summaryrefslogtreecommitdiff
path: root/Source/JavaScriptCore/runtime/JSArray.cpp
diff options
context:
space:
mode:
authorSimon Hausmann <simon.hausmann@nokia.com>2012-01-06 14:44:00 +0100
committerSimon Hausmann <simon.hausmann@nokia.com>2012-01-06 14:44:00 +0100
commit40736c5763bf61337c8c14e16d8587db021a87d4 (patch)
treeb17a9c00042ad89cb1308e2484491799aa14e9f8 /Source/JavaScriptCore/runtime/JSArray.cpp
downloadqtwebkit-40736c5763bf61337c8c14e16d8587db021a87d4.tar.gz
Imported WebKit commit 2ea9d364d0f6efa8fa64acf19f451504c59be0e4 (http://svn.webkit.org/repository/webkit/trunk@104285)
Diffstat (limited to 'Source/JavaScriptCore/runtime/JSArray.cpp')
-rw-r--r--Source/JavaScriptCore/runtime/JSArray.cpp1379
1 files changed, 1379 insertions, 0 deletions
diff --git a/Source/JavaScriptCore/runtime/JSArray.cpp b/Source/JavaScriptCore/runtime/JSArray.cpp
new file mode 100644
index 000000000..da7be8564
--- /dev/null
+++ b/Source/JavaScriptCore/runtime/JSArray.cpp
@@ -0,0 +1,1379 @@
+/*
+ * Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
+ * Copyright (C) 2003, 2007, 2008, 2009 Apple Inc. All rights reserved.
+ * Copyright (C) 2003 Peter Kelly (pmk@post.com)
+ * Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ */
+
+#include "config.h"
+#include "JSArray.h"
+
+#include "ArrayPrototype.h"
+#include "CachedCall.h"
+#include "Error.h"
+#include "Executable.h"
+#include "PropertyNameArray.h"
+#include <wtf/AVLTree.h>
+#include <wtf/Assertions.h>
+#include <wtf/OwnPtr.h>
+#include <Operations.h>
+
+using namespace std;
+using namespace WTF;
+
+namespace JSC {
+
+ASSERT_CLASS_FITS_IN_CELL(JSArray);
+
+// Overview of JSArray
+//
+// Properties of JSArray objects may be stored in one of three locations:
+// * The regular JSObject property map.
+// * A storage vector.
+// * A sparse map of array entries.
+//
+// Properties with non-numeric identifiers, with identifiers that are not representable
+// as an unsigned integer, or where the value is greater than MAX_ARRAY_INDEX
+// (specifically, this is only one property - the value 0xFFFFFFFFU as an unsigned 32-bit
+// integer) are not considered array indices and will be stored in the JSObject property map.
+//
+// All properties with a numeric identifer, representable as an unsigned integer i,
+// where (i <= MAX_ARRAY_INDEX), are an array index and will be stored in either the
+// storage vector or the sparse map. An array index i will be handled in the following
+// fashion:
+//
+// * Where (i < MIN_SPARSE_ARRAY_INDEX) the value will be stored in the storage vector,
+// unless the array is in SparseMode in which case all properties go into the map.
+// * Where (MIN_SPARSE_ARRAY_INDEX <= i <= MAX_STORAGE_VECTOR_INDEX) the value will either
+// be stored in the storage vector or in the sparse array, depending on the density of
+// data that would be stored in the vector (a vector being used where at least
+// (1 / minDensityMultiplier) of the entries would be populated).
+// * Where (MAX_STORAGE_VECTOR_INDEX < i <= MAX_ARRAY_INDEX) the value will always be stored
+// in the sparse array.
+
+// The definition of MAX_STORAGE_VECTOR_LENGTH is dependant on the definition storageSize
+// function below - the MAX_STORAGE_VECTOR_LENGTH limit is defined such that the storage
+// size calculation cannot overflow. (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>)) +
+// (vectorLength * sizeof(WriteBarrier<Unknown>)) must be <= 0xFFFFFFFFU (which is maximum value of size_t).
+#define MAX_STORAGE_VECTOR_LENGTH static_cast<unsigned>((0xFFFFFFFFU - (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>))) / sizeof(WriteBarrier<Unknown>))
+
+// These values have to be macros to be used in max() and min() without introducing
+// a PIC branch in Mach-O binaries, see <rdar://problem/5971391>.
+#define MIN_SPARSE_ARRAY_INDEX 10000U
+#define MAX_STORAGE_VECTOR_INDEX (MAX_STORAGE_VECTOR_LENGTH - 1)
+// 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer.
+#define MAX_ARRAY_INDEX 0xFFFFFFFEU
+
+// The value BASE_VECTOR_LEN is the maximum number of vector elements we'll allocate
+// for an array that was created with a sepcified length (e.g. a = new Array(123))
+#define BASE_VECTOR_LEN 4U
+
+// The upper bound to the size we'll grow a zero length array when the first element
+// is added.
+#define FIRST_VECTOR_GROW 4U
+
+// Our policy for when to use a vector and when to use a sparse map.
+// For all array indices under MIN_SPARSE_ARRAY_INDEX, we always use a vector.
+// When indices greater than MIN_SPARSE_ARRAY_INDEX are involved, we use a vector
+// as long as it is 1/8 full. If more sparse than that, we use a map.
+static const unsigned minDensityMultiplier = 8;
+
+const ClassInfo JSArray::s_info = {"Array", &JSNonFinalObject::s_info, 0, 0, CREATE_METHOD_TABLE(JSArray)};
+
+// We keep track of the size of the last array after it was grown. We use this
+// as a simple heuristic for as the value to grow the next array from size 0.
+// This value is capped by the constant FIRST_VECTOR_GROW defined above.
+static unsigned lastArraySize = 0;
+
+static inline size_t storageSize(unsigned vectorLength)
+{
+ ASSERT(vectorLength <= MAX_STORAGE_VECTOR_LENGTH);
+
+ // MAX_STORAGE_VECTOR_LENGTH is defined such that provided (vectorLength <= MAX_STORAGE_VECTOR_LENGTH)
+ // - as asserted above - the following calculation cannot overflow.
+ size_t size = (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>)) + (vectorLength * sizeof(WriteBarrier<Unknown>));
+ // Assertion to detect integer overflow in previous calculation (should not be possible, provided that
+ // MAX_STORAGE_VECTOR_LENGTH is correctly defined).
