_put_result);
+ case op_construct_varargs: {
+ handleVarargsCall(currentInstruction, ConstructVarargs, CallMode::Construct);
+ NEXT_OPCODE(op_construct_varargs);
+ }
case op_jneq_ptr:
// Statically speculate for now. It makes sense to let speculate-only jneq_ptr
@@ -3094,201 +4167,357 @@ bool ByteCodeParser::parseBlock(unsigned limit)
// already gnarly enough as it is.
ASSERT(pointerIsFunction(currentInstruction[2].u.specialPointer));
addToGraph(
- CheckFunction,
- OpInfo(actualPointerFor(m_inlineStackTop->m_codeBlock, currentInstruction[2].u.specialPointer)),
- get(currentInstruction[1].u.operand));
+ CheckCell,
+ OpInfo(m_graph.freeze(static_cast<JSCell*>(actualPointerFor(
+ m_inlineStackTop->m_codeBlock, currentInstruction[2].u.specialPointer)))),
+ get(VirtualRegister(currentInstruction[1].u.operand)));
addToGraph(Jump, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jneq_ptr)));
LAST_OPCODE(op_jneq_ptr);
- case op_get_scoped_var: {
- SpeculatedType prediction = getPrediction();
+ case op_resolve_scope: {
int dst = currentInstruction[1].u.operand;
- int slot = currentInstruction[2].u.operand;
- int depth = currentInstruction[3].u.operand;
- bool hasTopScope = m_codeBlock->codeType() == FunctionCode && m_inlineStackTop->m_codeBlock->needsFullScopeChain();
- ASSERT(!hasTopScope || depth >= 1);
- Node* scope = getScope(hasTopScope, depth - hasTopScope);
- Node* getScopeRegisters = addToGraph(GetScopeRegisters, scope);
- Node* getScopedVar = addToGraph(GetScopedVar, OpInfo(slot), OpInfo(prediction), getScopeRegisters);
- set(dst, getScopedVar);
- NEXT_OPCODE(op_get_scoped_var);
- }
-
- case op_put_scoped_var: {
- int slot = currentInstruction[1].u.operand;
- int depth = currentInstruction[2].u.operand;
- int source = currentInstruction[3].u.operand;
- bool hasTopScope = m_codeBlock->codeType() == FunctionCode && m_inlineStackTop->m_codeBlock->needsFullScopeChain();
- ASSERT(!hasTopScope || depth >= 1);
- Node* scope = getScope(hasTopScope, depth - hasTopScope);
- Node* scopeRegisters = addToGraph(GetScopeRegisters, scope);
- addToGraph(PutScopedVar, OpInfo(slot), scope, scopeRegisters, get(source));
- NEXT_OPCODE(op_put_scoped_var);
- }
-
- case op_resolve:
- case op_resolve_global_property:
- case op_resolve_global_var:
- case op_resolve_scoped_var:
- case op_resolve_scoped_var_on_top_scope:
- case op_resolve_scoped_var_with_top_scope_check: {
- SpeculatedType prediction = getPrediction();
-
- unsigned identifier = m_inlineStackTop->m_identifierRemap[currentInstruction[2].u.operand];
- ResolveOperations* operations = currentInstruction[3].u.resolveOperations;
- Node* value = 0;
- if (parseResolveOperations(prediction, identifier, operations, 0, 0, &value)) {
- set(currentInstruction[1].u.operand, value);
- NEXT_OPCODE(op_resolve);
+ ResolveType resolveType = static_cast<ResolveType>(currentInstruction[4].u.operand);
+ unsigned depth = currentInstruction[5].u.operand;
+ int scope = currentInstruction[2].u.operand;
+
+ // get_from_scope and put_to_scope depend on this watchpoint forcing OSR exit, so they don't add their own watchpoints.
+ if (needsVarInjectionChecks(resolveType))
+ addToGraph(VarInjectionWatchpoint);
+
+ switch (resolveType) {
+ case GlobalProperty:
+ case GlobalVar:
+ case GlobalPropertyWithVarInjectionChecks:
+ case GlobalVarWithVarInjectionChecks:
+ case GlobalLexicalVar:
+ case GlobalLexicalVarWithVarInjectionChecks: {
+ JSScope* constantScope = JSScope::constantScopeForCodeBlock(resolveType, m_inlineStackTop->m_codeBlock);
+ RELEASE_ASSERT(constantScope);
+ RELEASE_ASSERT(static_cast<JSScope*>(currentInstruction[6].u.pointer) == constantScope);
+ set(VirtualRegister(dst), weakJSConstant(constantScope));
+ addToGraph(Phantom, get(VirtualRegister(scope)));
+ break;
}
-
- Node* resolve = addToGraph(Resolve, OpInfo(m_graph.m_resolveOperationsData.size()), OpInfo(prediction));
- m_graph.m_resolveOperationsData.append(ResolveOperationData());
- ResolveOperationData& data = m_graph.m_resolveOperationsData.last();
- data.identifierNumber = identifier;
- data.resolveOperations = operations;
-
- set(currentInstruction[1].u.operand, resolve);
-
- NEXT_OPCODE(op_resolve);
+ case ModuleVar: {
+ // Since the value of the "scope" virtual register is not used in LLInt / baseline op_resolve_scope with ModuleVar,
+ // we need not to keep it alive by the Phantom node.
+ JSModuleEnvironment* moduleEnvironment = jsCast<JSModuleEnvironment*>(currentInstruction[6].u.jsCell.get());
+ // Module environment is already strongly referenced by the CodeBlock.
+ set(VirtualRegister(dst), weakJSConstant(moduleEnvironment));
+ break;
+ }
+ case LocalClosureVar:
+ case ClosureVar:
+ case ClosureVarWithVarInjectionChecks: {
+ Node* localBase = get(VirtualRegister(scope));
+ addToGraph(Phantom, localBase); // OSR exit cannot handle resolve_scope on a DCE'd scope.
+
+ // We have various forms of constant folding here. This is necessary to avoid
+ // spurious recompiles in dead-but-foldable code.
+ if (SymbolTable* symbolTable = currentInstruction[6].u.symbolTable.get()) {
+ InferredValue* singleton = symbolTable->singletonScope();
+ if (JSValue value = singleton->inferredValue()) {
+ m_graph.watchpoints().addLazily(singleton);
+ set(VirtualRegister(dst), weakJSConstant(value));
+ break;
+ }
+ }
+ if (JSScope* scope = localBase->dynamicCastConstant<JSScope*>()) {
+ for (unsigned n = depth; n--;)
+ scope = scope->next();
+ set(VirtualRegister(dst), weakJSConstant(scope));
+ break;
+ }
+ for (unsigned n = depth; n--;)
+ localBase = addToGraph(SkipScope, localBase);
+ set(VirtualRegister(dst), localBase);
+ break;
+ }
+ case UnresolvedProperty:
+ case UnresolvedPropertyWithVarInjectionChecks: {
+ addToGraph(Phantom, get(VirtualRegister(scope)));
+ addToGraph(ForceOSRExit);
+ set(VirtualRegister(dst), addToGraph(JSConstant, OpInfo(m_constantNull)));
+ break;
+ }
+ case Dynamic:
+ RELEASE_ASSERT_NOT_REACHED();
+ break;
+ }
+ NEXT_OPCODE(op_resolve_scope);
}
- case op_put_to_base_variable:
- case op_put_to_base: {
- unsigned base = currentInstruction[1].u.operand;
- unsigned identifier = m_inlineStackTop->m_identifierRemap[currentInstruction[2].u.operand];
- unsigned value = currentInstruction[3].u.operand;
- PutToBaseOperation* putToBase = currentInstruction[4].u.putToBaseOperation;
-
- if (putToBase->m_isDynamic) {
- addToGraph(PutById, OpInfo(identifier), get(base), get(value));
- NEXT_OPCODE(op_put_to_base);
+ case op_get_from_scope: {
+ int dst = currentInstruction[1].u.operand;
+ int scope = currentInstruction[2].u.operand;
+ unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand];
+ UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber];
+ ResolveType resolveType = GetPutInfo(currentInstruction[4].u.operand).resolveType();
+
+ Structure* structure = 0;
+ WatchpointSet* watchpoints = 0;
+ uintptr_t operand;
+ {
+ ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
+ if (resolveType == GlobalVar || resolveType == GlobalVarWithVarInjectionChecks || resolveType == GlobalLexicalVar || resolveType == GlobalLexicalVarWithVarInjectionChecks)
+ watchpoints = currentInstruction[5].u.watchpointSet;
+ else if (resolveType != UnresolvedProperty && resolveType != UnresolvedPropertyWithVarInjectionChecks)
+ structure = currentInstruction[5].u.structure.get();
+ operand = reinterpret_cast<uintptr_t>(currentInstruction[6].u.pointer);
}
- switch (putToBase->m_kind) {
- case PutToBaseOperation::Uninitialised:
- addToGraph(ForceOSRExit);
- addToGraph(Phantom, get(base));
- addToGraph(Phantom, get(value));
- break;
+ UNUSED_PARAM(watchpoints); // We will use this in the future. For now we set it as a way of documenting the fact that that's what index 5 is in GlobalVar mode.
