diff options
author | Simon Hausmann <simon.hausmann@nokia.com> | 2012-01-06 14:44:00 +0100 |
---|---|---|
committer | Simon Hausmann <simon.hausmann@nokia.com> | 2012-01-06 14:44:00 +0100 |
commit | 40736c5763bf61337c8c14e16d8587db021a87d4 (patch) | |
tree | b17a9c00042ad89cb1308e2484491799aa14e9f8 /Source/JavaScriptCore/jit/JITArithmetic.cpp | |
download | qtwebkit-40736c5763bf61337c8c14e16d8587db021a87d4.tar.gz |
Imported WebKit commit 2ea9d364d0f6efa8fa64acf19f451504c59be0e4 (http://svn.webkit.org/repository/webkit/trunk@104285)
Diffstat (limited to 'Source/JavaScriptCore/jit/JITArithmetic.cpp')
-rw-r--r-- | Source/JavaScriptCore/jit/JITArithmetic.cpp | 1139 |
1 files changed, 1139 insertions, 0 deletions
diff --git a/Source/JavaScriptCore/jit/JITArithmetic.cpp b/Source/JavaScriptCore/jit/JITArithmetic.cpp new file mode 100644 index 000000000..362cc6241 --- /dev/null +++ b/Source/JavaScriptCore/jit/JITArithmetic.cpp @@ -0,0 +1,1139 @@ +/* + * Copyright (C) 2008 Apple Inc. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY + * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include "config.h" + +#if ENABLE(JIT) +#include "JIT.h" + +#include "CodeBlock.h" +#include "JITInlineMethods.h" +#include "JITStubCall.h" +#include "JITStubs.h" +#include "JSArray.h" +#include "JSFunction.h" +#include "Interpreter.h" +#include "ResultType.h" +#include "SamplingTool.h" + +#ifndef NDEBUG +#include <stdio.h> +#endif + +using namespace std; + +namespace JSC { + +void JIT::emit_op_jless(Instruction* currentInstruction) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jless, op1, op2, target, LessThan); +} + +void JIT::emit_op_jlesseq(Instruction* currentInstruction) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jlesseq, op1, op2, target, LessThanOrEqual); +} + +void JIT::emit_op_jgreater(Instruction* currentInstruction) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jgreater, op1, op2, target, GreaterThan); +} + +void JIT::emit_op_jgreatereq(Instruction* currentInstruction) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jgreatereq, op1, op2, target, GreaterThanOrEqual); +} + +void JIT::emit_op_jnless(Instruction* currentInstruction) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jnless, op1, op2, target, GreaterThanOrEqual); +} + +void JIT::emit_op_jnlesseq(Instruction* currentInstruction) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jnlesseq, op1, op2, target, GreaterThan); +} + +void JIT::emit_op_jngreater(Instruction* currentInstruction) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jngreater, op1, op2, target, LessThanOrEqual); +} + +void JIT::emit_op_jngreatereq(Instruction* currentInstruction) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jngreatereq, op1, op2, target, LessThan); +} + +void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleLessThan, cti_op_jless, false, iter); +} + +void JIT::emitSlow_op_jlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqual, cti_op_jlesseq, false, iter); +} + +void JIT::emitSlow_op_jgreater(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThan, cti_op_jgreater, false, iter); +} + +void JIT::emitSlow_op_jgreatereq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqual, cti_op_jgreatereq, false, iter); +} + +void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqualOrUnordered, cti_op_jless, true, iter); +} + +void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrUnordered, cti_op_jlesseq, true, iter); +} + +void JIT::emitSlow_op_jngreater(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqualOrUnordered, cti_op_jgreater, true, iter); +} + +void JIT::emitSlow_op_jngreatereq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrUnordered, cti_op_jgreatereq, true, iter); +} + +#if USE(JSVALUE64) + +void JIT::emit_op_lshift(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + + emitGetVirtualRegisters(op1, regT0, op2, regT2); + // FIXME: would we be better using 