summaryrefslogtreecommitdiff
path: root/Source/JavaScriptCore/dfg/DFGOSRExitCompiler64.cpp
diff options
context:
space:
mode:
authorSimon Hausmann <simon.hausmann@nokia.com>2012-01-06 14:44:00 +0100
committerSimon Hausmann <simon.hausmann@nokia.com>2012-01-06 14:44:00 +0100
commit40736c5763bf61337c8c14e16d8587db021a87d4 (patch)
treeb17a9c00042ad89cb1308e2484491799aa14e9f8 /Source/JavaScriptCore/dfg/DFGOSRExitCompiler64.cpp
downloadqtwebkit-40736c5763bf61337c8c14e16d8587db021a87d4.tar.gz
Imported WebKit commit 2ea9d364d0f6efa8fa64acf19f451504c59be0e4 (http://svn.webkit.org/repository/webkit/trunk@104285)
Diffstat (limited to 'Source/JavaScriptCore/dfg/DFGOSRExitCompiler64.cpp')
-rw-r--r--Source/JavaScriptCore/dfg/DFGOSRExitCompiler64.cpp633
1 files changed, 633 insertions, 0 deletions
diff --git a/Source/JavaScriptCore/dfg/DFGOSRExitCompiler64.cpp b/Source/JavaScriptCore/dfg/DFGOSRExitCompiler64.cpp
new file mode 100644
index 000000000..c6f4a9ed4
--- /dev/null
+++ b/Source/JavaScriptCore/dfg/DFGOSRExitCompiler64.cpp
@@ -0,0 +1,633 @@
+/*
+ * Copyright (C) 2011 Apple Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "config.h"
+#include "DFGOSRExitCompiler.h"
+
+#if ENABLE(DFG_JIT) && USE(JSVALUE64)
+
+#include "DFGOperations.h"
+
+namespace JSC { namespace DFG {
+
+void OSRExitCompiler::compileExit(const OSRExit& exit, SpeculationRecovery* recovery)
+{
+ // 1) Pro-forma stuff.
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ fprintf(stderr, "OSR exit for Node @%d (", (int)exit.m_nodeIndex);
+ for (CodeOrigin codeOrigin = exit.m_codeOrigin; ; codeOrigin = codeOrigin.inlineCallFrame->caller) {
+ fprintf(stderr, "bc#%u", codeOrigin.bytecodeIndex);
+ if (!codeOrigin.inlineCallFrame)
+ break;
+ fprintf(stderr, " -> %p ", codeOrigin.inlineCallFrame->executable.get());
+ }
+ fprintf(stderr, ") ");
+ exit.dump(stderr);
+#endif
+#if DFG_ENABLE(VERBOSE_SPECULATION_FAILURE)
+ SpeculationFailureDebugInfo* debugInfo = new SpeculationFailureDebugInfo;
+ debugInfo->codeBlock = m_jit.codeBlock();
+ debugInfo->nodeIndex = exit.m_nodeIndex;
+
+ m_jit.debugCall(debugOperationPrintSpeculationFailure, debugInfo);
+#endif
+
+#if DFG_ENABLE(JIT_BREAK_ON_SPECULATION_FAILURE)
+ m_jit.breakpoint();
+#endif
+
+#if DFG_ENABLE(SUCCESS_STATS)
+ static SamplingCounter counter("SpeculationFailure");
+ m_jit.emitCount(counter);
+#endif
+
+ // 2) Perform speculation recovery. This only comes into play when an operation
+ // starts mutating state before verifying the speculation it has already made.
+
+ GPRReg alreadyBoxed = InvalidGPRReg;
+
+ if (recovery) {
+ switch (recovery->type()) {
+ case SpeculativeAdd:
+ m_jit.sub32(recovery->src(), recovery->dest());
+ m_jit.orPtr(GPRInfo::tagTypeNumberRegister, recovery->dest());
+ alreadyBoxed = recovery->dest();
+ break;
+
+ case BooleanSpeculationCheck:
+ m_jit.xorPtr(AssemblyHelpers::TrustedImm32(static_cast<int32_t>(ValueFalse)), recovery->dest());
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ // 3) Refine some value profile, if appropriate.