+ ASSERT(((size - (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>))) / sizeof(WriteBarrier<Unknown>) == vectorLength) && (size >= (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>))));
+
+ return size;
+}
+
+static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues)
+{
+ return length <= MIN_SPARSE_ARRAY_INDEX || length / minDensityMultiplier <= numValues;
+}
+
+#if !CHECK_ARRAY_CONSISTENCY
+
+inline void JSArray::checkConsistency(ConsistencyCheckType)
+{
+}
+
+#endif
+
+JSArray::JSArray(JSGlobalData& globalData, Structure* structure)
+ : JSNonFinalObject(globalData, structure)
+ , m_storage(0)
+{
+}
+
+void JSArray::finishCreation(JSGlobalData& globalData, unsigned initialLength)
+{
+ Base::finishCreation(globalData);
+ ASSERT(inherits(&s_info));
+
+ unsigned initialVectorLength = BASE_VECTOR_LEN;
+ unsigned initialStorageSize = storageSize(initialVectorLength);
+
+ m_storage = static_cast<ArrayStorage*>(fastMalloc(initialStorageSize));
+ m_storage->m_allocBase = m_storage;
+ m_storage->m_length = initialLength;
+ m_indexBias = 0;
+ m_vectorLength = initialVectorLength;
+ m_storage->m_sparseValueMap = 0;
+ m_storage->subclassData = 0;
+ m_storage->m_numValuesInVector = 0;
+#if CHECK_ARRAY_CONSISTENCY
+ m_storage->m_inCompactInitialization = false;
+#endif
+
+ WriteBarrier<Unknown>* vector = m_storage->m_vector;
+ for (size_t i = 0; i < initialVectorLength; ++i)
+ vector[i].clear();
+
+ checkConsistency();
+
+ Heap::heap(this)->reportExtraMemoryCost(initialStorageSize);
+}
+
+JSArray* JSArray::tryFinishCreationUninitialized(JSGlobalData& globalData, unsigned initialLength)
+{
+ Base::finishCreation(globalData);
+ ASSERT(inherits(&s_info));
+
+ // Check for lengths larger than we can handle with a vector.
+ if (initialLength > MAX_STORAGE_VECTOR_LENGTH)
+ return 0;
+
+ unsigned initialVectorLength = max(initialLength, BASE_VECTOR_LEN);
+ unsigned initialStorageSize = storageSize(initialVectorLength);
+
+ m_storage = static_cast<ArrayStorage*>(fastMalloc(initialStorageSize));
+ m_storage->m_allocBase = m_storage;
+ m_storage->m_length = 0;
+ m_indexBias = 0;
+ m_vectorLength = initialVectorLength;
+ m_storage->m_sparseValueMap = 0;
+ m_storage->subclassData = 0;
+ m_storage->m_numValuesInVector = initialLength;
+#if CHECK_ARRAY_CONSISTENCY
+ m_storage->m_inCompactInitialization = true;
+#endif
+
+ WriteBarrier<Unknown>* vector = m_storage->m_vector;
+ for (size_t i = initialLength; i < initialVectorLength; ++i)
+ vector[i].clear();
+
+ Heap::heap(this)->reportExtraMemoryCost(initialStorageSize);
+ return this;
+}
+
+JSArray::~JSArray()
+{
+ ASSERT(jsCast<JSArray*>(this));
+
+ // If we are unable to allocate memory for m_storage then this may be null.
+ if (!m_storage)
+ return;
+
+ checkConsistency(DestructorConsistencyCheck);
+ delete m_storage->m_sparseValueMap;
+ fastFree(m_storage->m_allocBase);
+}
+
+void JSArray::destroy(JSCell* cell)
+{
+ jsCast<JSArray*>(cell)->JSArray::~JSArray();
+}
+
+SparseArrayValueMap::iterator SparseArrayValueMap::find(unsigned i)
+{
+ return m_map.find(i);
+}
+
+inline void SparseArrayValueMap::put(JSGlobalData& globalData, JSArray* array, unsigned i, JSValue value)
+{
+ SparseArrayEntry temp;
+ pair<Map::iterator, bool> result = m_map.add(i, temp);
+ result.first->second.set(globalData, array, value);
+ if (!result.second) // pre-existing entry
+ return;
+
+ size_t capacity = m_map.capacity();
+ if (capacity != m_reportedCapacity) {
+ Heap::heap(array)->reportExtraMemoryCost((capacity - m_reportedCapacity) * (sizeof(unsigned) + sizeof(WriteBarrier<Unknown>)));
+ m_reportedCapacity = capacity;
+ }
+}
+
+inline void SparseArrayValueMap::visitChildren(SlotVisitor& visitor)
+{
+ iterator end = m_map.end();
+ for (iterator it = m_map.begin(); it != end; ++it)
+ visitor.append(&it->second);
+}
+
+bool JSArray::getOwnPropertySlotByIndex(JSCell* cell, ExecState* exec, unsigned i, PropertySlot& slot)
+{
+ JSArray* thisObject = jsCast<JSArray*>(cell);
+ ArrayStorage* storage = thisObject->m_storage;
+
+ if (i >= storage->m_length) {
+ if (i > MAX_ARRAY_INDEX)
+ return thisObject->methodTable()->getOwnPropertySlot(thisObject, exec, Identifier::from(exec, i), slot);
+ return false;
+ }
+
+ if (i < thisObject->m_vectorLength) {
+ JSValue value = storage->m_vector[i].get();
+ if (value) {
+ slot.setValue(value);
+ return true;
+ }
+ } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+ SparseArrayValueMap::iterator it = map->find(i);
+ if (it != map->notFound()) {
+ slot.setValue(it->second.get());
+ return true;
+ }
+ }
+
+ return JSObject::getOwnPropertySlot(thisObject, exec, Identifier::from(exec, i), slot);
+}
+
+bool JSArray::getOwnPropertySlot(JSCell* cell, ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
+{
+ JSArray* thisObject = jsCast<JSArray*>(cell);
+ if (propertyName == exec->propertyNames().length) {
+ slot.setValue(jsNumber(thisObject->length()));
+ return true;
+ }
+
+ bool isArrayIndex;
+ unsigned i = propertyName.toArrayIndex(isArrayIndex);
+ if (isArrayIndex)
+ return JSArray::getOwnPropertySlotByIndex(thisObject, exec, i, slot);
+
+ return JSObject::getOwnPropertySlot(thisObject, exec, propertyName, slot);
+}
+
+bool JSArray::getOwnPropertyDescriptor(JSObject* object, ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor)
+{
+ JSArray* thisObject = jsCast<JSArray*>(object);
+ if (propertyName == exec->propertyNames().length) {
+ descriptor.setDescriptor(jsNumber(thisObject->length()), DontDelete | DontEnum);
+ return true;
+ }
+
+ ArrayStorage* storage = thisObject->m_storage;
+
+ bool isArrayIndex;
+ unsigned i = propertyName.toArrayIndex(isArrayIndex);
+ if (isArrayIndex) {
+ if (i >= storage->m_length)
+ return false;
+ if (i < thisObject->m_vectorLength) {
+ WriteBarrier<Unknown>& value = storage->m_vector[i];
+ if (value) {
+ descriptor.setDescriptor(value.get(), 0);
+ return true;
+ }
+ } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+ SparseArrayValueMap::iterator it = map->find(i);
+ if (it != map->notFound()) {
+ descriptor.setDescriptor(it->second.get(), 0);
+ return true;
+ }
+ }
+ }
+ return JSObject::getOwnPropertyDescriptor(thisObject, exec, propertyName, descriptor);
+}
+
+// ECMA 15.4.5.1
+void JSArray::put(JSCell* cell, ExecState* exec, const Identifier& propertyName, JSValue value, PutPropertySlot& slot)
+{
+ JSArray* thisObject = jsCast<JSArray*>(cell);
+ bool isArrayIndex;
+ unsigned i = propertyName.toArrayIndex(isArrayIndex);
+ if (isArrayIndex) {
+ putByIndex(thisObject, exec, i, value);
+ return;
+ }
+
+ if (propertyName == exec->propertyNames().length) {
+ unsigned newLength = value.toUInt32(exec);
+ if (value.toNumber(exec) != static_cast<double>(newLength)) {
+ throwError(exec, createRangeError(exec, "Invalid array length"));
+ return;
+ }
+ thisObject->setLength(newLength);
+ return;
+ }
+
+ JSObject::put(thisObject, exec, propertyName, value, slot);
+}
+
+void JSArray::putByIndex(JSCell* cell, ExecState* exec, unsigned i, JSValue value)
+{
+ JSArray* thisObject = jsCast<JSArray*>(cell);
+ thisObject->checkConsistency();
+
+ ArrayStorage* storage = thisObject->m_storage;
+
+ // Fast case - store to the vector.