- case PutToBaseOperation::GlobalVariablePutChecked: {
- CodeBlock* codeBlock = m_inlineStackTop->m_codeBlock;
- JSGlobalObject* globalObject = codeBlock->globalObject();
- SymbolTableEntry entry = globalObject->symbolTable()->get(m_codeBlock->identifier(identifier).impl());
- if (entry.couldBeWatched()) {
- addToGraph(PutGlobalVarCheck,
- OpInfo(codeBlock->globalObject()->assertRegisterIsInThisObject(putToBase->m_registerAddress)),
- OpInfo(identifier),
- get(value));
+ JSGlobalObject* globalObject = m_inlineStackTop->m_codeBlock->globalObject();
+
+ switch (resolveType) {
+ case GlobalProperty:
+ case GlobalPropertyWithVarInjectionChecks: {
+ SpeculatedType prediction = getPrediction();
+
+ GetByIdStatus status = GetByIdStatus::computeFor(structure, uid);
+ if (status.state() != GetByIdStatus::Simple
+ || status.numVariants() != 1
+ || status[0].structureSet().size() != 1) {
+ set(VirtualRegister(dst), addToGraph(GetByIdFlush, OpInfo(identifierNumber), OpInfo(prediction), get(VirtualRegister(scope))));
break;
}
- }
- case PutToBaseOperation::GlobalVariablePut:
- addToGraph(PutGlobalVar,
- OpInfo(m_inlineStackTop->m_codeBlock->globalObject()->assertRegisterIsInThisObject(putToBase->m_registerAddress)),
- get(value));
- break;
- case PutToBaseOperation::VariablePut: {
- Node* scope = get(base);
- Node* scopeRegisters = addToGraph(GetScopeRegisters, scope);
- addToGraph(PutScopedVar, OpInfo(putToBase->m_offset), scope, scopeRegisters, get(value));
+
+ Node* base = weakJSConstant(globalObject);
+ Node* result = load(prediction, base, identifierNumber, status[0]);
+ addToGraph(Phantom, get(VirtualRegister(scope)));
+ set(VirtualRegister(dst), result);
break;
}
- case PutToBaseOperation::GlobalPropertyPut: {
- if (!putToBase->m_structure) {
- addToGraph(ForceOSRExit);
- addToGraph(Phantom, get(base));
- addToGraph(Phantom, get(value));
- NEXT_OPCODE(op_put_to_base);
+ case GlobalVar:
+ case GlobalVarWithVarInjectionChecks:
+ case GlobalLexicalVar:
+ case GlobalLexicalVarWithVarInjectionChecks: {
+ addToGraph(Phantom, get(VirtualRegister(scope)));
+ WatchpointSet* watchpointSet;
+ ScopeOffset offset;
+ JSSegmentedVariableObject* scopeObject = jsCast<JSSegmentedVariableObject*>(JSScope::constantScopeForCodeBlock(resolveType, m_inlineStackTop->m_codeBlock));
+ {
+ ConcurrentJITLocker locker(scopeObject->symbolTable()->m_lock);
+ SymbolTableEntry entry = scopeObject->symbolTable()->get(locker, uid);
+ watchpointSet = entry.watchpointSet();
+ offset = entry.scopeOffset();
+ }
+ if (watchpointSet && watchpointSet->state() == IsWatched) {
+ // This has a fun concurrency story. There is the possibility of a race in two
+ // directions:
+ //
+ // We see that the set IsWatched, but in the meantime it gets invalidated: this is
+ // fine because if we saw that it IsWatched then we add a watchpoint. If it gets
+ // invalidated, then this compilation is invalidated. Note that in the meantime we
+ // may load an absurd value from the global object. It's fine to load an absurd
+ // value if the compilation is invalidated anyway.
+ //
+ // We see that the set IsWatched, but the value isn't yet initialized: this isn't
+ // possible because of the ordering of operations.
+ //
+ // Here's how we order operations:
+ //
+ // Main thread stores to the global object: always store a value first, and only
+ // after that do we touch the watchpoint set. There is a fence in the touch, that
+ // ensures that the store to the global object always happens before the touch on the
+ // set.
+ //
+ // Compilation thread: always first load the state of the watchpoint set, and then
+ // load the value. The WatchpointSet::state() method does fences for us to ensure
+ // that the load of the state happens before our load of the value.
+ //
+ // Finalizing compilation: this happens on the main thread and synchronously checks
+ // validity of all watchpoint sets.
+ //
+ // We will only perform optimizations if the load of the state yields IsWatched. That
+ // means that at least one store would have happened to initialize the original value
+ // of the variable (that is, the value we'd like to constant fold to). There may be
+ // other stores that happen after that, but those stores will invalidate the
+ // watchpoint set and also the compilation.
+
+ // Note that we need to use the operand, which is a direct pointer at the global,
+ // rather than looking up the global by doing variableAt(offset). That's because the
+ // internal data structures of JSSegmentedVariableObject are not thread-safe even
+ // though accessing the global itself is. The segmentation involves a vector spine
+ // that resizes with malloc/free, so if new globals unrelated to the one we are
+ // reading are added, we might access freed memory if we do variableAt().
+ WriteBarrier<Unknown>* pointer = bitwise_cast<WriteBarrier<Unknown>*>(operand);
+
+ ASSERT(scopeObject->findVariableIndex(pointer) == offset);
+
+ JSValue value = pointer->get();
+ if (value) {
+ m_graph.watchpoints().addLazily(watchpointSet);
+ set(VirtualRegister(dst), weakJSConstant(value));
+ break;
+ }
}
- Node* baseNode = get(base);
- addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(putToBase->m_structure.get())), baseNode);
- Node* propertyStorage;
- if (isInlineOffset(putToBase->m_offset))
- propertyStorage = baseNode;
+
+ SpeculatedType prediction = getPrediction();
+ NodeType nodeType;
+ if (resolveType == GlobalVar || resolveType == GlobalVarWithVarInjectionChecks)
+ nodeType = GetGlobalVar;
else
- propertyStorage = addToGraph(GetButterfly, baseNode);
- addToGraph(PutByOffset, OpInfo(m_graph.m_storageAccessData.size()), propertyStorage, baseNode, get(value));
-
- StorageAccessData storageAccessData;
- storageAccessData.offset = indexRelativeToBase(putToBase->m_offset);
- storageAccessData.identifierNumber = identifier;
- m_graph.m_storageAccessData.append(storageAccessData);
+ nodeType = GetGlobalLexicalVariable;
+ Node* value = addToGraph(nodeType, OpInfo(operand), OpInfo(prediction));
+ if (resolveType == GlobalLexicalVar || resolveType == GlobalLexicalVarWithVarInjectionChecks)
+ addToGraph(CheckNotEmpty, value);
+ set(VirtualRegister(dst), value);
break;
}
- case PutToBaseOperation::Readonly:
- case PutToBaseOperation::Generic:
- addToGraph(PutById, OpInfo(identifier), get(base), get(value));
+ case LocalClosureVar:
+ case ClosureVar:
+ case ClosureVarWithVarInjectionChecks: {
+ Node* scopeNode = get(VirtualRegister(scope));
+
+ // Ideally we wouldn't have to do this Phantom. But:
+ //
+ // For the constant case: we must do it because otherwise we would have no way of knowing
+ // that the scope is live at OSR here.
+ //
+ // For the non-constant case: GetClosureVar could be DCE'd, but baseline's implementation
+ // won't be able to handle an Undefined scope.