'emitJumpSlowCaseIfNotImmediateIntegers'? - we *probably* ought to be consistent. + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT2); + emitFastArithImmToInt(regT0); + emitFastArithImmToInt(regT2); + lshift32(regT2, regT0); + emitFastArithReTagImmediate(regT0, regT0); + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + + UNUSED_PARAM(op1); + UNUSED_PARAM(op2); + linkSlowCase(iter); + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_lshift); + stubCall.addArgument(regT0); + stubCall.addArgument(regT2); + stubCall.call(result); +} + +void JIT::emit_op_rshift(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + + if (isOperandConstantImmediateInt(op2)) { + // isOperandConstantImmediateInt(op2) => 1 SlowCase + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + // Mask with 0x1f as per ecma-262 11.7.2 step 7. + rshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0); + } else { + emitGetVirtualRegisters(op1, regT0, op2, regT2); + if (supportsFloatingPointTruncate()) { + Jump lhsIsInt = emitJumpIfImmediateInteger(regT0); + // supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases + addSlowCase(emitJumpIfNotImmediateNumber(regT0)); + addPtr(tagTypeNumberRegister, regT0); + movePtrToDouble(regT0, fpRegT0); + addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0)); + lhsIsInt.link(this); + emitJumpSlowCaseIfNotImmediateInteger(regT2); + } else { + // !supportsFloatingPoint() => 2 SlowCases + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT2); + } + emitFastArithImmToInt(regT2); + rshift32(regT2, regT0); + } + emitFastArithIntToImmNoCheck(regT0, regT0); + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + + JITStubCall stubCall(this, cti_op_rshift); + + if (isOperandConstantImmediateInt(op2)) { + linkSlowCase(iter); + stubCall.addArgument(regT0); + stubCall.addArgument(op2, regT2); + } else { + if (supportsFloatingPointTruncate()) { + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + // We're reloading op1 to regT0 as we can no longer guarantee that + // we have not munged the operand. It may have already been shifted + // correctly, but it still will not have been tagged. + stubCall.addArgument(op1, regT0); + stubCall.addArgument(regT2); + } else { + linkSlowCase(iter); + linkSlowCase(iter); + stubCall.addArgument(regT0); + stubCall.addArgument(regT2); + } + } + + stubCall.call(result); +} + +void JIT::emit_op_urshift(Instruction* currentInstruction) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + + // Slow case of urshift makes assumptions about what registers hold the + // shift arguments, so any changes must be updated there as well. + if (isOperandConstantImmediateInt(op2)) { + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitFastArithImmToInt(regT0); + int shift = getConstantOperand(op2).asInt32(); + if (shift) + urshift32(Imm32(shift & 0x1f), regT0); + // unsigned shift < 0 or shift = k*2^32 may result in (essentially) + // a toUint conversion, which can result in a value we can represent + // as an immediate int. + if (shift < 0 || !(shift & 31)) + addSlowCase(branch32(LessThan, regT0, TrustedImm32(0))); + emitFastArithReTagImmediate(regT0, regT0); + emitPutVirtualRegister(dst, regT0); + return; + } + emitGetVirtualRegisters(op1, regT0, op2, regT1); + if (!isOperandConstantImmediateInt(op1)) + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT1); + emitFastArithImmToInt(regT0); + emitFastArithImmToInt(regT1); + urshift32(regT1, regT0); + addSlowCase(branch32(LessThan, regT0, TrustedImm32(0))); + emitFastArithReTagImmediate(regT0, regT0); + emitPutVirtualRegister(dst, regT0); +} + +void JIT::emitSlow_op_urshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + if (isOperandConstantImmediateInt(op2)) { + int shift = getConstantOperand(op2).asInt32(); + // op1 = regT0 + linkSlowCase(iter); // int32 check + if (supportsFloatingPointTruncate()) { + JumpList failures; + failures.append(emitJumpIfNotImmediateNumber(regT0)); // op1 is not a double + addPtr(tagTypeNumberRegister, regT0); + movePtrToDouble(regT0, fpRegT0); + failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0)); + if (shift) + urshift32(Imm32(shift & 0x1f), regT0); + if (shift < 0 || !