+ if (i < thisObject->m_vectorLength) {
+ WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
+ unsigned length = storage->m_length;
+
+ // Update m_length & m_numValuesInVector as necessary.
+ if (i >= length) {
+ length = i + 1;
+ storage->m_length = length;
+ ++storage->m_numValuesInVector;
+ } else if (!valueSlot)
+ ++storage->m_numValuesInVector;
+
+ valueSlot.set(exec->globalData(), thisObject, value);
+ thisObject->checkConsistency();
+ return;
+ }
+
+ // Handle 2^32-1 - this is not an array index (see ES5.1 15.4), and is treated as a regular property.
+ if (UNLIKELY(i > MAX_ARRAY_INDEX)) {
+ PutPropertySlot slot;
+ thisObject->methodTable()->put(thisObject, exec, Identifier::from(exec, i), value, slot);
+ return;
+ }
+
+ // For all other cases, call putByIndexBeyondVectorLength.
+ thisObject->putByIndexBeyondVectorLength(exec->globalData(), i, value);
+ thisObject->checkConsistency();
+}
+
+NEVER_INLINE void JSArray::putByIndexBeyondVectorLength(JSGlobalData& globalData, unsigned i, JSValue value)
+{
+ // i should be a valid array index that is outside of the current vector.
+ ASSERT(i >= m_vectorLength);
+ ASSERT(i <= MAX_ARRAY_INDEX);
+
+ ArrayStorage* storage = m_storage;
+ SparseArrayValueMap* map = storage->m_sparseValueMap;
+
+ // Update m_length if necessary.
+ unsigned length = storage->m_length;
+ if (i >= length) {
+ length = i + 1;
+ storage->m_length = length;
+ }
+
+ // First, handle cases where we don't currently have a sparse map.
+ if (LIKELY(!map)) {
+ // Check that it is sensible to still be using a vector, and then try to grow the vector.
+ if (LIKELY((isDenseEnoughForVector(i, storage->m_numValuesInVector)) && increaseVectorLength(i + 1))) {
+ // success! - reread m_storage since it has likely been reallocated, and store to the vector.
+ storage = m_storage;
+ storage->m_vector[i].set(globalData, this, value);
+ ++storage->m_numValuesInVector;
+ return;
+ }
+ // We don't want to, or can't use a vector to hold this property - allocate a sparse map & add the value.
+ map = new SparseArrayValueMap;
+ storage->m_sparseValueMap = map;
+ map->put(globalData, this, i, value);
+ return;
+ }
+
+ // We are currently using a map - check whether we still want to be doing so.
+ // We will continue to use a sparse map if SparseMode is set, a vector would be too sparse, or if allocation fails.
+ unsigned numValuesInArray = storage->m_numValuesInVector + map->size();
+ if (map->sparseMode() || !isDenseEnoughForVector(length, numValuesInArray) || !increaseVectorLength(length)) {
+ map->put(globalData, this, i, value);
+ return;
+ }
+
+ // Reread m_storage afterincreaseVectorLength, update m_numValuesInVector.
+ storage = m_storage;
+ storage->m_numValuesInVector = numValuesInArray;
+
+ // Copy all values from the map into the vector, and delete the map.
+ WriteBarrier<Unknown>* vector = storage->m_vector;
+ SparseArrayValueMap::const_iterator end = map->end();
+ for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it)
+ vector[it->first].set(globalData, this, it->second.get());
+ delete map;
+ storage->m_sparseValueMap = 0;
+
+ // Store the new property into the vector.
+ WriteBarrier<Unknown>& valueSlot = vector[i];
+ if (!valueSlot)
+ ++storage->m_numValuesInVector;
+ valueSlot.set(globalData, this, value);
+}
+
+bool JSArray::deleteProperty(JSCell* cell, ExecState* exec, const Identifier& propertyName)
+{
+ JSArray* thisObject = jsCast<JSArray*>(cell);
+ bool isArrayIndex;
+ unsigned i = propertyName.toArrayIndex(isArrayIndex);
+ if (isArrayIndex)
+ return thisObject->methodTable()->deletePropertyByIndex(thisObject, exec, i);
+
+ if (propertyName == exec->propertyNames().length)
+ return false;
+
+ return JSObject::deleteProperty(thisObject, exec, propertyName);
+}
+
+bool JSArray::deletePropertyByIndex(JSCell* cell, ExecState* exec, unsigned i)
+{
+ JSArray* thisObject = jsCast<JSArray*>(cell);
+ thisObject->checkConsistency();
+
+ ArrayStorage* storage = thisObject->m_storage;
+
+ if (i < thisObject->m_vectorLength) {
+ WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
+ if (!valueSlot) {
+ thisObject->checkConsistency();
+ return false;
+ }
+ valueSlot.clear();
+ --storage->m_numValuesInVector;
+ thisObject->checkConsistency();
+ return true;
+ }
+
+ if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+ SparseArrayValueMap::iterator it = map->find(i);
+ if (it != map->notFound()) {
+ map->remove(it);
+ thisObject->checkConsistency();
+ return true;
+ }
+ }
+
+ thisObject->checkConsistency();
+
+ if (i > MAX_ARRAY_INDEX)
+ return thisObject->methodTable()->deleteProperty(thisObject, exec, Identifier::from(exec, i));
+
+ return false;
+}
+
+void JSArray::getOwnPropertyNames(JSObject* object, ExecState* exec, PropertyNameArray& propertyNames, EnumerationMode mode)
+{
+ JSArray* thisObject = jsCast<JSArray*>(object);
+ // FIXME: Filling PropertyNameArray with an identifier for every integer
+ // is incredibly inefficient for large arrays. We need a different approach,
+ // which almost certainly means a different structure for PropertyNameArray.