+ addToGraph(Phantom, scopeNode);
+
+ // Constant folding in the bytecode parser is important for performance. This may not
+ // have executed yet. If it hasn't, then we won't have a prediction. Lacking a
+ // prediction, we'd otherwise think that it has to exit. Then when it did execute, we
+ // would recompile. But if we can fold it here, we avoid the exit.
+ if (JSValue value = m_graph.tryGetConstantClosureVar(scopeNode, ScopeOffset(operand))) {
+ set(VirtualRegister(dst), weakJSConstant(value));
+ break;
+ }
+ SpeculatedType prediction = getPrediction();
+ set(VirtualRegister(dst),
+ addToGraph(GetClosureVar, OpInfo(operand), OpInfo(prediction), scopeNode));
+ break;
}
- NEXT_OPCODE(op_put_to_base);
+ case UnresolvedProperty:
+ case UnresolvedPropertyWithVarInjectionChecks: {
+ addToGraph(ForceOSRExit);
+ Node* scopeNode = get(VirtualRegister(scope));
+ addToGraph(Phantom, scopeNode);
+ set(VirtualRegister(dst), addToGraph(JSConstant, OpInfo(m_constantUndefined)));
+ break;
+ }
+ case ModuleVar:
+ case Dynamic:
+ RELEASE_ASSERT_NOT_REACHED();
+ break;
+ }
+ NEXT_OPCODE(op_get_from_scope);
}
- case op_resolve_base_to_global:
- case op_resolve_base_to_global_dynamic:
- case op_resolve_base_to_scope:
- case op_resolve_base_to_scope_with_top_scope_check:
- case op_resolve_base: {
- SpeculatedType prediction = getPrediction();
+ case op_put_to_scope: {
+ unsigned scope = currentInstruction[1].u.operand;
+ unsigned identifierNumber = currentInstruction[2].u.operand;
+ if (identifierNumber != UINT_MAX)
+ identifierNumber = m_inlineStackTop->m_identifierRemap[identifierNumber];
+ unsigned value = currentInstruction[3].u.operand;
+ GetPutInfo getPutInfo = GetPutInfo(currentInstruction[4].u.operand);
+ ResolveType resolveType = getPutInfo.resolveType();
+ UniquedStringImpl* uid;
+ if (identifierNumber != UINT_MAX)
+ uid = m_graph.identifiers()[identifierNumber];
+ else
+ uid = nullptr;
- unsigned identifier = m_inlineStackTop->m_identifierRemap[currentInstruction[2].u.operand];
- ResolveOperations* operations = currentInstruction[4].u.resolveOperations;
- PutToBaseOperation* putToBaseOperation = currentInstruction[5].u.putToBaseOperation;
-
- Node* base = 0;
- if (parseResolveOperations(prediction, identifier, operations, 0, &base, 0)) {
- set(currentInstruction[1].u.operand, base);
- NEXT_OPCODE(op_resolve_base);
+ Structure* structure = nullptr;
+ WatchpointSet* watchpoints = nullptr;
+ uintptr_t operand;
+ {
+ ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
+ if (resolveType == GlobalVar || resolveType == GlobalVarWithVarInjectionChecks || resolveType == LocalClosureVar || resolveType == GlobalLexicalVar || resolveType == GlobalLexicalVarWithVarInjectionChecks)
+ watchpoints = currentInstruction[5].u.watchpointSet;
+ else if (resolveType != UnresolvedProperty && resolveType != UnresolvedPropertyWithVarInjectionChecks)
+ structure = currentInstruction[5].u.structure.get();
+ operand = reinterpret_cast<uintptr_t>(currentInstruction[6].u.pointer);
}
- Node* resolve = addToGraph(currentInstruction[3].u.operand ? ResolveBaseStrictPut : ResolveBase, OpInfo(m_graph.m_resolveOperationsData.size()), OpInfo(prediction));
- m_graph.m_resolveOperationsData.append(ResolveOperationData());
- ResolveOperationData& data = m_graph.m_resolveOperationsData.last();
- data.identifierNumber = identifier;
- data.resolveOperations = operations;
- data.putToBaseOperation = putToBaseOperation;
-
- set(currentInstruction[1].u.operand, resolve);
+ JSGlobalObject* globalObject = m_inlineStackTop->m_codeBlock->globalObject();
- NEXT_OPCODE(op_resolve_base);
- }
- case op_resolve_with_base: {
- SpeculatedType prediction = getPrediction();
- unsigned baseDst = currentInstruction[1].u.operand;
- unsigned valueDst = currentInstruction[2].u.operand;
- unsigned identifier = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand];
- ResolveOperations* operations = currentInstruction[4].u.resolveOperations;
- PutToBaseOperation* putToBaseOperation = currentInstruction[5].u.putToBaseOperation;
-
- Node* base = 0;
- Node* value = 0;
- if (parseResolveOperations(prediction, identifier, operations, putToBaseOperation, &base, &value))
- setPair(baseDst, base, valueDst, value);
- else {
- addToGraph(ForceOSRExit);
- setPair(baseDst, addToGraph(GarbageValue), valueDst, addToGraph(GarbageValue));
+ switch (resolveType) {
+ case GlobalProperty:
+ case GlobalPropertyWithVarInjectionChecks: {
+ PutByIdStatus status;
+ if (uid)
+ status = PutByIdStatus::computeFor(globalObject, structure, uid, false);
+ else
+ status = PutByIdStatus(PutByIdStatus::TakesSlowPath);
+ if (status.numVariants() != 1
+ || status[0].kind() != PutByIdVariant::Replace
+ || status[0].structure().size() != 1) {
+ addToGraph(PutById, OpInfo(identifierNumber), get(VirtualRegister(scope)), get(VirtualRegister(value)));
+ break;
+ }
+ Node* base = weakJSConstant(globalObject);
+ store(base, identifierNumber, status[0], get(VirtualRegister(value)));
+ // Keep scope alive until after put.
+ addToGraph(Phantom, get(VirtualRegister(scope)));
+ break;
}
+ case GlobalLexicalVar:
+ case GlobalLexicalVarWithVarInjectionChecks:
+ case GlobalVar:
+ case GlobalVarWithVarInjectionChecks: {
+ if (getPutInfo.initializationMode() != Initialization && (resolveType == GlobalLexicalVar || resolveType == GlobalLexicalVarWithVarInjectionChecks)) {
+ SpeculatedType prediction = SpecEmpty;
+ Node* value = addToGraph(GetGlobalLexicalVariable, OpInfo(operand), OpInfo(prediction));
+ addToGraph(CheckNotEmpty, value);
+ }
- NEXT_OPCODE(op_resolve_with_base);
- }
- case op_resolve_with_this: {
- SpeculatedType prediction = getPrediction();
- unsigned baseDst = currentInstruction[1].u.operand;
- unsigned valueDst = currentInstruction[2].u.operand;
- unsigned identifier = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand];
- ResolveOperations* operations = currentInstruction[4].u.resolveOperations;
-
- Node* base = 0;
- Node* value = 0;
- if (parseResolveOperations(prediction, identifier, operations, 0, &base, &value))
- setPair(baseDst, base, valueDst, value);
- else {
+ JSSegmentedVariableObject* scopeObject = jsCast<JSSegmentedVariableObject*>(JSScope::constantScopeForCodeBlock(resolveType, m_inlineStackTop->m_codeBlock));
+ if (watchpoints) {
+ SymbolTableEntry entry = scopeObject->symbolTable()->get(uid);
+ ASSERT_UNUSED(entry, watchpoints == entry.watchpointSet());
+ }
+ Node* valueNode = get(VirtualRegister(value));
+ addToGraph(PutGlobalVariable, OpInfo(operand), weakJSConstant(scopeObject), valueNode);
+ if (watchpoints && watchpoints->state() != IsInvalidated) {
+ // Must happen after the store. See comment for GetGlobalVar.
+ addToGraph(NotifyWrite, OpInfo(watchpoints));
+ }
+ // Keep scope alive until after put.
+ addToGraph(Phantom, get(VirtualRegister(scope)));
+ break;
+ }
+ case LocalClosureVar:
+ case ClosureVar:
+ case ClosureVarWithVarInjectionChecks: {
+ Node* scopeNode = get(VirtualRegister(scope));
+ Node* valueNode = get(VirtualRegister(value));
+
+ addToGraph(PutClosureVar, OpInfo(operand), scopeNode, valueNode);
+
+ if (watchpoints && watchpoints->state() != IsInvalidated) {
+ // Must happen after the store. See comment for GetGlobalVar.