(shift & 31)) + failures.append(branch32(LessThan, regT0, TrustedImm32(0))); + emitFastArithReTagImmediate(regT0, regT0); + emitPutVirtualRegister(dst, regT0); + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift)); + failures.link(this); + } + if (shift < 0 || !(shift & 31)) + linkSlowCase(iter); // failed to box in hot path + } else { + // op1 = regT0 + // op2 = regT1 + if (!isOperandConstantImmediateInt(op1)) { + linkSlowCase(iter); // int32 check -- op1 is not an int + if (supportsFloatingPointTruncate()) { + JumpList failures; + failures.append(emitJumpIfNotImmediateNumber(regT0)); // op1 is not a double + addPtr(tagTypeNumberRegister, regT0); + movePtrToDouble(regT0, fpRegT0); + failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0)); + failures.append(emitJumpIfNotImmediateInteger(regT1)); // op2 is not an int + emitFastArithImmToInt(regT1); + urshift32(regT1, regT0); + failures.append(branch32(LessThan, regT0, TrustedImm32(0))); + emitFastArithReTagImmediate(regT0, regT0); + emitPutVirtualRegister(dst, regT0); + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift)); + failures.link(this); + } + } + + linkSlowCase(iter); // int32 check - op2 is not an int + linkSlowCase(iter); // Can't represent unsigned result as an immediate + } + + JITStubCall stubCall(this, cti_op_urshift); + stubCall.addArgument(op1, regT0); + stubCall.addArgument(op2, regT1); + stubCall.call(dst); +} + +void JIT::emit_compareAndJump(OpcodeID, unsigned op1, unsigned op2, unsigned target, RelationalCondition condition) +{ + // We generate inline code for the following cases in the fast path: + // - int immediate to constant int immediate + // - constant int immediate to int immediate + // - int immediate to int immediate + + if (isOperandConstantImmediateChar(op1)) { + emitGetVirtualRegister(op2, regT0); + addSlowCase(emitJumpIfNotJSCell(regT0)); + JumpList failures; + emitLoadCharacterString(regT0, regT0, failures); + addSlowCase(failures); + addJump(branch32(commute(condition), regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target); + return; + } + if (isOperandConstantImmediateChar(op2)) { + emitGetVirtualRegister(op1, regT0); + addSlowCase(emitJumpIfNotJSCell(regT0)); + JumpList failures; + emitLoadCharacterString(regT0, regT0, failures); + addSlowCase(failures); + addJump(branch32(condition, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target); + return; + } + if (isOperandConstantImmediateInt(op2)) { + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + int32_t op2imm = getConstantOperandImmediateInt(op2); + addJump(branch32(condition, regT0, Imm32(op2imm)), target); + } else if (isOperandConstantImmediateInt(op1)) { + emitGetVirtualRegister(op2, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT1); + int32_t op1imm = getConstantOperandImmediateInt(op1); + addJump(branch32(commute(condition), regT1, Imm32(op1imm)), target); + } else { + emitGetVirtualRegisters(op1, regT0, op2, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT1); + + addJump(branch32(condition, regT0, regT1), target); + } +} + +void JIT::emit_compareAndJumpSlow(unsigned op1, unsigned op2, unsigned target, DoubleCondition condition, int (JIT_STUB *stub)(STUB_ARGS_DECLARATION), bool invert, Vector<SlowCaseEntry>::iterator& iter) +{ + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jlesseq), OPCODE_LENGTH_op_jlesseq_equals_op_jless); + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jnless), OPCODE_LENGTH_op_jnless_equals_op_jless); + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jnlesseq), OPCODE_LENGTH_op_jnlesseq_equals_op_jless); + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jgreater), OPCODE_LENGTH_op_jgreater_equals_op_jless); + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jgreatereq), OPCODE_LENGTH_op_jgreatereq_equals_op_jless); + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jngreater), OPCODE_LENGTH_op_jngreater_equals_op_jless); + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jngreatereq), OPCODE_LENGTH_op_jngreatereq_equals_op_jless); + + // We