+
+ ArrayStorage* storage = thisObject->m_storage;
+
+ unsigned usedVectorLength = min(storage->m_length, thisObject->m_vectorLength);
+ for (unsigned i = 0; i < usedVectorLength; ++i) {
+ if (storage->m_vector[i])
+ propertyNames.add(Identifier::from(exec, i));
+ }
+
+ if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+ SparseArrayValueMap::const_iterator end = map->end();
+ for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it)
+ propertyNames.add(Identifier::from(exec, it->first));
+ }
+
+ if (mode == IncludeDontEnumProperties)
+ propertyNames.add(exec->propertyNames().length);
+
+ JSObject::getOwnPropertyNames(thisObject, exec, propertyNames, mode);
+}
+
+ALWAYS_INLINE unsigned JSArray::getNewVectorLength(unsigned desiredLength)
+{
+ ASSERT(desiredLength <= MAX_STORAGE_VECTOR_LENGTH);
+
+ unsigned increasedLength;
+ unsigned maxInitLength = min(m_storage->m_length, 100000U);
+
+ if (desiredLength < maxInitLength)
+ increasedLength = maxInitLength;
+ else if (!m_vectorLength)
+ increasedLength = max(desiredLength, lastArraySize);
+ else {
+ // Mathematically equivalent to:
+ // increasedLength = (newLength * 3 + 1) / 2;
+ // or:
+ // increasedLength = (unsigned)ceil(newLength * 1.5));
+ // This form is not prone to internal overflow.
+ increasedLength = desiredLength + (desiredLength >> 1) + (desiredLength & 1);
+ }
+
+ ASSERT(increasedLength >= desiredLength);
+
+ lastArraySize = min(increasedLength, FIRST_VECTOR_GROW);
+
+ return min(increasedLength, MAX_STORAGE_VECTOR_LENGTH);
+}
+
+bool JSArray::increaseVectorLength(unsigned newLength)
+{
+ // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
+ // to the vector. Callers have to account for that, because they can do it more efficiently.
+ if (newLength > MAX_STORAGE_VECTOR_LENGTH)
+ return false;
+
+ ArrayStorage* storage = m_storage;
+
+ unsigned vectorLength = m_vectorLength;
+ ASSERT(newLength > vectorLength);
+ unsigned newVectorLength = getNewVectorLength(newLength);
+ void* baseStorage = storage->m_allocBase;
+
+ // Fast case - there is no precapacity. In these cases a realloc makes sense.
+ if (LIKELY(!m_indexBias)) {
+ if (!tryFastRealloc(baseStorage, storageSize(newVectorLength)).getValue(baseStorage))
+ return false;
+
+ storage = m_storage = reinterpret_cast_ptr<ArrayStorage*>(baseStorage);
+ m_storage->m_allocBase = baseStorage;
+
+ WriteBarrier<Unknown>* vector = storage->m_vector;
+ for (unsigned i = vectorLength; i < newVectorLength; ++i)
+ vector[i].clear();
+
+ m_vectorLength = newVectorLength;
+
+ Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
+ return true;
+ }
+
+ // Remove some, but not all of the precapacity. Atomic decay, & capped to not overflow array length.
+ unsigned newIndexBias = min(m_indexBias >> 1, MAX_STORAGE_VECTOR_LENGTH - newVectorLength);
+ // Calculate new stoarge capcity, allowing room for the pre-capacity.
+ unsigned newStorageCapacity = newVectorLength + newIndexBias;
+ void* newAllocBase;
+ if (!tryFastMalloc(storageSize(newStorageCapacity)).getValue(newAllocBase))
+ return false;
+ // The sum of m_vectorLength and m_indexBias will never exceed MAX_STORAGE_VECTOR_LENGTH.
+ ASSERT(m_vectorLength <= MAX_STORAGE_VECTOR_LENGTH && (MAX_STORAGE_VECTOR_LENGTH - m_vectorLength) >= m_indexBias);
+ unsigned currentCapacity = m_vectorLength + m_indexBias;
+ // Currently there is no way to report to the heap that the extra capacity is shrinking!
+ if (newStorageCapacity > currentCapacity)
+ Heap::heap(this)->reportExtraMemoryCost((newStorageCapacity - currentCapacity) * sizeof(WriteBarrier<Unknown>));
+
+ m_vectorLength = newVectorLength;
+ m_indexBias = newIndexBias;
+ m_storage = reinterpret_cast_ptr<ArrayStorage*>(reinterpret_cast<WriteBarrier<Unknown>*>(newAllocBase) + m_indexBias);
+
+ // Copy the ArrayStorage header & current contents of the vector, clear the new post-capacity.
+ memmove(m_storage, storage, storageSize(vectorLength));
+ for (unsigned i = vectorLength; i < m_vectorLength; ++i)
+ m_storage->m_vector[i].clear();
+
+ // Free the old allocation, update m_allocBase.
+ fastFree(m_storage->m_allocBase);
+ m_storage->m_allocBase = newAllocBase;
+
+ return true;
+}
+
+// This method makes room in the vector, but leaves the new space uncleared.
+bool JSArray::unshiftCountSlowCase(unsigned count)
+{
+ // If not, we should have handled this on the fast path.
+ ASSERT(count > m_indexBias);
+
+ ArrayStorage* storage = m_storage;
+
+ // Step 1:
+ // Gather 4 key metrics:
+ // * usedVectorLength - how many entries are currently in the vector (conservative estimate - fewer may be in use in sparse vectors).
+ // * requiredVectorLength - how many entries are will there be in the vector, after allocating space for 'count' more.
+ // * currentCapacity - what is the current size of the vector, including any pre-capacity.
+ // * desiredCapacity - how large should we like to grow the vector to - based on 2x requiredVectorLength.
+
+ unsigned length = storage->m_length;
+ unsigned usedVectorLength = min(m_vectorLength, length);
+ ASSERT(usedVectorLength <= MAX_STORAGE_VECTOR_LENGTH);
+ // Check that required vector length is possible, in an overflow-safe fashion.
+ if (count > MAX_STORAGE_VECTOR_LENGTH - usedVectorLength)
+ return false;
+ unsigned requiredVectorLength = usedVectorLength + count;
+ ASSERT(requiredVectorLength <= MAX_STORAGE_VECTOR_LENGTH);
+ // The sum of m_vectorLength and m_indexBias will never exceed MAX_STORAGE_VECTOR_LENGTH.
+ ASSERT(m_vectorLength <= MAX_STORAGE_VECTOR_LENGTH && (MAX_STORAGE_VECTOR_LENGTH - m_vectorLength) >= m_indexBias);
+ unsigned currentCapacity = m_vectorLength + m_indexBias;
+ // The calculation of desiredCapacity won't overflow, due to the range of MAX_STORAGE_VECTOR_LENGTH.