+ addToGraph(NotifyWrite, OpInfo(watchpoints));
+ }
+ break;
+ }
+
+ case UnresolvedProperty:
+ case UnresolvedPropertyWithVarInjectionChecks: {
addToGraph(ForceOSRExit);
- setPair(baseDst, addToGraph(GarbageValue), valueDst, addToGraph(GarbageValue));
+ Node* scopeNode = get(VirtualRegister(scope));
+ addToGraph(Phantom, scopeNode);
+ break;
}
- NEXT_OPCODE(op_resolve_with_this);
+ case ModuleVar:
+ // Need not to keep "scope" and "value" register values here by Phantom because
+ // they are not used in LLInt / baseline op_put_to_scope with ModuleVar.
+ addToGraph(ForceOSRExit);
+ break;
+
+ case Dynamic:
+ RELEASE_ASSERT_NOT_REACHED();
+ break;
+ }
+ NEXT_OPCODE(op_put_to_scope);
}
+
case op_loop_hint: {
// Baseline->DFG OSR jumps between loop hints. The DFG assumes that Baseline->DFG
// OSR can only happen at basic block boundaries. Assert that these two statements
@@ -3301,93 +4530,217 @@ bool ByteCodeParser::parseBlock(unsigned limit)
if (!m_inlineStackTop->m_caller)
m_currentBlock->isOSRTarget = true;
- if (m_vm->watchdog.isEnabled())
- addToGraph(CheckWatchdogTimer);
- else {
- // Emit a phantom node to ensure that there is a placeholder
- // node for this bytecode op.
- addToGraph(Phantom);
- }
-
+ addToGraph(LoopHint);
NEXT_OPCODE(op_loop_hint);
}
-
- case op_init_lazy_reg: {
- set(currentInstruction[1].u.operand, getJSConstantForValue(JSValue()));
- NEXT_OPCODE(op_init_lazy_reg);
+
+ case op_watchdog: {
+ addToGraph(CheckWatchdogTimer);
+ NEXT_OPCODE(op_watchdog);
}
- case op_create_activation: {
- set(currentInstruction[1].u.operand, addToGraph(CreateActivation, get(currentInstruction[1].u.operand)));
- NEXT_OPCODE(op_create_activation);
+ case op_create_lexical_environment: {
+ VirtualRegister symbolTableRegister(currentInstruction[3].u.operand);
+ VirtualRegister initialValueRegister(currentInstruction[4].u.operand);
+ ASSERT(symbolTableRegister.isConstant() && initialValueRegister.isConstant());
+ FrozenValue* symbolTable = m_graph.freezeStrong(m_inlineStackTop->m_codeBlock->getConstant(symbolTableRegister.offset()));
+ FrozenValue* initialValue = m_graph.freezeStrong(m_inlineStackTop->m_codeBlock->getConstant(initialValueRegister.offset()));
+ Node* scope = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* lexicalEnvironment = addToGraph(CreateActivation, OpInfo(symbolTable), OpInfo(initialValue), scope);
+ set(VirtualRegister(currentInstruction[1].u.operand), lexicalEnvironment);
+ NEXT_OPCODE(op_create_lexical_environment);
+ }
+
+ case op_get_parent_scope: {
+ Node* currentScope = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* newScope = addToGraph(SkipScope, currentScope);
+ set(VirtualRegister(currentInstruction[1].u.operand), newScope);
+ addToGraph(Phantom, currentScope);
+ NEXT_OPCODE(op_get_parent_scope);
+ }
+
+ case op_get_scope: {
+ // Help the later stages a bit by doing some small constant folding here. Note that this
+ // only helps for the first basic block. It's extremely important not to constant fold
+ // loads from the scope register later, as that would prevent the DFG from tracking the
+ // bytecode-level liveness of the scope register.
+ Node* callee = get(VirtualRegister(JSStack::Callee));
+ Node* result;
+ if (JSFunction* function = callee->dynamicCastConstant<JSFunction*>())
+ result = weakJSConstant(function->scope());
+ else
+ result = addToGraph(GetScope, callee);
+ set(VirtualRegister(currentInstruction[1].u.operand), result);
+ NEXT_OPCODE(op_get_scope);
}
- case op_create_arguments: {
- m_graph.m_hasArguments = true;
- Node* createArguments = addToGraph(CreateArguments, get(currentInstruction[1].u.operand));
- set(currentInstruction[1].u.operand, createArguments);
- set(unmodifiedArgumentsRegister(currentInstruction[1].u.operand), createArguments);
- NEXT_OPCODE(op_create_arguments);
+ case op_create_direct_arguments: {
+ noticeArgumentsUse();
+ Node* createArguments = addToGraph(CreateDirectArguments);
+ set(VirtualRegister(currentInstruction[1].u.operand), createArguments);
+ NEXT_OPCODE(op_create_direct_arguments);
}
- case op_tear_off_activation: {
- addToGraph(TearOffActivation, get(currentInstruction[1].u.operand));
- NEXT_OPCODE(op_tear_off_activation);
+ case op_create_scoped_arguments: {
+ noticeArgumentsUse();
+ Node* createArguments = addToGraph(CreateScopedArguments, get(VirtualRegister(currentInstruction[2].u.operand)));
+ set(VirtualRegister(currentInstruction[1].u.operand), createArguments);
+ NEXT_OPCODE(op_create_scoped_arguments);
}
- case op_tear_off_arguments: {
- m_graph.m_hasArguments = true;
- addToGraph(TearOffArguments, get(unmodifiedArgumentsRegister(currentInstruction[1].u.operand)), get(currentInstruction[2].u.operand));
- NEXT_OPCODE(op_tear_off_arguments);
+ case op_create_out_of_band_arguments: {
+ noticeArgumentsUse();
+ Node* createArguments = addToGraph(CreateClonedArguments);
+ set(VirtualRegister(currentInstruction[1].u.operand), createArguments);
+ NEXT_OPCODE(op_create_out_of_band_arguments);
}
- case op_get_arguments_length: {
- m_graph.m_hasArguments = true;
- set(currentInstruction[1].u.operand, addToGraph(GetMyArgumentsLengthSafe));
- NEXT_OPCODE(op_get_arguments_length);
+ case op_get_from_arguments: {
+ set(VirtualRegister(currentInstruction[1].u.operand),
+ addToGraph(
+ GetFromArguments,
+ OpInfo(currentInstruction[3].u.operand),
+ OpInfo(getPrediction()),
+ get(VirtualRegister(currentInstruction[2].u.operand))));
+ NEXT_OPCODE(op_get_from_arguments);
}
- case op_get_argument_by_val: {
- m_graph.m_hasArguments = true;
- set(currentInstruction[1].u.operand,
- addToGraph(
- GetMyArgumentByValSafe, OpInfo(0), OpInfo(getPrediction()),
- get(currentInstruction[3].u.operand)));
- NEXT_OPCODE(op_get_argument_by_val);
+ case op_put_to_arguments: {
+ addToGraph(
+ PutToArguments,
+ OpInfo(currentInstruction[2].u.operand),
+ get(VirtualRegister(currentInstruction[1].u.operand)),
+ get(VirtualRegister(currentInstruction[3].u.operand)));
+ NEXT_OPCODE(op_put_to_arguments);
}
- case op_new_func: {
- if (!currentInstruction[3].u.operand) {
- set(currentInstruction[1].u.operand,
- addToGraph(NewFunctionNoCheck, OpInfo(currentInstruction[2].u.operand)));
- } else {
- set(currentInstruction[1].u.operand,
- addToGraph(
- NewFunction,
- OpInfo(currentInstruction[2].u.operand),
- get(currentInstruction[1].u.operand)));
- }
+ case op_new_func:
+ case op_new_generator_func: {
+ FunctionExecutable* decl = m_inlineStackTop->m_profiledBlock->functionDecl(currentInstruction[3].u.operand);
+ FrozenValue* frozen = m_graph.freezeStrong(decl);
+ NodeType op = (opcodeID == op_new_generator_func) ? NewGeneratorFunction : NewFunction;
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(op, OpInfo(frozen), get(VirtualRegister(currentInstruction[2].u.operand))));
+ static_assert(OPCODE_LENGTH(op_new_func) == OPCODE_LENGTH(op_new_generator_func), "The length of op_new_func should eqaual to one of op_new_generator_func");
NEXT_OPCODE(op_new_func);
}
+
+ case op_new_func_exp:
+ case op_new_generator_func_exp:
+ case op_new_arrow_func_exp: {
+ FunctionExecutable* expr = m_inlineStackTop->m_profiledBlock->functionExpr(currentInstruction[3].u.operand);
+ FrozenValue* frozen = m_graph.freezeStrong(expr);
+ NodeType op = (opcodeID == op_new_generator_func_exp) ? NewGeneratorFunction : NewFunction;
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(op, OpInfo(frozen), get(VirtualRegister(currentInstruction[2].u.operand))));
- case op_new_func_exp: {
- set(currentInstruction[1].u.operand,
- addToGraph(NewFunctionExpression, OpInfo(currentInstruction[2].u.operand)));
- NEXT_OPCODE(op_new_func_exp);
+ if (opcodeID == op_new_func_exp || opcodeID == op_new_generator_func_exp) {
+ // Curly braces are necessary
+ static_assert(OPCODE_LENGTH(op_new_func_exp) == OPCODE_LENGTH(op_new_generator_func_exp), "The length of op_new_func_exp should eqaual to one of op_new_generator_func_exp");
+ NEXT_OPCODE(op_new_func_exp);
+ } else {