generate inline code for the following cases in the slow path: + // - floating-point number to constant int immediate + // - constant int immediate to floating-point number + // - floating-point number to floating-point number. + if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) { + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + JITStubCall stubCall(this, stub); + stubCall.addArgument(op1, regT0); + stubCall.addArgument(op2, regT1); + stubCall.call(); + emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target); + return; + } + + if (isOperandConstantImmediateInt(op2)) { + linkSlowCase(iter); + + if (supportsFloatingPoint()) { + Jump fail1 = emitJumpIfNotImmediateNumber(regT0); + addPtr(tagTypeNumberRegister, regT0); + movePtrToDouble(regT0, fpRegT0); + + int32_t op2imm = getConstantOperand(op2).asInt32(); + + move(Imm32(op2imm), regT1); + convertInt32ToDouble(regT1, fpRegT1); + + emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target); + + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless)); + + fail1.link(this); + } + + JITStubCall stubCall(this, stub); + stubCall.addArgument(regT0); + stubCall.addArgument(op2, regT2); + stubCall.call(); + emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target); + + } else if (isOperandConstantImmediateInt(op1)) { + linkSlowCase(iter); + + if (supportsFloatingPoint()) { + Jump fail1 = emitJumpIfNotImmediateNumber(regT1); + addPtr(tagTypeNumberRegister, regT1); + movePtrToDouble(regT1, fpRegT1); + + int32_t op1imm = getConstantOperand(op1).asInt32(); + + move(Imm32(op1imm), regT0); + convertInt32ToDouble(regT0, fpRegT0); + + emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target); + + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless)); + + fail1.link(this); + } + + JITStubCall stubCall(this, stub); + stubCall.addArgument(op1, regT2); + stubCall.addArgument(regT1); + stubCall.call(); + emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target); + } else { + linkSlowCase(iter); + + if (supportsFloatingPoint()) { + Jump fail1 = emitJumpIfNotImmediateNumber(regT0); + Jump fail2 = emitJumpIfNotImmediateNumber(regT1); + Jump fail3 = emitJumpIfImmediateInteger(regT1); + addPtr(tagTypeNumberRegister, regT0); + addPtr(tagTypeNumberRegister, regT1); + movePtrToDouble(regT0, fpRegT0); + movePtrToDouble(regT1, fpRegT1); + + emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target); + + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless)); + + fail1.link(this); + fail2.link(this); + fail3.link(this); + } + + linkSlowCase(iter); + JITStubCall stubCall(this, stub); + stubCall.addArgument(regT0); + stubCall.addArgument(regT1); + stubCall.call(); + emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target); + } +} + +void JIT::emit_op_bitand(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + + if (isOperandConstantImmediateInt(op1)) { + emitGetVirtualRegister(op2, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + int32_t imm = getConstantOperandImmediateInt(op1); + andPtr(Imm32(imm), regT0); + if (imm >= 0) + emitFastArithIntToImmNoCheck(regT0, regT0); + } else if (isOperandConstantImmediateInt(op2)) { + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + int32_t imm = getConstantOperandImmediateInt(op2); + andPtr(Imm32(imm), regT0); + if (imm >= 0) + emitFastArithIntToImmNoCheck(regT0, regT0); + } else { + emitGetVirtualRegisters(op1, regT0, op2, regT1); + andPtr(regT1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + } + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + + linkSlowCase(iter); + if (isOperandConstantImmediateInt(op1)) { + JITStubCall