+
+ if (!!exit.m_jsValueSource && !!exit.m_valueProfile) {
+ if (exit.m_jsValueSource.isAddress()) {
+ // We can't be sure that we have a spare register. So use the tagTypeNumberRegister,
+ // since we know how to restore it.
+ m_jit.loadPtr(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), GPRInfo::tagTypeNumberRegister);
+ m_jit.storePtr(GPRInfo::tagTypeNumberRegister, exit.m_valueProfile->specFailBucket(0));
+ m_jit.move(AssemblyHelpers::TrustedImmPtr(bitwise_cast<void*>(TagTypeNumber)), GPRInfo::tagTypeNumberRegister);
+ } else
+ m_jit.storePtr(exit.m_jsValueSource.gpr(), exit.m_valueProfile->specFailBucket(0));
+ }
+
+ // 4) Figure out how many scratch slots we'll need. We need one for every GPR/FPR
+ // whose destination is now occupied by a DFG virtual register, and we need
+ // one for every displaced virtual register if there are more than
+ // GPRInfo::numberOfRegisters of them. Also see if there are any constants,
+ // any undefined slots, any FPR slots, and any unboxed ints.
+
+ Vector<bool> poisonedVirtualRegisters(exit.m_variables.size());
+ for (unsigned i = 0; i < poisonedVirtualRegisters.size(); ++i)
+ poisonedVirtualRegisters[i] = false;
+
+ unsigned numberOfPoisonedVirtualRegisters = 0;
+ unsigned numberOfDisplacedVirtualRegisters = 0;
+
+ // Booleans for fast checks. We expect that most OSR exits do not have to rebox
+ // Int32s, have no FPRs, and have no constants. If there are constants, we
+ // expect most of them to be jsUndefined(); if that's true then we handle that
+ // specially to minimize code size and execution time.
+ bool haveUnboxedInt32s = false;
+ bool haveUnboxedDoubles = false;
+ bool haveFPRs = false;
+ bool haveConstants = false;
+ bool haveUndefined = false;
+ bool haveUInt32s = false;
+
+ for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
+ const ValueRecovery& recovery = exit.valueRecovery(index);
+ switch (recovery.technique()) {
+ case Int32DisplacedInRegisterFile:
+ case DoubleDisplacedInRegisterFile:
+ case DisplacedInRegisterFile:
+ numberOfDisplacedVirtualRegisters++;
+ ASSERT((int)recovery.virtualRegister() >= 0);
+
+ // See if we might like to store to this virtual register before doing
+ // virtual register shuffling. If so, we say that the virtual register
+ // is poisoned: it cannot be stored to until after displaced virtual
+ // registers are handled. We track poisoned virtual register carefully
+ // to ensure this happens efficiently. Note that we expect this case
+ // to be rare, so the handling of it is optimized for the cases in
+ // which it does not happen.