+ // Curly braces are necessary
+ NEXT_OPCODE(op_new_arrow_func_exp);
+ }
}
case op_typeof: {
- set(currentInstruction[1].u.operand,
- addToGraph(TypeOf, get(currentInstruction[2].u.operand)));
+ set(VirtualRegister(currentInstruction[1].u.operand),
+ addToGraph(TypeOf, get(VirtualRegister(currentInstruction[2].u.operand))));
NEXT_OPCODE(op_typeof);
}
case op_to_number: {
- set(currentInstruction[1].u.operand,
- addToGraph(Identity, Edge(get(currentInstruction[2].u.operand), NumberUse)));
+ Node* node = get(VirtualRegister(currentInstruction[2].u.operand));
+ addToGraph(Phantom, Edge(node, NumberUse));
+ set(VirtualRegister(currentInstruction[1].u.operand), node);
NEXT_OPCODE(op_to_number);
}
+ case op_to_string: {
+ Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(ToString, value));
+ NEXT_OPCODE(op_to_string);
+ }
+
+ case op_in: {
+ set(VirtualRegister(currentInstruction[1].u.operand),
+ addToGraph(In, get(VirtualRegister(currentInstruction[2].u.operand)), get(VirtualRegister(currentInstruction[3].u.operand))));
+ NEXT_OPCODE(op_in);
+ }
+
+ case op_get_enumerable_length: {
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetEnumerableLength,
+ get(VirtualRegister(currentInstruction[2].u.operand))));
+ NEXT_OPCODE(op_get_enumerable_length);
+ }
+
+ case op_has_generic_property: {
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(HasGenericProperty,
+ get(VirtualRegister(currentInstruction[2].u.operand)),
+ get(VirtualRegister(currentInstruction[3].u.operand))));
+ NEXT_OPCODE(op_has_generic_property);
+ }
+
+ case op_has_structure_property: {
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(HasStructureProperty,
+ get(VirtualRegister(currentInstruction[2].u.operand)),
+ get(VirtualRegister(currentInstruction[3].u.operand)),
+ get(VirtualRegister(currentInstruction[4].u.operand))));
+ NEXT_OPCODE(op_has_structure_property);
+ }
+
+ case op_has_indexed_property: {
+ Node* base = get(VirtualRegister(currentInstruction[2].u.operand));
+ ArrayMode arrayMode = getArrayMode(currentInstruction[4].u.arrayProfile, Array::Read);
+ Node* property = get(VirtualRegister(currentInstruction[3].u.operand));
+ Node* hasIterableProperty = addToGraph(HasIndexedProperty, OpInfo(arrayMode.asWord()), base, property);
+ set(VirtualRegister(currentInstruction[1].u.operand), hasIterableProperty);
+ NEXT_OPCODE(op_has_indexed_property);
+ }
+
+ case op_get_direct_pname: {
+ SpeculatedType prediction = getPredictionWithoutOSRExit();
+
+ Node* base = get(VirtualRegister(currentInstruction[2].u.operand));
+ Node* property = get(VirtualRegister(currentInstruction[3].u.operand));
+ Node* index = get(VirtualRegister(currentInstruction[4].u.operand));
+ Node* enumerator = get(VirtualRegister(currentInstruction[5].u.operand));
+
+ addVarArgChild(base);
+ addVarArgChild(property);
+ addVarArgChild(index);
+ addVarArgChild(enumerator);
+ set(VirtualRegister(currentInstruction[1].u.operand),
+ addToGraph(Node::VarArg, GetDirectPname, OpInfo(0), OpInfo(prediction)));
+
+ NEXT_OPCODE(op_get_direct_pname);
+ }
+
+ case op_get_property_enumerator: {
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetPropertyEnumerator,
+ get(VirtualRegister(currentInstruction[2].u.operand))));
+ NEXT_OPCODE(op_get_property_enumerator);
+ }
+
+ case op_enumerator_structure_pname: {
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetEnumeratorStructurePname,
+ get(VirtualRegister(currentInstruction[2].u.operand)),
+ get(VirtualRegister(currentInstruction[3].u.operand))));
+ NEXT_OPCODE(op_enumerator_structure_pname);
+ }
+
+ case op_enumerator_generic_pname: {
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetEnumeratorGenericPname,
+ get(VirtualRegister(currentInstruction[2].u.operand)),
+ get(VirtualRegister(currentInstruction[3].u.operand))));
+ NEXT_OPCODE(op_enumerator_generic_pname);
+ }
+
+ case op_to_index_string: {
+ set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(ToIndexString,
+ get(VirtualRegister(currentInstruction[2].u.operand))));
+ NEXT_OPCODE(op_to_index_string);
+ }
+
default:
// Parse failed! This should not happen because the capabilities checker
// should have caught it.
@@ -3397,90 +4750,90 @@ bool ByteCodeParser::parseBlock(unsigned limit)
}
}
-void ByteCodeParser::linkBlock(BasicBlock* block, Vector<BlockIndex>& possibleTargets)
+void ByteCodeParser::linkBlock(BasicBlock* block, Vector<BasicBlock*>& possibleTargets)
{
ASSERT(!block->isLinked);
ASSERT(!block->isEmpty());
- Node* node = block->last();
+ Node* node = block->terminal();
ASSERT(node->isTerminal());
switch (node->op()) {
case Jump:
- node->setTakenBlockIndex(m_graph.blockIndexForBytecodeOffset(possibleTargets, node->takenBytecodeOffsetDuringParsing()));
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLogF("Linked basic block %p to %p, #%u.\n", block, m_graph.m_blocks[node->takenBlockIndex()].get(), node->takenBlockIndex());
-#endif
+ node->targetBlock() = blockForBytecodeOffset(possibleTargets, node->targetBytecodeOffsetDuringParsing());
break;
- case Branch:
- node->setTakenBlockIndex(m_graph.blockIndexForBytecodeOffset(possibleTargets, node->takenBytecodeOffsetDuringParsing()));
- node->setNotTakenBlockIndex(m_graph.blockIndexForBytecodeOffset(possibleTargets, node->notTakenBytecodeOffsetDuringParsing()));
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLogF("Linked basic block %p to %p, #%u and %p, #%u.\n", block, m_graph.m_blocks[node->takenBlockIndex()].get(), node->takenBlockIndex(), m_graph.m_blocks[node->notTakenBlockIndex()].get(), node->notTakenBlockIndex());
-#endif
+ case Branch: {
+ BranchData* data = node->branchData();
+ data->taken.block = blockForBytecodeOffset(possibleTargets, data->takenBytecodeIndex());
+ data->notTaken.block = blockForBytecodeOffset(possibleTargets, data->notTakenBytecodeIndex());
break;
+ }
+
+ case Switch: {
+ SwitchData* data = node->switchData();
+ for (unsigned i = node->switchData()->cases.size(); i--;)
+ data->cases[i].target.block = blockForBytecodeOffset(possibleTargets, data->cases[i].target.bytecodeIndex());
+ data->fallThrough.block = blockForBytecodeOffset(possibleTargets, data->fallThrough.bytecodeIndex());
+ break;
+ }
default:
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLogF("Marking basic block %p as linked.\n", block);
-#endif
break;
}
-#if !ASSERT_DISABLED
- block->isLinked = true;
-#endif
+ if (verbose)
+ dataLog("Marking ", RawPointer(block), " as linked (actually did linking)\n");
+ block->didLink();
}
-void ByteCodeParser::linkBlocks(Vector<UnlinkedBlock>& unlinkedBlocks, Vector<BlockIndex>& possibleTargets)
+void ByteCodeParser::linkBlocks(Vector<UnlinkedBlock>& unlinkedBlocks, Vector<BasicBlock*>& possibleTargets)
{
for (size_t i = 0; i < unlinkedBlocks.size(); ++i) {
+ if (verbose)
+ dataLog("Attempting to link ", RawPointer(unlinkedBlocks[i].m_block), "\n");
if (unlinkedBlocks[i].m_needsNormalLinking) {
- linkBlock(m_graph.m_blocks[unlinkedBlocks[i].m_blockIndex].get(), possibleTargets);
+ if (verbose)
+ dataLog(" Does need normal linking.\n");
+ linkBlock(unlinkedBlocks[i].m_block, possibleTargets);
unlinkedBlocks[i].m_needsNormalLinking = false;
}
}
}
-void ByteCodeParser::buildOperandMapsIfNecessary()
-{
- if (m_haveBuiltOperandMaps)
- return;
-
- for (size_t i = 0; i < m_codeBlock->numberOfIdentifiers(); ++i)
- m_identifierMap.add(m_codeBlock->identifier(i).impl(), i);
- for (size_t i = 0; i < m_codeBlock->numberOfConstantRegisters(); ++i) {
- JSValue value = m_codeBlock->getConstant(i + FirstConstantRegisterIndex);
- if (!value)
- m_emptyJSValueIndex = i + FirstConstantRegisterIndex;
- else
- m_jsValueMap.add(JSValue::encode(value), i + FirstConstantRegisterIndex);
- }
-
- m_haveBuiltOperandMaps = true;
-}
-
ByteCodeParser::InlineStackEntry::InlineStackEntry(
ByteCodeParser* byteCodeParser,
CodeBlock* codeBlock,
CodeBlock* profiledBlock,
- BlockIndex callsiteBlockHead,
+ BasicBlock* callsiteBlockHead,
JSFunction* callee, // Null if this is a closure call.