+ unsigned desiredCapacity = min(MAX_STORAGE_VECTOR_LENGTH, max(BASE_VECTOR_LEN, requiredVectorLength) << 1);
+
+ // Step 2:
+ // We're either going to choose to allocate a new ArrayStorage, or we're going to reuse the existing on.
+
+ void* newAllocBase;
+ unsigned newStorageCapacity;
+ // If the current storage array is sufficiently large (but not too large!) then just keep using it.
+ if (currentCapacity > desiredCapacity && isDenseEnoughForVector(currentCapacity, requiredVectorLength)) {
+ newAllocBase = storage->m_allocBase;
+ newStorageCapacity = currentCapacity;
+ } else {
+ if (!tryFastMalloc(storageSize(desiredCapacity)).getValue(newAllocBase))
+ return false;
+ newStorageCapacity = desiredCapacity;
+ // Currently there is no way to report to the heap that the extra capacity is shrinking!
+ if (desiredCapacity > currentCapacity)
+ Heap::heap(this)->reportExtraMemoryCost((desiredCapacity - currentCapacity) * sizeof(WriteBarrier<Unknown>));
+ }
+
+ // Step 3:
+ // Work out where we're going to move things to.
+
+ // Determine how much of the vector to use as pre-capacity, and how much as post-capacity.
+ // If the vector had no free post-capacity (length >= m_vectorLength), don't give it any.
+ // If it did, we calculate the amount that will remain based on an atomic decay - leave the
+ // vector with half the post-capacity it had previously.
+ unsigned postCapacity = 0;
+ if (length < m_vectorLength) {
+ // Atomic decay, + the post-capacity cannot be greater than what is available.
+ postCapacity = min((m_vectorLength - length) >> 1, newStorageCapacity - requiredVectorLength);
+ // If we're moving contents within the same allocation, the post-capacity is being reduced.
+ ASSERT(newAllocBase != storage->m_allocBase || postCapacity < m_vectorLength - length);
+ }
+
+ m_vectorLength = requiredVectorLength + postCapacity;
+ m_indexBias = newStorageCapacity - m_vectorLength;
+ m_storage = reinterpret_cast_ptr<ArrayStorage*>(reinterpret_cast<WriteBarrier<Unknown>*>(newAllocBase) + m_indexBias);
+
+ // Step 4:
+ // Copy array data / header into their new locations, clear post-capacity & free any old allocation.
+
+ // If this is being moved within the existing buffer of memory, we are always shifting data
+ // to the right (since count > m_indexBias). As such this memmove cannot trample the header.
+ memmove(m_storage->m_vector + count, storage->m_vector, sizeof(WriteBarrier<Unknown>) * usedVectorLength);
+ memmove(m_storage, storage, storageSize(0));
+
+ // Are we copying into a new allocation?
+ if (newAllocBase != m_storage->m_allocBase) {
+ // Free the old allocation, update m_allocBase.
+ fastFree(m_storage->m_allocBase);
+ m_storage->m_allocBase = newAllocBase;
+
+ // We need to clear any entries in the vector beyond length. We only need to
+ // do this if this was a new allocation, because if we're using an existing
+ // allocation the post-capacity will already be cleared, and in an existing
+ // allocation we can only beshrinking the amount of post capacity.
+ for (unsigned i = requiredVectorLength; i < m_vectorLength; ++i)
+ m_storage->m_vector[i].clear();
+ }
+
+ return true;
+}
+
+void JSArray::setLength(unsigned newLength)
+{
+ checkConsistency();
+
+ ArrayStorage* storage = m_storage;
+
+ unsigned length = storage->m_length;
+
+ if (newLength < length) {
+ unsigned usedVectorLength = min(length, m_vectorLength);
+ for (unsigned i = newLength; i < usedVectorLength; ++i) {
+ WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
+ bool hadValue = valueSlot;
+ valueSlot.clear();
+ storage->m_numValuesInVector -= hadValue;
+ }
+
+ if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+ SparseArrayValueMap copy = *map;
+ SparseArrayValueMap::const_iterator end = copy.end();
+ for (SparseArrayValueMap::const_iterator it = copy.begin(); it != end; ++it) {
+ if (it->first >= newLength)
+ map->remove(it->first);
+ }
+ if (map->isEmpty() && !map->sparseMode()) {
+ delete map;
+ storage->m_sparseValueMap = 0;
+ }
+ }
+ }
+
+ storage->m_length = newLength;
+
+ checkConsistency();
+}
+
+JSValue JSArray::pop()
+{
+ checkConsistency();
+
+ ArrayStorage* storage = m_storage;
+
+ unsigned length = storage->m_length;
+ if (!length)
+ return jsUndefined();
+
+ --length;
+
+ JSValue result;
+
+ if (length < m_vectorLength) {
+ WriteBarrier<Unknown>& valueSlot = storage->m_vector[length];
+ if (valueSlot) {
+ --storage->m_numValuesInVector;
+ result = valueSlot.get();
+ valueSlot.clear();
+ } else
+ result = jsUndefined();
+ } else {
+ result = jsUndefined();
+ if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+ SparseArrayValueMap::iterator it = map->find(length);
+ if (it != map->end()) {
+ result = it->second.get();
+ map->remove(it);
+ if (map->isEmpty() && !map->sparseMode()) {
+ delete map;
+ storage->m_sparseValueMap = 0;
+ }
+ }
+ }
+ }
+
+ storage->m_length = length;
+
+ checkConsistency();
+
+ return result;
+}
+
+// Push & putIndex are almost identical, with two small differences.
+// - we always are writing beyond the current array bounds, so it is always necessary to update m_length & m_numValuesInVector.
+// - pushing to an array of length 2^32-1 stores the property, but throws a range error.
+void JSArray::push(ExecState* exec, JSValue value)
+{
+ checkConsistency();
+ ArrayStorage* storage = m_storage;
+
+ // Fast case - push within vector, always update m_length & m_numValuesInVector.
+ unsigned length = storage->m_length;
+ if (length < m_vectorLength) {
+ storage->m_vector[length].set(exec->globalData(), this, value);
+ storage->m_length = length + 1;
+ ++storage->m_numValuesInVector;
+ checkConsistency();
+ return;
+ }
+
+ // Pushing to an array of length 2^32-1 stores the property, but throws a range error.
+ if (UNLIKELY(storage->m_length == 0xFFFFFFFFu)) {
+ methodTable()->putByIndex(this, exec, storage->m_length, value);
+ // Per ES5.1 15.4.4.7 step 6 & 15.4.5.1 step 3.d.
+ throwError(exec, createRangeError(exec, "Invalid array length"));
+ return;
+ }
+
+ // Handled the same as putIndex.