+ if (recovery.virtualRegister() < (int)exit.m_variables.size()) {
+ switch (exit.m_variables[recovery.virtualRegister()].technique()) {
+ case InGPR:
+ case UnboxedInt32InGPR:
+ case UInt32InGPR:
+ case InFPR:
+ if (!poisonedVirtualRegisters[recovery.virtualRegister()]) {
+ poisonedVirtualRegisters[recovery.virtualRegister()] = true;
+ numberOfPoisonedVirtualRegisters++;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ break;
+
+ case UnboxedInt32InGPR:
+ case AlreadyInRegisterFileAsUnboxedInt32:
+ haveUnboxedInt32s = true;
+ break;
+
+ case AlreadyInRegisterFileAsUnboxedDouble:
+ haveUnboxedDoubles = true;
+ break;
+
+ case UInt32InGPR:
+ haveUInt32s = true;
+ break;
+
+ case InFPR:
+ haveFPRs = true;
+ break;
+
+ case Constant:
+ haveConstants = true;
+ if (recovery.constant().isUndefined())
+ haveUndefined = true;
+ break;
+
+ default:
+ break;
+ }
+ }
+
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ fprintf(stderr, " ");
+ if (numberOfPoisonedVirtualRegisters)
+ fprintf(stderr, "Poisoned=%u ", numberOfPoisonedVirtualRegisters);
+ if (numberOfDisplacedVirtualRegisters)
+ fprintf(stderr, "Displaced=%u ", numberOfDisplacedVirtualRegisters);
+ if (haveUnboxedInt32s)
+ fprintf(stderr, "UnboxedInt32 ");
+ if (haveUnboxedDoubles)
+ fprintf(stderr, "UnboxedDoubles ");
+ if (haveUInt32s)
+ fprintf(stderr, "UInt32 ");
+ if (haveFPRs)
+ fprintf(stderr, "FPR ");
+ if (haveConstants)
+ fprintf(stderr, "Constants ");
+ if (haveUndefined)
+ fprintf(stderr, "Undefined ");
+ fprintf(stderr, " ");
+#endif
+
+ EncodedJSValue* scratchBuffer = static_cast<EncodedJSValue*>(m_jit.globalData()->scratchBufferForSize(sizeof(EncodedJSValue) * std::max(haveUInt32s ? 2u : 0u, numberOfPoisonedVirtualRegisters + (numberOfDisplacedVirtualRegisters <= GPRInfo::numberOfRegisters ? 0 : numberOfDisplacedVirtualRegisters))));
+
+ // From here on, the code assumes that it is profitable to maximize the distance
+ // between when something is computed and when it is stored.
+
+ // 5) Perform all reboxing of integers.
+
+ if (haveUnboxedInt32s || haveUInt32s) {
+ for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
+ const ValueRecovery& recovery = exit.valueRecovery(index);
+ switch (recovery.technique()) {
+ case UnboxedInt32InGPR:
+ if (recovery.gpr() != alreadyBoxed)
+ m_jit.orPtr(GPRInfo::tagTypeNumberRegister, recovery.gpr());
+ break;
+
+ case AlreadyInRegisterFileAsUnboxedInt32:
+ m_jit.store32(AssemblyHelpers::Imm32(static_cast<uint32_t>(TagTypeNumber >> 32)), AssemblyHelpers::tagFor(static_cast<VirtualRegister>(exit.operandForIndex(index))));
+ break;
+
+ case UInt32InGPR: {
+ // This occurs when the speculative JIT left an unsigned 32-bit integer
+ // in a GPR. If it's positive, we can just box the int. Otherwise we
+ // need to turn it into a boxed double.
+
+ // We don't try to be clever with register allocation here; we assume
+ // that the program is using FPRs and we don't try to figure out which
+ // ones it is using. Instead just temporarily save fpRegT0 and then
+ // restore it. This makes sense because this path is not cheap to begin
+ // with, and should happen very rarely.