VirtualRegister returnValueVR,
VirtualRegister inlineCallFrameStart,
int argumentCountIncludingThis,
- CodeSpecializationKind kind)
+ InlineCallFrame::Kind kind)
: m_byteCodeParser(byteCodeParser)
, m_codeBlock(codeBlock)
, m_profiledBlock(profiledBlock)
- , m_exitProfile(profiledBlock->exitProfile())
, m_callsiteBlockHead(callsiteBlockHead)
, m_returnValue(returnValueVR)
- , m_lazyOperands(profiledBlock->lazyOperandValueProfiles())
, m_didReturn(false)
, m_didEarlyReturn(false)
, m_caller(byteCodeParser->m_inlineStackTop)
{
+ {
+ ConcurrentJITLocker locker(m_profiledBlock->m_lock);
+ m_lazyOperands.initialize(locker, m_profiledBlock->lazyOperandValueProfiles());
+ m_exitProfile.initialize(locker, profiledBlock->exitProfile());
+
+ // We do this while holding the lock because we want to encourage StructureStubInfo's
+ // to be potentially added to operations and because the profiled block could be in the
+ // middle of LLInt->JIT tier-up in which case we would be adding the info's right now.
+ if (m_profiledBlock->hasBaselineJITProfiling()) {
+ m_profiledBlock->getStubInfoMap(locker, m_stubInfos);
+ m_profiledBlock->getCallLinkInfoMap(locker, m_callLinkInfos);
+ m_profiledBlock->getByValInfoMap(locker, m_byValInfos);
+ }
+ }
+
m_argumentPositions.resize(argumentCountIncludingThis);
for (int i = 0; i < argumentCountIncludingThis; ++i) {
byteCodeParser->m_graph.m_argumentPositions.append(ArgumentPosition());
@@ -3488,84 +4841,35 @@ ByteCodeParser::InlineStackEntry::InlineStackEntry(
m_argumentPositions[i] = argumentPosition;
}
- // Track the code-block-global exit sites.
- if (m_exitProfile.hasExitSite(ArgumentsEscaped)) {
- byteCodeParser->m_graph.m_executablesWhoseArgumentsEscaped.add(
- codeBlock->ownerExecutable());
- }
-
if (m_caller) {
// Inline case.
ASSERT(codeBlock != byteCodeParser->m_codeBlock);
- ASSERT(inlineCallFrameStart != InvalidVirtualRegister);
- ASSERT(callsiteBlockHead != NoBlock);
-
- InlineCallFrame inlineCallFrame;
- inlineCallFrame.executable.set(*byteCodeParser->m_vm, byteCodeParser->m_codeBlock->ownerExecutable(), codeBlock->ownerExecutable());
- inlineCallFrame.stackOffset = inlineCallFrameStart + JSStack::CallFrameHeaderSize;
- if (callee)
- inlineCallFrame.callee.set(*byteCodeParser->m_vm, byteCodeParser->m_codeBlock->ownerExecutable(), callee);
- inlineCallFrame.caller = byteCodeParser->currentCodeOrigin();
- inlineCallFrame.arguments.resize(argumentCountIncludingThis); // Set the number of arguments including this, but don't configure the value recoveries, yet.
- inlineCallFrame.isCall = isCall(kind);
-
- if (inlineCallFrame.caller.inlineCallFrame)
- inlineCallFrame.capturedVars = inlineCallFrame.caller.inlineCallFrame->capturedVars;
- else {
- for (int i = byteCodeParser->m_codeBlock->m_numVars; i--;) {
- if (byteCodeParser->m_codeBlock->isCaptured(i))
- inlineCallFrame.capturedVars.set(i);
- }
- }
-
- for (int i = argumentCountIncludingThis; i--;) {
- if (codeBlock->isCaptured(argumentToOperand(i)))
- inlineCallFrame.capturedVars.set(argumentToOperand(i) + inlineCallFrame.stackOffset);
- }
- for (size_t i = codeBlock->m_numVars; i--;) {
- if (codeBlock->isCaptured(i))
- inlineCallFrame.capturedVars.set(i + inlineCallFrame.stackOffset);
- }
-
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLogF("Current captured variables: ");
- inlineCallFrame.capturedVars.dump(WTF::dataFile());
- dataLogF("\n");
-#endif
-
- byteCodeParser->m_codeBlock->inlineCallFrames().append(inlineCallFrame);
- m_inlineCallFrame = &byteCodeParser->m_codeBlock->inlineCallFrames().last();
+ ASSERT(inlineCallFrameStart.isValid());
+ ASSERT(callsiteBlockHead);
- byteCodeParser->buildOperandMapsIfNecessary();
+ m_inlineCallFrame = byteCodeParser->m_graph.m_plan.inlineCallFrames->add();
+ byteCodeParser->m_graph.freeze(codeBlock->baselineVersion());
+ // The owner is the machine code block, and we already have a barrier on that when the
+ // plan finishes.
+ m_inlineCallFrame->baselineCodeBlock.setWithoutWriteBarrier(codeBlock->baselineVersion());
+ m_inlineCallFrame->setStackOffset(inlineCallFrameStart.offset() - JSStack::CallFrameHeaderSize);
+ if (callee) {
+ m_inlineCallFrame->calleeRecovery = ValueRecovery::constant(callee);
+ m_inlineCallFrame->isClosureCall = false;
+ } else
+ m_inlineCallFrame->isClosureCall = true;
+ m_inlineCallFrame->directCaller = byteCodeParser->currentCodeOrigin();
+ m_inlineCallFrame->arguments.resizeToFit(argumentCountIncludingThis); // Set the number of arguments including this, but don't configure the value recoveries, yet.