+ putByIndexBeyondVectorLength(exec->globalData(), storage->m_length, value);
+ checkConsistency();
+}
+
+void JSArray::shiftCount(ExecState* exec, unsigned count)
+{
+ ASSERT(count > 0);
+
+ ArrayStorage* storage = m_storage;
+
+ unsigned oldLength = storage->m_length;
+
+ if (!oldLength)
+ return;
+
+ if (oldLength != storage->m_numValuesInVector) {
+ // If m_length and m_numValuesInVector aren't the same, we have a sparse vector
+ // which means we need to go through each entry looking for the the "empty"
+ // slots and then fill them with possible properties. See ECMA spec.
+ // 15.4.4.9 steps 11 through 13.
+ for (unsigned i = count; i < oldLength; ++i) {
+ if ((i >= m_vectorLength) || (!m_storage->m_vector[i])) {
+ PropertySlot slot(this);
+ JSValue p = prototype();
+ if ((!p.isNull()) && (asObject(p)->getPropertySlot(exec, i, slot)))
+ methodTable()->putByIndex(this, exec, i, slot.getValue(exec, i));
+ }
+ }
+
+ storage = m_storage; // The put() above could have grown the vector and realloc'ed storage.
+
+ // Need to decrement numValuesInvector based on number of real entries
+ for (unsigned i = 0; i < (unsigned)count; ++i)
+ if ((i < m_vectorLength) && (storage->m_vector[i]))
+ --storage->m_numValuesInVector;
+ } else
+ storage->m_numValuesInVector -= count;
+
+ storage->m_length -= count;
+
+ if (m_vectorLength) {
+ count = min(m_vectorLength, (unsigned)count);
+
+ m_vectorLength -= count;
+
+ if (m_vectorLength) {
+ char* newBaseStorage = reinterpret_cast<char*>(storage) + count * sizeof(WriteBarrier<Unknown>);
+ memmove(newBaseStorage, storage, storageSize(0));
+ m_storage = reinterpret_cast_ptr<ArrayStorage*>(newBaseStorage);
+
+ m_indexBias += count;
+ }
+ }
+}
+
+void JSArray::unshiftCount(ExecState* exec, unsigned count)
+{
+ ArrayStorage* storage = m_storage;
+ unsigned length = storage->m_length;
+
+ if (length != storage->m_numValuesInVector) {
+ // If m_length and m_numValuesInVector aren't the same, we have a sparse vector
+ // which means we need to go through each entry looking for the the "empty"
+ // slots and then fill them with possible properties. See ECMA spec.
+ // 15.4.4.13 steps 8 through 10.
+ for (unsigned i = 0; i < length; ++i) {
+ if ((i >= m_vectorLength) || (!m_storage->m_vector[i])) {
+ PropertySlot slot(this);
+ JSValue p = prototype();
+ if ((!p.isNull()) && (asObject(p)->getPropertySlot(exec, i, slot)))
+ methodTable()->putByIndex(this, exec, i, slot.getValue(exec, i));
+ }
+ }
+ }
+
+ storage = m_storage; // The put() above could have grown the vector and realloc'ed storage.
+
+ if (m_indexBias >= count) {
+ m_indexBias -= count;
+ char* newBaseStorage = reinterpret_cast<char*>(storage) - count * sizeof(WriteBarrier<Unknown>);
+ memmove(newBaseStorage, storage, storageSize(0));
+ m_storage = reinterpret_cast_ptr<ArrayStorage*>(newBaseStorage);
+ m_vectorLength += count;
+ } else if (!unshiftCountSlowCase(count)) {
+ throwOutOfMemoryError(exec);
+ return;
+ }
+
+ WriteBarrier<Unknown>* vector = m_storage->m_vector;
+ for (unsigned i = 0; i < count; i++)
+ vector[i].clear();
+}
+
+void JSArray::visitChildren(JSCell* cell, SlotVisitor& visitor)
+{
+ JSArray* thisObject = jsCast<JSArray*>(cell);
+ ASSERT_GC_OBJECT_INHERITS(thisObject, &s_info);
+ COMPILE_ASSERT(StructureFlags & OverridesVisitChildren, OverridesVisitChildrenWithoutSettingFlag);
+ ASSERT(thisObject->structure()->typeInfo().overridesVisitChildren());
+
+ JSNonFinalObject::visitChildren(thisObject, visitor);
+
+ ArrayStorage* storage = thisObject->m_storage;
+
+ unsigned usedVectorLength = std::min(storage->m_length, thisObject->m_vectorLength);
+ visitor.appendValues(storage->m_vector, usedVectorLength);
+
+ if (SparseArrayValueMap* map = storage->m_sparseValueMap)
+ map->visitChildren(visitor);
+}
+
+static int compareNumbersForQSort(const void* a, const void* b)
+{
+ double da = static_cast<const JSValue*>(a)->asNumber();
+ double db = static_cast<const JSValue*>(b)->asNumber();
+ return (da > db) - (da < db);
+}
+
+static int compareByStringPairForQSort(const void* a, const void* b)
+{
+ const ValueStringPair* va = static_cast<const ValueStringPair*>(a);
+ const ValueStringPair* vb = static_cast<const ValueStringPair*>(b);
+ return codePointCompare(va->second, vb->second);
+}
+
+void JSArray::sortNumeric(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
+{
+ ASSERT(!inSparseMode());
+
+ ArrayStorage* storage = m_storage;
+
+ unsigned lengthNotIncludingUndefined = compactForSorting();
+ if (storage->m_sparseValueMap) {
+ throwOutOfMemoryError(exec);
+ return;
+ }
+
+ if (!lengthNotIncludingUndefined)
+ return;
+
+ bool allValuesAreNumbers = true;
+ size_t size = storage->m_numValuesInVector;
+ for (size_t i = 0; i < size; ++i) {
+ if (!storage->m_vector[i].isNumber()) {
+ allValuesAreNumbers = false;
+ break;
+ }
+ }
+
+ if (!allValuesAreNumbers)
+ return sort(exec, compareFunction, callType, callData);
+
+ // For numeric comparison, which is fast, qsort is faster than mergesort. We
+ // also don't require mergesort's stability, since there's no user visible
+ // side-effect from swapping the order of equal primitive values.
+ qsort(storage->m_vector, size, sizeof(WriteBarrier<Unknown>), compareNumbersForQSort);
+
+ checkConsistency(SortConsistencyCheck);
+}
+
+void JSArray::sort(ExecState* exec)
+{
+ ASSERT(!inSparseMode());
+
+ ArrayStorage* storage = m_storage;
+
+ unsigned lengthNotIncludingUndefined = compactForSorting();
+ if (storage->m_sparseValueMap) {
+ throwOutOfMemoryError(exec);
+ return;
+ }
+
+ if (!lengthNotIncludingUndefined)
+ return;
+
+ // Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that.
+ // This is a considerable improvement over doing it twice per comparison, though it requires a large temporary
+ // buffer. Besides, this protects us from crashing if some objects have custom toString methods that return
+ // random or otherwise changing results, effectively making compare function inconsistent.