+
+ GPRReg addressGPR = GPRInfo::regT0;
+ if (addressGPR == recovery.gpr())
+ addressGPR = GPRInfo::regT1;
+
+ m_jit.storePtr(addressGPR, scratchBuffer);
+ m_jit.move(AssemblyHelpers::TrustedImmPtr(scratchBuffer + 1), addressGPR);
+ m_jit.storeDouble(FPRInfo::fpRegT0, addressGPR);
+
+ AssemblyHelpers::Jump positive = m_jit.branch32(AssemblyHelpers::GreaterThanOrEqual, recovery.gpr(), AssemblyHelpers::TrustedImm32(0));
+
+ m_jit.convertInt32ToDouble(recovery.gpr(), FPRInfo::fpRegT0);
+ m_jit.addDouble(AssemblyHelpers::AbsoluteAddress(&AssemblyHelpers::twoToThe32), FPRInfo::fpRegT0);
+ m_jit.boxDouble(FPRInfo::fpRegT0, recovery.gpr());
+
+ AssemblyHelpers::Jump done = m_jit.jump();
+
+ positive.link(&m_jit);
+
+ m_jit.orPtr(GPRInfo::tagTypeNumberRegister, recovery.gpr());
+
+ done.link(&m_jit);
+
+ m_jit.loadDouble(addressGPR, FPRInfo::fpRegT0);
+ m_jit.loadPtr(scratchBuffer, addressGPR);
+ break;
+ }
+
+ default:
+ break;
+ }
+ }
+ }
+
+ // 6) Dump all non-poisoned GPRs. For poisoned GPRs, save them into the scratch storage.
+ // Note that GPRs do not have a fast change (like haveFPRs) because we expect that
+ // most OSR failure points will have at least one GPR that needs to be dumped.
+
+ initializePoisoned(exit.m_variables.size());
+ unsigned currentPoisonIndex = 0;
+
+ for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
+ const ValueRecovery& recovery = exit.valueRecovery(index);
+ int operand = exit.operandForIndex(index);
+ switch (recovery.technique()) {
+ case InGPR:
+ case UnboxedInt32InGPR:
+ case UInt32InGPR:
+ if (exit.isVariable(index) && poisonedVirtualRegisters[exit.variableForIndex(index)]) {
+ m_jit.storePtr(recovery.gpr(), scratchBuffer + currentPoisonIndex);
+ m_poisonScratchIndices[exit.variableForIndex(index)] = currentPoisonIndex;
+ currentPoisonIndex++;
+ } else
+ m_jit.storePtr(recovery.gpr(), AssemblyHelpers::addressFor((VirtualRegister)operand));
+ break;
+ default:
+ break;
+ }
+ }
+
+ // At this point all GPRs are available for scratch use.
+
+ if (haveFPRs) {
+ // 7) Box all doubles (relies on there being more GPRs than FPRs)
+
+ for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
+ const ValueRecovery& recovery = exit.valueRecovery(index);
+ if (recovery.technique() != InFPR)
+ continue;
+ FPRReg fpr = recovery.fpr();
+ GPRReg gpr = GPRInfo::toRegister(FPRInfo::toIndex(fpr));
+ m_jit.boxDouble(fpr, gpr);
+ }
+
+ // 8) Dump all doubles into the register file, or to the scratch storage if
+ // the destination virtual register is poisoned.
+
+ for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
+ const ValueRecovery& recovery = exit.valueRecovery(index);
+ if (recovery.technique() != InFPR)
+ continue;
+ GPRReg gpr = GPRInfo::toRegister(FPRInfo::toIndex(recovery.fpr()));
+ if (exit.isVariable(index) && poisonedVirtualRegisters[exit.variableForIndex(index)]) {
+ m_jit.storePtr(gpr, scratchBuffer + currentPoisonIndex);
+ m_poisonScratchIndices[exit.variableForIndex(index)] = currentPoisonIndex;
+ currentPoisonIndex++;
+ } else
+ m_jit.storePtr(gpr, AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)));
+ }
+ }
+
+ // At this point all GPRs and FPRs are available for scratch use.
+
+ // 9) Box all unboxed doubles in the register file.
+ if (haveUnboxedDoubles) {
+ for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
+ const ValueRecovery& recovery = exit.valueRecovery(index);
+ if (recovery.technique() != AlreadyInRegisterFileAsUnboxedDouble)
+ continue;
+ m_jit.loadDouble(AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)), FPRInfo::fpRegT0);
+ m_jit.boxDouble(FPRInfo::fpRegT0, GPRInfo::regT0);
+ m_jit.storePtr(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)));
+ }
+ }
+
+ ASSERT(currentPoisonIndex == numberOfPoisonedVirtualRegisters);
+
+ // 10) Reshuffle displaced virtual registers. Optimize for the case that
+ // the number of displaced virtual registers is not more than the number
+ // of available physical registers.