stubCall(this, cti_op_bitand); + stubCall.addArgument(op1, regT2); + stubCall.addArgument(regT0); + stubCall.call(result); + } else if (isOperandConstantImmediateInt(op2)) { + JITStubCall stubCall(this, cti_op_bitand); + stubCall.addArgument(regT0); + stubCall.addArgument(op2, regT2); + stubCall.call(result); + } else { + JITStubCall stubCall(this, cti_op_bitand); + stubCall.addArgument(op1, regT2); + stubCall.addArgument(regT1); + stubCall.call(result); + } +} + +void JIT::emit_op_post_inc(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned srcDst = currentInstruction[2].u.operand; + + emitGetVirtualRegister(srcDst, regT0); + move(regT0, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT1)); + emitFastArithIntToImmNoCheck(regT1, regT1); + emitPutVirtualRegister(srcDst, regT1); + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned srcDst = currentInstruction[2].u.operand; + + linkSlowCase(iter); + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_post_inc); + stubCall.addArgument(regT0); + stubCall.addArgument(Imm32(srcDst)); + stubCall.call(result); +} + +void JIT::emit_op_post_dec(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned srcDst = currentInstruction[2].u.operand; + + emitGetVirtualRegister(srcDst, regT0); + move(regT0, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT1)); + emitFastArithIntToImmNoCheck(regT1, regT1); + emitPutVirtualRegister(srcDst, regT1); + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned srcDst = currentInstruction[2].u.operand; + + linkSlowCase(iter); + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_post_dec); + stubCall.addArgument(regT0); + stubCall.addArgument(Imm32(srcDst)); + stubCall.call(result); +} + +void JIT::emit_op_pre_inc(Instruction* currentInstruction) +{ + unsigned srcDst = currentInstruction[1].u.operand; + + emitGetVirtualRegister(srcDst, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT0)); + emitFastArithIntToImmNoCheck(regT0, regT0); + emitPutVirtualRegister(srcDst); +} + +void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned srcDst = currentInstruction[1].u.operand; + + Jump notImm = getSlowCase(iter); + linkSlowCase(iter); + emitGetVirtualRegister(srcDst, regT0); + notImm.link(this); + JITStubCall stubCall(this, cti_op_pre_inc); + stubCall.addArgument(regT0); + stubCall.call(srcDst); +} + +void JIT::emit_op_pre_dec(Instruction* currentInstruction) +{ + unsigned srcDst = currentInstruction[1].u.operand; + + emitGetVirtualRegister(srcDst, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT0)); + emitFastArithIntToImmNoCheck(regT0, regT0); + emitPutVirtualRegister(srcDst); +} + +void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned srcDst = currentInstruction[1].u.operand; + + Jump notImm = getSlowCase(iter); + linkSlowCase(iter); + emitGetVirtualRegister(srcDst, regT0); + notImm.link(this); + JITStubCall stubCall(this, cti_op_pre_dec); + stubCall.addArgument(regT0); + stubCall.call(srcDst); +} + +/* ------------------------------ BEGIN: OP_MOD ------------------------------ */ + +#if CPU(X86) || CPU(X86_64) || CPU(MIPS) + +void JIT::emit_op_mod(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + +#if CPU(X86) || CPU(X86_64) + // Make sure registers are correct for x86 IDIV instructions. + ASSERT(regT0 == X86Registers::eax); + ASSERT(regT1 == X86Registers::edx); + ASSERT(regT2 == X86Registers::ecx); +#endif + + emitGetVirtualRegisters(op1, regT0, op2, regT2); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT2); + + addSlowCase(branchPtr(Equal, regT2, TrustedImmPtr(JSValue::encode(jsNumber(0))))); + m_assembler.cdq(); + m_assembler.idivl_r(regT2); + emitFastArithReTagImmediate(regT1, regT0); + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_mod); + stubCall.addArgument(regT0); + stubCall.addArgument(regT2); + stubCall.call(result); +} + +#else // CPU(X86) || CPU(X86_64) || CPU(MIPS) + +void JIT::emit_op_mod(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + + JITStubCall stubCall(this, cti_op_mod); + stubCall.addArgument(op1, regT2); + stubCall.addArgument(op2, regT2); + stubCall.call(result); +} + +void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ +#if ENABLE(JIT_USE_SOFT_MODULO) + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_mod); + stubCall.addArgument(op1, regT2); + stubCall.addArgument(op2, regT2); + stubCall.call(result); +#else + ASSERT_NOT_REACHED(); +#endif +} + +#endif // CPU(X86) || CPU(X86_64) + +/* ------------------------------ END: OP_MOD ------------------------------ */ + +/* ------------------------------ BEGIN: USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */ + +void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned, unsigned op1, unsigned op2, OperandTypes) +{ + emitGetVirtualRegisters(op1, regT0, op2, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT1); +#if ENABLE(VALUE_PROFILER) + RareCaseProfile* profile = m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset); +#endif + if (opcodeID == op_add) + addSlowCase(branchAdd32(Overflow, regT1, regT0)); + else if (opcodeID == op_sub) + addSlowCase(branchSub32(Overflow, regT1, regT0)); + else { + ASSERT(opcodeID == op_mul); +#if ENABLE(VALUE_PROFILER) + if (m_canBeOptimized) { + // We want to be able to measure if this is taking the slow case just + // because of negative zero. If this produces positive zero, then we + // don't want the slow case to be taken because that will throw off + // speculative compilation. + move(regT0, regT2); + addSlowCase(branchMul32(Overflow, regT1, regT2)); + JumpList done; + done.append(branchTest32(NonZero, regT2)); + Jump negativeZero = branch32(LessThan, regT0, Imm32(0)); + done.append(branch32(GreaterThanOrEqual, regT1, Imm32(0))); + negativeZero.link(this); + // We only get here if we have a genuine negative zero. Record this, + // so that the speculative JIT knows that we failed speculation + // because of a negative zero. + add32(Imm32(1), AbsoluteAddress(&profile->m_counter)); + addSlowCase(jump()); + done.link(this); + move(regT2, regT0); + } else { + addSlowCase(branchMul32(Overflow, regT1, regT0)); + addSlowCase(branchTest32(Zero, regT0)); + } +#else + addSlowCase(branchMul32(Overflow, regT1, regT0)); + addSlowCase(branchTest32(Zero, regT0)); +#endif + } + emitFastArithIntToImmNoCheck(regT0, regT0); +} + +void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned result, unsigned op1, unsigned op2, OperandTypes types, bool op1HasImmediateIntFastCase, bool op2HasImmediateIntFastCase) +{ + // We assume that subtracting TagTypeNumber is equivalent to adding DoubleEncodeOffset. + COMPILE_ASSERT(((TagTypeNumber + DoubleEncodeOffset) == 0), TagTypeNumber_PLUS_DoubleEncodeOffset_EQUALS_0); + + Jump notImm1; + Jump notImm2; + if (op1HasImmediateIntFastCase) { + notImm2 = getSlowCase(iter); + } else if (op2HasImmediateIntFastCase) { + notImm1 = getSlowCase(iter); + } else { + notImm1 = getSlowCase(iter); + notImm2 = getSlowCase(iter); + } + + linkSlowCase(iter); // Integer overflow case - we could handle this in JIT code, but this is likely rare. + if (opcodeID == op_mul && !op1HasImmediateIntFastCase && !op2HasImmediateIntFastCase) // op_mul has an extra slow case to handle 0 * negative number. + linkSlowCase(iter); + emitGetVirtualRegister(op1, regT0); + + Label stubFunctionCall(this); + JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul); + if (op1HasImmediateIntFastCase || op2HasImmediateIntFastCase) { + emitGetVirtualRegister(op1, regT0); + emitGetVirtualRegister(op2, regT1); + } + stubCall.addArgument(regT0); + stubCall.addArgument(regT1); + stubCall.call(result); + Jump end = jump(); + + if (op1HasImmediateIntFastCase) { + notImm2.link(this); + if (!types.second().definitelyIsNumber()) + emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); + emitGetVirtualRegister(op1, regT1); + convertInt32ToDouble(regT1, fpRegT1); + addPtr(tagTypeNumberRegister, regT0); + movePtrToDouble(regT0, fpRegT2); + } else