+
+ Vector<ValueStringPair> values(lengthNotIncludingUndefined);
+ if (!values.begin()) {
+ throwOutOfMemoryError(exec);
+ return;
+ }
+
+ Heap::heap(this)->pushTempSortVector(&values);
+
+ for (size_t i = 0; i < lengthNotIncludingUndefined; i++) {
+ JSValue value = storage->m_vector[i].get();
+ ASSERT(!value.isUndefined());
+ values[i].first = value;
+ }
+
+ // FIXME: The following loop continues to call toString on subsequent values even after
+ // a toString call raises an exception.
+
+ for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
+ values[i].second = values[i].first.toString(exec);
+
+ if (exec->hadException()) {
+ Heap::heap(this)->popTempSortVector(&values);
+ return;
+ }
+
+ // FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather
+ // than O(N log N).
+
+#if HAVE(MERGESORT)
+ mergesort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
+#else
+ // FIXME: The qsort library function is likely to not be a stable sort.
+ // ECMAScript-262 does not specify a stable sort, but in practice, browsers perform a stable sort.
+ qsort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
+#endif
+
+ // If the toString function changed the length of the array or vector storage,
+ // increase the length to handle the orignal number of actual values.
+ if (m_vectorLength < lengthNotIncludingUndefined)
+ increaseVectorLength(lengthNotIncludingUndefined);
+ if (storage->m_length < lengthNotIncludingUndefined)
+ storage->m_length = lengthNotIncludingUndefined;
+
+ JSGlobalData& globalData = exec->globalData();
+ for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
+ storage->m_vector[i].set(globalData, this, values[i].first);
+
+ Heap::heap(this)->popTempSortVector(&values);
+
+ checkConsistency(SortConsistencyCheck);
+}
+
+struct AVLTreeNodeForArrayCompare {
+ JSValue value;
+
+ // Child pointers. The high bit of gt is robbed and used as the
+ // balance factor sign. The high bit of lt is robbed and used as
+ // the magnitude of the balance factor.
+ int32_t gt;
+ int32_t lt;
+};
+
+struct AVLTreeAbstractorForArrayCompare {
+ typedef int32_t handle; // Handle is an index into m_nodes vector.
+ typedef JSValue key;
+ typedef int32_t size;
+
+ Vector<AVLTreeNodeForArrayCompare> m_nodes;
+ ExecState* m_exec;
+ JSValue m_compareFunction;
+ CallType m_compareCallType;
+ const CallData* m_compareCallData;
+ OwnPtr<CachedCall> m_cachedCall;
+
+ handle get_less(handle h) { return m_nodes[h].lt & 0x7FFFFFFF; }
+ void set_less(handle h, handle lh) { m_nodes[h].lt &= 0x80000000; m_nodes[h].lt |= lh; }
+ handle get_greater(handle h) { return m_nodes[h].gt & 0x7FFFFFFF; }
+ void set_greater(handle h, handle gh) { m_nodes[h].gt &= 0x80000000; m_nodes[h].gt |= gh; }
+
+ int get_balance_factor(handle h)
+ {
+ if (m_nodes[h].gt & 0x80000000)
+ return -1;
+ return static_cast<unsigned>(m_nodes[h].lt) >> 31;
+ }
+
+ void set_balance_factor(handle h, int bf)
+ {
+ if (bf == 0) {
+ m_nodes[h].lt &= 0x7FFFFFFF;
+ m_nodes[h].gt &= 0x7FFFFFFF;
+ } else {
+ m_nodes[h].lt |= 0x80000000;
+ if (bf < 0)
+ m_nodes[h].gt |= 0x80000000;
+ else
+ m_nodes[h].gt &= 0x7FFFFFFF;
+ }
+ }
+
+ int compare_key_key(key va, key vb)
+ {
+ ASSERT(!va.isUndefined());
+ ASSERT(!vb.isUndefined());
+
+ if (m_exec->hadException())
+ return 1;
+
+ double compareResult;
+ if (m_cachedCall) {
+ m_cachedCall->setThis(jsUndefined());
+ m_cachedCall->setArgument(0, va);
+ m_cachedCall->setArgument(1, vb);
+ compareResult = m_cachedCall->call().toNumber(m_cachedCall->newCallFrame(m_exec));
+ } else {
+ MarkedArgumentBuffer arguments;
+ arguments.append(va);
+ arguments.append(vb);
+ compareResult = call(m_exec, m_compareFunction, m_compareCallType, *m_compareCallData, jsUndefined(), arguments).toNumber(m_exec);
+ }
+ return (compareResult < 0) ? -1 : 1; // Not passing equality through, because we need to store all values, even if equivalent.
+ }
+
+ int compare_key_node(key k, handle h) { return compare_key_key(k, m_nodes[h].value); }
+ int compare_node_node(handle h1, handle h2) { return compare_key_key(m_nodes[h1].value, m_nodes[h2].value); }
+
+ static handle null() { return 0x7FFFFFFF; }
+};
+
+void JSArray::sort(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
+{
+ ASSERT(!inSparseMode());
+
+ checkConsistency();
+
+ ArrayStorage* storage = m_storage;
+
+ // FIXME: This ignores exceptions raised in the compare function or in toNumber.
+
+ // The maximum tree depth is compiled in - but the caller is clearly up to no good
+ // if a larger array is passed.
+ ASSERT(storage->m_length <= static_cast<unsigned>(std::numeric_limits<int>::max()));
+ if (storage->m_length > static_cast<unsigned>(std::numeric_limits<int>::max()))
+ return;
+
+ unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
+ unsigned nodeCount = usedVectorLength + (storage->m_sparseValueMap ? storage->m_sparseValueMap->size() : 0);
+
+ if (!nodeCount)
+ return;
+
+ AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items
+ tree.abstractor().m_exec = exec;
+ tree.abstractor().m_compareFunction = compareFunction;
+ tree.abstractor().m_compareCallType = callType;
+ tree.abstractor().m_compareCallData = &callData;
+ tree.abstractor().m_nodes.grow(nodeCount);
+
+ if (callType == CallTypeJS)
+ tree.abstractor().m_cachedCall = adoptPtr(new CachedCall(exec, asFunction(compareFunction), 2));
+
+ if (!tree.abstractor().m_nodes.begin()) {
+ throwOutOfMemoryError(exec);
+ return;
+ }
+
+ // FIXME: If the compare function modifies the array, the vector, map, etc. could be modified
+ // right out from under us while we're building the tree here.
+
+ unsigned numDefined = 0;
+ unsigned numUndefined = 0;
+
+ // Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree.