+
+ if (numberOfDisplacedVirtualRegisters) {
+ if (numberOfDisplacedVirtualRegisters <= GPRInfo::numberOfRegisters) {
+ // So far this appears to be the case that triggers all the time, but
+ // that is far from guaranteed.
+
+ unsigned displacementIndex = 0;
+ for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
+ const ValueRecovery& recovery = exit.valueRecovery(index);
+ switch (recovery.technique()) {
+ case DisplacedInRegisterFile:
+ m_jit.loadPtr(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::toRegister(displacementIndex++));
+ break;
+
+ case Int32DisplacedInRegisterFile: {
+ GPRReg gpr = GPRInfo::toRegister(displacementIndex++);
+ m_jit.load32(AssemblyHelpers::addressFor(recovery.virtualRegister()), gpr);
+ m_jit.orPtr(GPRInfo::tagTypeNumberRegister, gpr);
+ break;
+ }
+
+ case DoubleDisplacedInRegisterFile: {
+ GPRReg gpr = GPRInfo::toRegister(displacementIndex++);
+ m_jit.loadPtr(AssemblyHelpers::addressFor(recovery.virtualRegister()), gpr);
+ m_jit.subPtr(GPRInfo::tagTypeNumberRegister, gpr);
+ break;
+ }
+
+ default:
+ break;
+ }
+ }
+
+ displacementIndex = 0;
+ for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
+ const ValueRecovery& recovery = exit.valueRecovery(index);
+ switch (recovery.technique()) {
+ case DisplacedInRegisterFile:
+ case Int32DisplacedInRegisterFile:
+ case DoubleDisplacedInRegisterFile:
+ m_jit.storePtr(GPRInfo::toRegister(displacementIndex++), AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)));
+ break;
+
+ default:
+ break;
+ }
+ }
+ } else {
+ // FIXME: This should use the shuffling algorithm that we use
+ // for speculative->non-speculative jumps, if we ever discover that
+ // some hot code with lots of live values that get displaced and
+ // spilled really enjoys frequently failing speculation.
+
+ // For now this code is engineered to be correct but probably not
+ // super. In particular, it correctly handles cases where for example
+ // the displacements are a permutation of the destination values, like
+ //
+ // 1 -> 2
+ // 2 -> 1
+ //
+ // It accomplishes this by simply lifting all of the virtual registers
+ // from their old (DFG JIT) locations and dropping them in a scratch
+ // location in memory, and then transferring from that scratch location
+ // to their new (old JIT) locations.
+
+ unsigned scratchIndex = numberOfPoisonedVirtualRegisters;
+ for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
+ const ValueRecovery& recovery = exit.valueRecovery(index);
+
+ switch (recovery.technique()) {
+ case DisplacedInRegisterFile:
+ m_jit.loadPtr(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0);
+ m_jit.storePtr(GPRInfo::regT0, scratchBuffer + scratchIndex++);
+ break;
+
+ case Int32DisplacedInRegisterFile: {
+ m_jit.load32(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0);
+ m_jit.orPtr(GPRInfo::tagTypeNumberRegister, GPRInfo::regT0);
+ m_jit.storePtr(GPRInfo::regT0, scratchBuffer + scratchIndex++);
+ break;
+ }
+
+ case DoubleDisplacedInRegisterFile: {
+ m_jit.loadPtr(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0);
+ m_jit.subPtr(GPRInfo::tagTypeNumberRegister, GPRInfo::regT0);
+ m_jit.storePtr(GPRInfo::regT0, scratchBuffer + scratchIndex++);
+ break;
+ }
+
+ default:
+ break;
+ }
+ }
+
+ scratchIndex = numberOfPoisonedVirtualRegisters;
+ for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
+ const ValueRecovery& recovery = exit.valueRecovery(index);
+ switch (recovery.technique()) {
+ case DisplacedInRegisterFile:
+ case Int32DisplacedInRegisterFile:
+ case DoubleDisplacedInRegisterFile:
+ m_jit.loadPtr(scratchBuffer + scratchIndex++, GPRInfo::regT0);
+ m_jit.storePtr(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)));
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ ASSERT(scratchIndex == numberOfPoisonedVirtualRegisters + numberOfDisplacedVirtualRegisters);
+ }
+ }
+
+ // 11) Dump all poisoned virtual registers.