+ m_inlineCallFrame->kind = kind;
m_identifierRemap.resize(codeBlock->numberOfIdentifiers());
- m_constantRemap.resize(codeBlock->numberOfConstantRegisters());
m_constantBufferRemap.resize(codeBlock->numberOfConstantBuffers());
+ m_switchRemap.resize(codeBlock->numberOfSwitchJumpTables());
for (size_t i = 0; i < codeBlock->numberOfIdentifiers(); ++i) {
- StringImpl* rep = codeBlock->identifier(i).impl();
- IdentifierMap::AddResult result = byteCodeParser->m_identifierMap.add(rep, byteCodeParser->m_codeBlock->numberOfIdentifiers());
- if (result.isNewEntry)
- byteCodeParser->m_codeBlock->addIdentifier(Identifier(byteCodeParser->m_vm, rep));
- m_identifierRemap[i] = result.iterator->value;
- }
- for (size_t i = 0; i < codeBlock->numberOfConstantRegisters(); ++i) {
- JSValue value = codeBlock->getConstant(i + FirstConstantRegisterIndex);
- if (!value) {
- if (byteCodeParser->m_emptyJSValueIndex == UINT_MAX) {
- byteCodeParser->m_emptyJSValueIndex = byteCodeParser->m_codeBlock->numberOfConstantRegisters() + FirstConstantRegisterIndex;
- byteCodeParser->m_codeBlock->addConstant(JSValue());
- byteCodeParser->m_constants.append(ConstantRecord());
- }
- m_constantRemap[i] = byteCodeParser->m_emptyJSValueIndex;
- continue;
- }
- JSValueMap::AddResult result = byteCodeParser->m_jsValueMap.add(JSValue::encode(value), byteCodeParser->m_codeBlock->numberOfConstantRegisters() + FirstConstantRegisterIndex);
- if (result.isNewEntry) {
- byteCodeParser->m_codeBlock->addConstant(value);
- byteCodeParser->m_constants.append(ConstantRecord());
- }
- m_constantRemap[i] = result.iterator->value;
+ UniquedStringImpl* rep = codeBlock->identifier(i).impl();
+ unsigned index = byteCodeParser->m_graph.identifiers().ensure(rep);
+ m_identifierRemap[i] = index;
}
for (unsigned i = 0; i < codeBlock->numberOfConstantBuffers(); ++i) {
// If we inline the same code block multiple times, we don't want to needlessly
@@ -3581,60 +4885,65 @@ ByteCodeParser::InlineStackEntry::InlineStackEntry(
m_constantBufferRemap[i] = newIndex;
byteCodeParser->m_constantBufferCache.add(ConstantBufferKey(codeBlock, i), newIndex);
}
+ for (unsigned i = 0; i < codeBlock->numberOfSwitchJumpTables(); ++i) {
+ m_switchRemap[i] = byteCodeParser->m_codeBlock->numberOfSwitchJumpTables();
+ byteCodeParser->m_codeBlock->addSwitchJumpTable() = codeBlock->switchJumpTable(i);
+ }
m_callsiteBlockHeadNeedsLinking = true;
} else {
// Machine code block case.
ASSERT(codeBlock == byteCodeParser->m_codeBlock);
ASSERT(!callee);
- ASSERT(returnValueVR == InvalidVirtualRegister);
- ASSERT(inlineCallFrameStart == InvalidVirtualRegister);
- ASSERT(callsiteBlockHead == NoBlock);
+ ASSERT(!returnValueVR.isValid());
+ ASSERT(!inlineCallFrameStart.isValid());
+ ASSERT(!callsiteBlockHead);
m_inlineCallFrame = 0;
m_identifierRemap.resize(codeBlock->numberOfIdentifiers());
- m_constantRemap.resize(codeBlock->numberOfConstantRegisters());
m_constantBufferRemap.resize(codeBlock->numberOfConstantBuffers());
+ m_switchRemap.resize(codeBlock->numberOfSwitchJumpTables());
for (size_t i = 0; i < codeBlock->numberOfIdentifiers(); ++i)
m_identifierRemap[i] = i;
- for (size_t i = 0; i < codeBlock->numberOfConstantRegisters(); ++i)
- m_constantRemap[i] = i + FirstConstantRegisterIndex;
for (size_t i = 0; i < codeBlock->numberOfConstantBuffers(); ++i)
m_constantBufferRemap[i] = i;
+ for (size_t i = 0; i < codeBlock->numberOfSwitchJumpTables(); ++i)
+ m_switchRemap[i] = i;
m_callsiteBlockHeadNeedsLinking = false;
}
- for (size_t i = 0; i < m_constantRemap.size(); ++i)
- ASSERT(m_constantRemap[i] >= static_cast<unsigned>(FirstConstantRegisterIndex));
-
byteCodeParser->m_inlineStackTop = this;
}
void ByteCodeParser::parseCodeBlock()
{
+ clearCaches();
+
CodeBlock* codeBlock = m_inlineStackTop->m_codeBlock;
- if (m_graph.m_compilation) {
- m_graph.m_compilation->addProfiledBytecodes(
+ if (m_graph.compilation()) {
+ m_graph.compilation()->addProfiledBytecodes(
*m_vm->m_perBytecodeProfiler, m_inlineStackTop->m_profiledBlock);
}
- bool shouldDumpBytecode = Options::dumpBytecodeAtDFGTime();
-#if DFG_ENABLE(DEBUG_VERBOSE)
- shouldDumpBytecode |= true;
-#endif
- if (shouldDumpBytecode) {
+ if (UNLIKELY(Options::dumpSourceAtDFGTime())) {
+ Vector<DeferredSourceDump>& deferredSourceDump = m_graph.m_plan.callback->ensureDeferredSourceDump();
+ if (inlineCallFrame()) {
+ DeferredSourceDump dump(codeBlock->baselineVersion(), m_codeBlock, JITCode::DFGJIT, inlineCallFrame()->directCaller);
+ deferredSourceDump.append(dump);
+ } else
+ deferredSourceDump.append(DeferredSourceDump(codeBlock->baselineVersion()));
+ }
+
+ if (Options::dumpBytecodeAtDFGTime()) {
dataLog("Parsing ", *codeBlock);
if (inlineCallFrame()) {
dataLog(
" for inlining at ", CodeBlockWithJITType(m_codeBlock, JITCode::DFGJIT),
- " ", inlineCallFrame()->caller);
+ " ", inlineCallFrame()->directCaller);
}
dataLog(
- ": captureCount = ", codeBlock->symbolTable() ? codeBlock->symbolTable()->captureCount() : 0,
- ", needsFullScopeChain = ", codeBlock->needsFullScopeChain(),
- ", needsActivation = ", codeBlock->ownerExecutable()->needsActivation(),
- ", isStrictMode = ", codeBlock->ownerExecutable()->isStrictMode(), "\n");
+ ", isStrictMode = ", codeBlock->ownerScriptExecutable()->isStrictMode(), "\n");
codeBlock->baselineVersion()->dumpBytecode();
}
@@ -3651,40 +4960,28 @@ void ByteCodeParser::parseCodeBlock()
for (unsigned jumpTargetIndex = 0; jumpTargetIndex <= jumpTargets.size(); ++jumpTargetIndex) {
// The maximum bytecode offset to go into the current basicblock is either the next jump target, or the end of the instructions.
unsigned limit = jumpTargetIndex < jumpTargets.size() ? jumpTargets[jumpTargetIndex] : codeBlock->instructions().size();
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLog(
- "Parsing bytecode with limit ", pointerDump(inlineCallFrame()),
- " bc#", limit, " at inline depth ",
- CodeOrigin::inlineDepthForCallFrame(inlineCallFrame()), ".\n");
-#endif
ASSERT(m_currentIndex < limit);
// Loop until we reach the current limit (i.e. next jump target).
do {
if (!m_currentBlock) {
// Check if we can use the last block.
- if (!m_graph.m_blocks.isEmpty() && m_graph.m_blocks.last()->isEmpty()) {
+ if (m_graph.numBlocks() && m_graph.lastBlock()->isEmpty()) {
// This must be a block belonging to us.
- ASSERT(m_inlineStackTop->m_unlinkedBlocks.last().m_blockIndex == m_graph.m_blocks.size() - 1);
+ ASSERT(m_inlineStackTop->m_unlinkedBlocks.last().m_block == m_graph.lastBlock());
// Either the block is linkable or it isn't. If it's linkable then it's the last
// block in the blockLinkingTargets list. If it's not then the last block will
// have a lower bytecode index that the one we're about to give to this block.
- if (m_inlineStackTop->m_blockLinkingTargets.isEmpty() || m_graph.m_blocks[m_inlineStackTop->m_blockLinkingTargets.last()]->bytecodeBegin != m_currentIndex) {
+ if (m_inlineStackTop->m_blockLinkingTargets.isEmpty() || m_inlineStackTop->m_blockLinkingTargets.last()->bytecodeBegin != m_currentIndex) {
// Make the block linkable.