if (op2HasImmediateIntFastCase) { + notImm1.link(this); + if (!types.first().definitelyIsNumber()) + emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); + emitGetVirtualRegister(op2, regT1); + convertInt32ToDouble(regT1, fpRegT1); + addPtr(tagTypeNumberRegister, regT0); + movePtrToDouble(regT0, fpRegT2); + } else { + // if we get here, eax is not an int32, edx not yet checked. + notImm1.link(this); + if (!types.first().definitelyIsNumber()) + emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); + if (!types.second().definitelyIsNumber()) + emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this); + addPtr(tagTypeNumberRegister, regT0); + movePtrToDouble(regT0, fpRegT1); + Jump op2isDouble = emitJumpIfNotImmediateInteger(regT1); + convertInt32ToDouble(regT1, fpRegT2); + Jump op2wasInteger = jump(); + + // if we get here, eax IS an int32, edx is not. + notImm2.link(this); + if (!types.second().definitelyIsNumber()) + emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this); + convertInt32ToDouble(regT0, fpRegT1); + op2isDouble.link(this); + addPtr(tagTypeNumberRegister, regT1); + movePtrToDouble(regT1, fpRegT2); + op2wasInteger.link(this); + } + + if (opcodeID == op_add) + addDouble(fpRegT2, fpRegT1); + else if (opcodeID == op_sub) + subDouble(fpRegT2, fpRegT1); + else if (opcodeID == op_mul) + mulDouble(fpRegT2, fpRegT1); + else { + ASSERT(opcodeID == op_div); + divDouble(fpRegT2, fpRegT1); + } + moveDoubleToPtr(fpRegT1, regT0); + subPtr(tagTypeNumberRegister, regT0); + emitPutVirtualRegister(result, regT0); + + end.link(this); +} + +void JIT::emit_op_add(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { + addSlowCase(); + JITStubCall stubCall(this, cti_op_add); + stubCall.addArgument(op1, regT2); + stubCall.addArgument(op2, regT2); + stubCall.call(result); + return; + } + + if (isOperandConstantImmediateInt(op1)) { + emitGetVirtualRegister(op2, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1)), regT0)); + emitFastArithIntToImmNoCheck(regT0, regT0); + } else if (isOperandConstantImmediateInt(op2)) { + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2)), regT0)); + emitFastArithIntToImmNoCheck(regT0, regT0); + } else + compileBinaryArithOp(op_add, result, op1, op2, types); + + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { + linkDummySlowCase(iter); + return; + } + + bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1); + bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2); + compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase); +} + +void JIT::emit_op_mul(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + // For now, only plant a fast int case if the constant operand is greater than zero. + int32_t value; + if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) { +#if ENABLE(VALUE_PROFILER) + // Add a special fast case profile because the DFG JIT will expect one. + m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset); +#endif + emitGetVirtualRegister(op2, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0)); + emitFastArithReTagImmediate(regT0, regT0); + } else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) { +#if ENABLE(VALUE_PROFILER) + // Add a special fast case profile because the DFG JIT will expect one. + m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset); +#endif + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0)); + emitFastArithReTagImmediate(regT0, regT0); + } else + compileBinaryArithOp(op_mul, result, op1, op2, types); + + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1) && getConstantOperandImmediateInt(op1) > 0; + bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2) && getConstantOperandImmediateInt(op2) > 0; + compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase); +} + +void JIT::emit_op_div(Instruction* currentInstruction) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + if (isOperandConstantImmediateDouble(op1)) { + emitGetVirtualRegister(op1, regT0); + addPtr(tagTypeNumberRegister, regT0); + movePtrToDouble(regT0, fpRegT0); + } else if (isOperandConstantImmediateInt(op1)) { + emitLoadInt32ToDouble(op1, fpRegT0); + } else { + emitGetVirtualRegister(op1, regT0); + if (!types.first().definitelyIsNumber()) + emitJumpSlowCaseIfNotImmediateNumber(regT0); + Jump notInt = emitJumpIfNotImmediateInteger(regT0); + convertInt32ToDouble(regT0, fpRegT0); + Jump skipDoubleLoad = jump(); + notInt.link(this); + addPtr(tagTypeNumberRegister, regT0); + movePtrToDouble(regT0, fpRegT0); + skipDoubleLoad.link(this); + } + + if (isOperandConstantImmediateDouble(op2)) { + emitGetVirtualRegister(op2, regT1); + addPtr(tagTypeNumberRegister, regT1); + movePtrToDouble(regT1, fpRegT1); + } else if (isOperandConstantImmediateInt(op2)) { + emitLoadInt32ToDouble(op2, fpRegT1); + } else { + emitGetVirtualRegister(op2, regT1); + if (!types.second().definitelyIsNumber()) + emitJumpSlowCaseIfNotImmediateNumber(regT1); + Jump notInt = emitJumpIfNotImmediateInteger(regT1); + convertInt32ToDouble(regT1, fpRegT1); + Jump skipDoubleLoad = jump(); + notInt.link(this); + addPtr(tagTypeNumberRegister, regT1); + movePtrToDouble(regT1, fpRegT1); + skipDoubleLoad.link(this); + } + divDouble(fpRegT1, fpRegT0); + +#if ENABLE(VALUE_PROFILER) + // Is the result actually an integer? The DFG JIT would really like to know. If it's + // not an integer, we increment a count. If this together with the slow case counter + // are below threshold then the DFG JIT will compile this division with a specualtion + // that the remainder is zero. + + // As well, there are cases where a double result here would cause an important field + // in the heap to sometimes have doubles in it, resulting in double predictions getting + // propagated to a use site where it might cause damage (such as the index to an array + // access). So if we are DFG compiling anything in the program, we want this code to + // ensure that it produces integers whenever possible. + + // FIXME: This will fail to convert to integer if the result is zero. We should + // distinguish between positive zero and negative zero here. + + JumpList notInteger; + branchConvertDoubleToInt32(fpRegT0, regT0, notInteger, fpRegT1); + // If we've got an integer, we might as well make that the result of the division. + emitFastArithReTagImmediate(regT0, regT0); + Jump isInteger = jump(); + notInteger.link(this); + add32(Imm32(1), AbsoluteAddress(&m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset)->m_counter)); + moveDoubleToPtr(fpRegT0, regT0); + subPtr(tagTypeNumberRegister, regT0); + isInteger.link(this); +#else + // Double result. + moveDoubleToPtr(fpRegT0, regT0); + subPtr(tagTypeNumberRegister, regT0); +#endif + + emitPutVirtualRegister(dst, regT0); +} + +void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + if (types.first().definitelyIsNumber() && types.second().definitelyIsNumber()) { +#ifndef NDEBUG + breakpoint(); +#endif + return; + } + if (!isOperandConstantImmediateDouble(op1) && !isOperandConstantImmediateInt(op1)) { + if (!types.first().definitelyIsNumber()) + linkSlowCase(iter); + } + if (!isOperandConstantImmediateDouble(op2) && !isOperandConstantImmediateInt(op2)) { + if (!types.second().definitelyIsNumber()) + linkSlowCase(iter); + } + // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0. + JITStubCall stubCall(this, cti_op_div); + stubCall.addArgument(op1, regT2); + stubCall.addArgument(op2, regT2); + stubCall.call(result); +} + +void JIT::emit_op_sub(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + compileBinaryArithOp(op_sub, result, op1, op2, types); + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + compileBinaryArithOpSlowCase(op_sub, iter, result, op1, op2, types, false, false); +} + +/* ------------------------------ END: OP_ADD, OP_SUB, OP_MUL ------------------------------ */ + +#endif // USE(JSVALUE64) + +} // namespace JSC + +#endif // ENABLE(JIT) |