+
+ if (numberOfPoisonedVirtualRegisters) {
+ for (int virtualRegister = 0; virtualRegister < (int)exit.m_variables.size(); ++virtualRegister) {
+ if (!poisonedVirtualRegisters[virtualRegister])
+ continue;
+
+ const ValueRecovery& recovery = exit.m_variables[virtualRegister];
+ switch (recovery.technique()) {
+ case InGPR:
+ case UnboxedInt32InGPR:
+ case UInt32InGPR:
+ case InFPR:
+ m_jit.loadPtr(scratchBuffer + poisonIndex(virtualRegister), GPRInfo::regT0);
+ m_jit.storePtr(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)virtualRegister));
+ break;
+
+ default:
+ break;
+ }
+ }
+ }
+
+ // 12) Dump all constants. Optimize for Undefined, since that's a constant we see
+ // often.
+
+ if (haveConstants) {
+ if (haveUndefined)
+ m_jit.move(AssemblyHelpers::TrustedImmPtr(JSValue::encode(jsUndefined())), GPRInfo::regT0);
+
+ for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
+ const ValueRecovery& recovery = exit.valueRecovery(index);
+ if (recovery.technique() != Constant)
+ continue;
+ if (recovery.constant().isUndefined())
+ m_jit.storePtr(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)));
+ else
+ m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(JSValue::encode(recovery.constant())), AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)));
+ }
+ }
+
+ // 13) Adjust the old JIT's execute counter. Since we are exiting OSR, we know
+ // that all new calls into this code will go to the new JIT, so the execute
+ // counter only affects call frames that performed OSR exit and call frames
+ // that were still executing the old JIT at the time of another call frame's
+ // OSR exit. We want to ensure that the following is true:
+ //
+ // (a) Code the performs an OSR exit gets a chance to reenter optimized
+ // code eventually, since optimized code is faster. But we don't
+ // want to do such reentery too aggressively (see (c) below).
+ //
+ // (b) If there is code on the call stack that is still running the old
+ // JIT's code and has never OSR'd, then it should get a chance to
+ // perform OSR entry despite the fact that we've exited.
+ //
+ // (c) Code the performs an OSR exit should not immediately retry OSR
+ // entry, since both forms of OSR are expensive. OSR entry is
+ // particularly expensive.
+ //
+ // (d) Frequent OSR failures, even those that do not result in the code
+ // running in a hot loop, result in recompilation getting triggered.
+ //
+ // To ensure (c), we'd like to set the execute counter to
+ // counterValueForOptimizeAfterWarmUp(). This seems like it would endanger
+ // (a) and (b), since then every OSR exit would delay the opportunity for
+ // every call frame to perform OSR entry. Essentially, if OSR exit happens
+ // frequently and the function has few loops, then the counter will never
+ // become non-negative and OSR entry will never be triggered. OSR entry
+ // will only happen if a loop gets hot in the old JIT, which does a pretty
+ // good job of ensuring (a) and (b). But that doesn't take care of (d),
+ // since each speculation failure would reset the execute counter.