+ for (; numDefined < usedVectorLength; ++numDefined) {
+ JSValue v = storage->m_vector[numDefined].get();
+ if (!v || v.isUndefined())
+ break;
+ tree.abstractor().m_nodes[numDefined].value = v;
+ tree.insert(numDefined);
+ }
+ for (unsigned i = numDefined; i < usedVectorLength; ++i) {
+ JSValue v = storage->m_vector[i].get();
+ if (v) {
+ if (v.isUndefined())
+ ++numUndefined;
+ else {
+ tree.abstractor().m_nodes[numDefined].value = v;
+ tree.insert(numDefined);
+ ++numDefined;
+ }
+ }
+ }
+
+ unsigned newUsedVectorLength = numDefined + numUndefined;
+
+ if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+ newUsedVectorLength += map->size();
+ if (newUsedVectorLength > m_vectorLength) {
+ // Check that it is possible to allocate an array large enough to hold all the entries.
+ if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength)) {
+ throwOutOfMemoryError(exec);
+ return;
+ }
+ }
+
+ storage = m_storage;
+
+ SparseArrayValueMap::const_iterator end = map->end();
+ for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it) {
+ tree.abstractor().m_nodes[numDefined].value = it->second.get();
+ tree.insert(numDefined);
+ ++numDefined;
+ }
+
+ delete map;
+ storage->m_sparseValueMap = 0;
+ }
+
+ ASSERT(tree.abstractor().m_nodes.size() >= numDefined);
+
+ // FIXME: If the compare function changed the length of the array, the following might be
+ // modifying the vector incorrectly.
+
+ // Copy the values back into m_storage.
+ AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter;
+ iter.start_iter_least(tree);
+ JSGlobalData& globalData = exec->globalData();
+ for (unsigned i = 0; i < numDefined; ++i) {
+ storage->m_vector[i].set(globalData, this, tree.abstractor().m_nodes[*iter].value);
+ ++iter;
+ }
+
+ // Put undefined values back in.
+ for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
+ storage->m_vector[i].setUndefined();
+
+ // Ensure that unused values in the vector are zeroed out.
+ for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
+ storage->m_vector[i].clear();
+
+ storage->m_numValuesInVector = newUsedVectorLength;
+
+ checkConsistency(SortConsistencyCheck);
+}
+
+void JSArray::fillArgList(ExecState* exec, MarkedArgumentBuffer& args)
+{
+ ArrayStorage* storage = m_storage;
+
+ WriteBarrier<Unknown>* vector = storage->m_vector;
+ unsigned vectorEnd = min(storage->m_length, m_vectorLength);
+ unsigned i = 0;
+ for (; i < vectorEnd; ++i) {
+ WriteBarrier<Unknown>& v = vector[i];
+ if (!v)
+ break;
+ args.append(v.get());
+ }
+
+ for (; i < storage->m_length; ++i)
+ args.append(get(exec, i));
+}
+
+void JSArray::copyToArguments(ExecState* exec, CallFrame* callFrame, uint32_t length)
+{
+ ASSERT(length == this->length());
+ UNUSED_PARAM(length);
+ unsigned i = 0;
+ WriteBarrier<Unknown>* vector = m_storage->m_vector;
+ unsigned vectorEnd = min(length, m_vectorLength);
+ for (; i < vectorEnd; ++i) {
+ WriteBarrier<Unknown>& v = vector[i];
+ if (!v)
+ break;
+ callFrame->setArgument(i, v.get());
+ }
+
+ for (; i < length; ++i)
+ callFrame->setArgument(i, get(exec, i));
+}
+
+unsigned JSArray::compactForSorting()
+{
+ ASSERT(!inSparseMode());
+
+ checkConsistency();
+
+ ArrayStorage* storage = m_storage;
+
+ unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
+
+ unsigned numDefined = 0;
+ unsigned numUndefined = 0;
+
+ for (; numDefined < usedVectorLength; ++numDefined) {
+ JSValue v = storage->m_vector[numDefined].get();
+ if (!v || v.isUndefined())
+ break;
+ }
+
+ for (unsigned i = numDefined; i < usedVectorLength; ++i) {
+ JSValue v = storage->m_vector[i].get();
+ if (v) {
+ if (v.isUndefined())
+ ++numUndefined;
+ else
+ storage->m_vector[numDefined++].setWithoutWriteBarrier(v);
+ }
+ }
+
+ unsigned newUsedVectorLength = numDefined + numUndefined;
+
+ if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+ newUsedVectorLength += map->size();
+ if (newUsedVectorLength > m_vectorLength) {
+ // Check that it is possible to allocate an array large enough to hold all the entries - if not,
+ // exception is thrown by caller.
+ if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength))
+ return 0;
+
+ storage = m_storage;
+ }
+
+ SparseArrayValueMap::const_iterator end = map->end();
+ for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it)
+ storage->m_vector[numDefined++].setWithoutWriteBarrier(it->second.get());
+
+ delete map;
+ storage->m_sparseValueMap = 0;
+ }
+
+ for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
+ storage->m_vector[i].setUndefined();
+ for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
+ storage->m_vector[i].clear();
+
+ storage->m_numValuesInVector = newUsedVectorLength;
+
+ checkConsistency(SortConsistencyCheck);
+
+ return numDefined;
+}
+
+void* JSArray::subclassData() const
+{
+ return m_storage->subclassData;
+}
+
+void JSArray::setSubclassData(void* d)
+{
+ m_storage->subclassData = d;
+}
+
+#if CHECK_ARRAY_CONSISTENCY
+
+void JSArray::checkConsistency(ConsistencyCheckType type)
+{
+ ArrayStorage* storage = m_storage;
+
+ ASSERT(!storage->m_inCompactInitialization);
+
+ ASSERT(storage);
+ if (type == SortConsistencyCheck)
+ ASSERT(!storage->m_sparseValueMap);
+
+ unsigned numValuesInVector = 0;
+ for (unsigned i = 0; i < m_vectorLength; ++i) {
+ if (JSValue value = storage->m_vector[i]) {
+ ASSERT(i < storage->m_length);
+ if (type != DestructorConsistencyCheck)
+ value.isUndefined(); // Likely to crash if the object was deallocated.
+ ++numValuesInVector;
+ } else {
+ if (type == SortConsistencyCheck)
+ ASSERT(i >= storage->m_numValuesInVector);
+ }
+ }
+ ASSERT(numValuesInVector == storage->m_numValuesInVector);
+ ASSERT(numValuesInVector <= storage->m_length);
+
+ if (storage->m_sparseValueMap) {
+ SparseArrayValueMap::iterator end = storage->m_sparseValueMap->end();
+ for (SparseArrayValueMap::iterator it = storage->m_sparseValueMap->begin(); it != end; ++it) {
+ unsigned index = it->first;
+ ASSERT(index < storage->m_length);
+ ASSERT(index >= storage->m_vectorLength);
+ ASSERT(index <= MAX_ARRAY_INDEX);
+ ASSERT(it->second);
+ if (type != DestructorConsistencyCheck)
+ it->second.isUndefined(); // Likely to crash if the object was deallocated.
+ }
+ }
+}
+
+#endif
+
+} // namespace JSC