- ASSERT(m_inlineStackTop->m_blockLinkingTargets.isEmpty() || m_graph.m_blocks[m_inlineStackTop->m_blockLinkingTargets.last()]->bytecodeBegin < m_currentIndex);
- m_inlineStackTop->m_blockLinkingTargets.append(m_graph.m_blocks.size() - 1);
+ ASSERT(m_inlineStackTop->m_blockLinkingTargets.isEmpty() || m_inlineStackTop->m_blockLinkingTargets.last()->bytecodeBegin < m_currentIndex);
+ m_inlineStackTop->m_blockLinkingTargets.append(m_graph.lastBlock());
}
// Change its bytecode begin and continue.
- m_currentBlock = m_graph.m_blocks.last().get();
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLogF("Reascribing bytecode index of block %p from bc#%u to bc#%u (peephole case).\n", m_currentBlock, m_currentBlock->bytecodeBegin, m_currentIndex);
-#endif
+ m_currentBlock = m_graph.lastBlock();
m_currentBlock->bytecodeBegin = m_currentIndex;
} else {
- OwnPtr<BasicBlock> block = adoptPtr(new BasicBlock(m_currentIndex, m_numArguments, m_numLocals));
-#if DFG_ENABLE(DEBUG_VERBOSE)
- dataLogF("Creating basic block %p, #%zu for %p bc#%u at inline depth %u.\n", block.get(), m_graph.m_blocks.size(), m_inlineStackTop->executable(), m_currentIndex, CodeOrigin::inlineDepthForCallFrame(inlineCallFrame()));
-#endif
+ RefPtr<BasicBlock> block = adoptRef(new BasicBlock(m_currentIndex, m_numArguments, m_numLocals, 1));
m_currentBlock = block.get();
// This assertion checks two things:
// 1) If the bytecodeBegin is greater than currentIndex, then something has gone
@@ -3692,13 +4989,18 @@ void ByteCodeParser::parseCodeBlock()
// 2) If the bytecodeBegin is equal to the currentIndex, then we failed to do
// a peephole coalescing of this block in the if statement above. So, we're
// generating suboptimal code and leaving more work for the CFG simplifier.
- ASSERT(m_inlineStackTop->m_unlinkedBlocks.isEmpty() || m_graph.m_blocks[m_inlineStackTop->m_unlinkedBlocks.last().m_blockIndex]->bytecodeBegin < m_currentIndex);
- m_inlineStackTop->m_unlinkedBlocks.append(UnlinkedBlock(m_graph.m_blocks.size()));
- m_inlineStackTop->m_blockLinkingTargets.append(m_graph.m_blocks.size());
+ if (!m_inlineStackTop->m_unlinkedBlocks.isEmpty()) {
+ unsigned lastBegin =
+ m_inlineStackTop->m_unlinkedBlocks.last().m_block->bytecodeBegin;
+ ASSERT_UNUSED(
+ lastBegin, lastBegin == UINT_MAX || lastBegin < m_currentIndex);
+ }
+ m_inlineStackTop->m_unlinkedBlocks.append(UnlinkedBlock(block.get()));
+ m_inlineStackTop->m_blockLinkingTargets.append(block.get());
// The first block is definitely an OSR target.
- if (!m_graph.m_blocks.size())
+ if (!m_graph.numBlocks())
block->isOSRTarget = true;
- m_graph.m_blocks.append(block.release());
+ m_graph.appendBlock(block);
prepareToParseBlock();
}
}
@@ -3713,17 +5015,23 @@ void ByteCodeParser::parseCodeBlock()
// are at the end of an inline function, or we realized that we
// should stop parsing because there was a return in the first
// basic block.
- ASSERT(m_currentBlock->isEmpty() || m_currentBlock->last()->isTerminal() || (m_currentIndex == codeBlock->instructions().size() && inlineCallFrame()) || !shouldContinueParsing);
+ ASSERT(m_currentBlock->isEmpty() || m_currentBlock->terminal() || (m_currentIndex == codeBlock->instructions().size() && inlineCallFrame()) || !shouldContinueParsing);
- if (!shouldContinueParsing)
+ if (!shouldContinueParsing) {
+ if (Options::verboseDFGByteCodeParsing())
+ dataLog("Done parsing ", *codeBlock, "\n");
return;
+ }
- m_currentBlock = 0;
+ m_currentBlock = nullptr;
} while (m_currentIndex < limit);
}
// Should have reached the end of the instructions.
ASSERT(m_currentIndex == codeBlock->instructions().size());
+
+ if (Options::verboseDFGByteCodeParsing())
+ dataLog("Done parsing ", *codeBlock, " (fell off end)\n");
}
bool ByteCodeParser::parse()
@@ -3731,58 +5039,48 @@ bool ByteCodeParser::parse()
// Set during construction.
ASSERT(!m_currentIndex);
-#if DFG_ENABLE(ALL_VARIABLES_CAPTURED)
- // We should be pretending that the code has an activation.
- ASSERT(m_graph.needsActivation());
-#endif
+ if (Options::verboseDFGByteCodeParsing())
+ dataLog("Parsing ", *m_codeBlock, "\n");
+
+ m_dfgCodeBlock = m_graph.m_plan.profiledDFGCodeBlock;
+ if (isFTL(m_graph.m_plan.mode) && m_dfgCodeBlock
+ && Options::usePolyvariantDevirtualization()) {
+ if (Options::usePolyvariantCallInlining())
+ CallLinkStatus::computeDFGStatuses(m_dfgCodeBlock, m_callContextMap);
+ if (Options::usePolyvariantByIdInlining())
+ m_dfgCodeBlock->getStubInfoMap(m_dfgStubInfos);
+ }
InlineStackEntry inlineStackEntry(
- this, m_codeBlock, m_profiledBlock, NoBlock, 0, InvalidVirtualRegister, InvalidVirtualRegister,
- m_codeBlock->numParameters(), CodeForCall);
+ this, m_codeBlock, m_profiledBlock, 0, 0, VirtualRegister(), VirtualRegister(),
+ m_codeBlock->numParameters(), InlineCallFrame::Call);
parseCodeBlock();
linkBlocks(inlineStackEntry.m_unlinkedBlocks, inlineStackEntry.m_blockLinkingTargets);
m_graph.determineReachability();
+ m_graph.killUnreachableBlocks();
- ASSERT(m_preservedVars.size());
- size_t numberOfLocals = 0;
- for (size_t i = m_preservedVars.size(); i--;) {
- if (m_preservedVars.quickGet(i)) {
- numberOfLocals = i + 1;
- break;
- }
- }
-
- for (BlockIndex blockIndex = 0; blockIndex < m_graph.m_blocks.size(); ++blockIndex) {
- BasicBlock* block = m_graph.m_blocks[blockIndex].get();
- ASSERT(block);
- if (!block->isReachable) {
- m_graph.m_blocks[blockIndex].clear();
+ for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
+ BasicBlock* block = m_graph.block(blockIndex);
+ if (!block)
continue;
- }
-
- block->variablesAtHead.ensureLocals(numberOfLocals);
- block->variablesAtTail.ensureLocals(numberOfLocals);
+ ASSERT(block->variablesAtHead.numberOfLocals() == m_graph.block(0)->variablesAtHead.numberOfLocals());
+ ASSERT(block->variablesAtHead.numberOfArguments() == m_graph.block(0)->variablesAtHead.numberOfArguments());
+ ASSERT(block->variablesAtTail.numberOfLocals() == m_graph.block(0)->variablesAtHead.numberOfLocals());
+ ASSERT(block->variablesAtTail.numberOfArguments() == m_graph.block(0)->variablesAtHead.numberOfArguments());
}
- m_graph.m_preservedVars = m_preservedVars;
m_graph.m_localVars = m_numLocals;
m_graph.m_parameterSlots = m_parameterSlots;
return true;
}
-bool parse(ExecState*, Graph& graph)
+bool parse(Graph& graph)
{
SamplingRegion samplingRegion("DFG Parsing");
-#if DFG_DEBUG_LOCAL_DISBALE
- UNUSED_PARAM(exec);
- UNUSED_PARAM(graph);
- return false;
-#else
return ByteCodeParser(graph).parse();
-#endif
}
} } // namespace JSC::DFG