+ // So we check here if the number of speculation failures is significantly
+ // larger than the number of successes (we want 90% success rate), and if
+ // there have been a large enough number of failures. If so, we set the
+ // counter to 0; otherwise we set the counter to
+ // counterValueForOptimizeAfterWarmUp().
+
+ m_jit.add32(AssemblyHelpers::Imm32(1), AssemblyHelpers::AbsoluteAddress(&exit.m_count));
+
+ m_jit.move(AssemblyHelpers::TrustedImmPtr(m_jit.codeBlock()), GPRInfo::regT0);
+
+ m_jit.load32(AssemblyHelpers::Address(GPRInfo::regT0, CodeBlock::offsetOfSpeculativeFailCounter()), GPRInfo::regT2);
+ m_jit.load32(AssemblyHelpers::Address(GPRInfo::regT0, CodeBlock::offsetOfSpeculativeSuccessCounter()), GPRInfo::regT1);
+ m_jit.add32(AssemblyHelpers::Imm32(1), GPRInfo::regT2);
+ m_jit.add32(AssemblyHelpers::Imm32(-1), GPRInfo::regT1);
+ m_jit.store32(GPRInfo::regT2, AssemblyHelpers::Address(GPRInfo::regT0, CodeBlock::offsetOfSpeculativeFailCounter()));
+ m_jit.store32(GPRInfo::regT1, AssemblyHelpers::Address(GPRInfo::regT0, CodeBlock::offsetOfSpeculativeSuccessCounter()));
+
+ m_jit.move(AssemblyHelpers::TrustedImmPtr(m_jit.baselineCodeBlock()), GPRInfo::regT0);
+
+ AssemblyHelpers::Jump fewFails = m_jit.branch32(AssemblyHelpers::BelowOrEqual, GPRInfo::regT2, AssemblyHelpers::Imm32(m_jit.codeBlock()->largeFailCountThreshold()));
+ m_jit.mul32(AssemblyHelpers::Imm32(Options::desiredSpeculativeSuccessFailRatio), GPRInfo::regT2, GPRInfo::regT2);
+
+ AssemblyHelpers::Jump lowFailRate = m_jit.branch32(AssemblyHelpers::BelowOrEqual, GPRInfo::regT2, GPRInfo::regT1);
+
+ // Reoptimize as soon as possible.
+ m_jit.store32(AssemblyHelpers::Imm32(Options::executionCounterValueForOptimizeNextInvocation), AssemblyHelpers::Address(GPRInfo::regT0, CodeBlock::offsetOfExecuteCounter()));
+ AssemblyHelpers::Jump doneAdjusting = m_jit.jump();
+
+ fewFails.link(&m_jit);
+ lowFailRate.link(&m_jit);
+
+ m_jit.store32(AssemblyHelpers::Imm32(m_jit.baselineCodeBlock()->counterValueForOptimizeAfterLongWarmUp()), AssemblyHelpers::Address(GPRInfo::regT0, CodeBlock::offsetOfExecuteCounter()));
+
+ doneAdjusting.link(&m_jit);
+
+ // 14) Load the result of the last bytecode operation into regT0.
+
+ if (exit.m_lastSetOperand != std::numeric_limits<int>::max())
+ m_jit.loadPtr(AssemblyHelpers::addressFor((VirtualRegister)exit.m_lastSetOperand), GPRInfo::cachedResultRegister);
+
+ // 15) Fix call frame(s).
+
+ ASSERT(m_jit.baselineCodeBlock()->getJITType() == JITCode::BaselineJIT);
+ m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(m_jit.baselineCodeBlock()), AssemblyHelpers::addressFor((VirtualRegister)RegisterFile::CodeBlock));
+
+ for (CodeOrigin codeOrigin = exit.m_codeOrigin; codeOrigin.inlineCallFrame; codeOrigin = codeOrigin.inlineCallFrame->caller) {
+ InlineCallFrame* inlineCallFrame = codeOrigin.inlineCallFrame;
+ CodeBlock* baselineCodeBlock = m_jit.baselineCodeBlockFor(codeOrigin);
+ CodeBlock* baselineCodeBlockForCaller = m_jit.baselineCodeBlockFor(inlineCallFrame->caller);
+ Vector<BytecodeAndMachineOffset>& decodedCodeMap = m_jit.decodedCodeMapFor(baselineCodeBlockForCaller);
+ unsigned returnBytecodeIndex = inlineCallFrame->caller.bytecodeIndex + OPCODE_LENGTH(op_call);
+ BytecodeAndMachineOffset* mapping = binarySearch<BytecodeAndMachineOffset, unsigned, BytecodeAndMachineOffset::getBytecodeIndex>(decodedCodeMap.begin(), decodedCodeMap.size(), returnBytecodeIndex);
+
+ ASSERT(mapping);
+ ASSERT(mapping->m_bytecodeIndex == returnBytecodeIndex);
+
+ void* jumpTarget = baselineCodeBlockForCaller->getJITCode().executableAddressAtOffset(mapping->m_machineCodeOffset);
+
+ GPRReg callerFrameGPR;
+ if (inlineCallFrame->caller.inlineCallFrame) {
+ m_jit.addPtr(AssemblyHelpers::Imm32(inlineCallFrame->caller.inlineCallFrame->stackOffset * sizeof(EncodedJSValue)), GPRInfo::callFrameRegister, GPRInfo::regT3);
+ callerFrameGPR = GPRInfo::regT3;
+ } else
+ callerFrameGPR = GPRInfo::callFrameRegister;
+
+ m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(baselineCodeBlock), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::CodeBlock)));
+ m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(inlineCallFrame->callee->scope()), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::ScopeChain)));
+ m_jit.storePtr(callerFrameGPR, AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::CallerFrame)));
+ m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(jumpTarget), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::ReturnPC)));
+ m_jit.store32(AssemblyHelpers::TrustedImm32(inlineCallFrame->arguments.size()), AssemblyHelpers::payloadFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::ArgumentCount)));
+ m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(inlineCallFrame->callee.get()), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::Callee)));
+ }
+
+ if (exit.m_codeOrigin.inlineCallFrame)
+ m_jit.addPtr(AssemblyHelpers::Imm32(exit.m_codeOrigin.inlineCallFrame->stackOffset * sizeof(EncodedJSValue)), GPRInfo::callFrameRegister);
+
+ // 16) Jump into the corresponding baseline JIT code.
+
+ CodeBlock* baselineCodeBlock = m_jit.baselineCodeBlockFor(exit.m_codeOrigin);
+ Vector<BytecodeAndMachineOffset>& decodedCodeMap = m_jit.decodedCodeMapFor(baselineCodeBlock);
+
+ BytecodeAndMachineOffset* mapping = binarySearch<BytecodeAndMachineOffset, unsigned, BytecodeAndMachineOffset::getBytecodeIndex>(decodedCodeMap.begin(), decodedCodeMap.size(), exit.m_codeOrigin.bytecodeIndex);
+
+ ASSERT(mapping);
+ ASSERT(mapping->m_bytecodeIndex == exit.m_codeOrigin.bytecodeIndex);
+
+ void* jumpTarget = baselineCodeBlock->getJITCode().executableAddressAtOffset(mapping->m_machineCodeOffset);
+
+ ASSERT(GPRInfo::regT1 != GPRInfo::cachedResultRegister);
+
+ m_jit.move(AssemblyHelpers::TrustedImmPtr(jumpTarget), GPRInfo::regT1);
+
+ m_jit.jump(GPRInfo::regT1);
+
+#if DFG_ENABLE(DEBUG_VERBOSE)
+ fprintf(stderr, "-> %p\n", jumpTarget);
+#endif
+}
+
+} } // namespace JSC::DFG
+
+#endif // ENABLE(DFG_JIT) && USE(JSVALUE64)