diff options
| author | Simon Hausmann <simon.hausmann@nokia.com> | 2012-01-06 14:44:00 +0100 | 
|---|---|---|
| committer | Simon Hausmann <simon.hausmann@nokia.com> | 2012-01-06 14:44:00 +0100 | 
| commit | 40736c5763bf61337c8c14e16d8587db021a87d4 (patch) | |
| tree | b17a9c00042ad89cb1308e2484491799aa14e9f8 /Source/JavaScriptCore/runtime/JSArray.cpp | |
| download | qtwebkit-40736c5763bf61337c8c14e16d8587db021a87d4.tar.gz | |
Imported WebKit commit 2ea9d364d0f6efa8fa64acf19f451504c59be0e4 (http://svn.webkit.org/repository/webkit/trunk@104285)
Diffstat (limited to 'Source/JavaScriptCore/runtime/JSArray.cpp')
| -rw-r--r-- | Source/JavaScriptCore/runtime/JSArray.cpp | 1379 | 
1 files changed, 1379 insertions, 0 deletions
diff --git a/Source/JavaScriptCore/runtime/JSArray.cpp b/Source/JavaScriptCore/runtime/JSArray.cpp new file mode 100644 index 000000000..da7be8564 --- /dev/null +++ b/Source/JavaScriptCore/runtime/JSArray.cpp @@ -0,0 +1,1379 @@ +/* + *  Copyright (C) 1999-2000 Harri Porten (porten@kde.org) + *  Copyright (C) 2003, 2007, 2008, 2009 Apple Inc. All rights reserved. + *  Copyright (C) 2003 Peter Kelly (pmk@post.com) + *  Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com) + * + *  This library is free software; you can redistribute it and/or + *  modify it under the terms of the GNU Lesser General Public + *  License as published by the Free Software Foundation; either + *  version 2 of the License, or (at your option) any later version. + * + *  This library is distributed in the hope that it will be useful, + *  but WITHOUT ANY WARRANTY; without even the implied warranty of + *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU + *  Lesser General Public License for more details. + * + *  You should have received a copy of the GNU Lesser General Public + *  License along with this library; if not, write to the Free Software + *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA + * + */ + +#include "config.h" +#include "JSArray.h" + +#include "ArrayPrototype.h" +#include "CachedCall.h" +#include "Error.h" +#include "Executable.h" +#include "PropertyNameArray.h" +#include <wtf/AVLTree.h> +#include <wtf/Assertions.h> +#include <wtf/OwnPtr.h> +#include <Operations.h> + +using namespace std; +using namespace WTF; + +namespace JSC { + +ASSERT_CLASS_FITS_IN_CELL(JSArray); + +// Overview of JSArray +// +// Properties of JSArray objects may be stored in one of three locations: +//   * The regular JSObject property map. +//   * A storage vector. +//   * A sparse map of array entries. +// +// Properties with non-numeric identifiers, with identifiers that are not representable +// as an unsigned integer, or where the value is greater than  MAX_ARRAY_INDEX +// (specifically, this is only one property - the value 0xFFFFFFFFU as an unsigned 32-bit +// integer) are not considered array indices and will be stored in the JSObject property map. +// +// All properties with a numeric identifer, representable as an unsigned integer i, +// where (i <= MAX_ARRAY_INDEX), are an array index and will be stored in either the +// storage vector or the sparse map.  An array index i will be handled in the following +// fashion: +// +//   * Where (i < MIN_SPARSE_ARRAY_INDEX) the value will be stored in the storage vector, +//     unless the array is in SparseMode in which case all properties go into the map. +//   * Where (MIN_SPARSE_ARRAY_INDEX <= i <= MAX_STORAGE_VECTOR_INDEX) the value will either +//     be stored in the storage vector or in the sparse array, depending on the density of +//     data that would be stored in the vector (a vector being used where at least +//     (1 / minDensityMultiplier) of the entries would be populated). +//   * Where (MAX_STORAGE_VECTOR_INDEX < i <= MAX_ARRAY_INDEX) the value will always be stored +//     in the sparse array. + +// The definition of MAX_STORAGE_VECTOR_LENGTH is dependant on the definition storageSize +// function below - the MAX_STORAGE_VECTOR_LENGTH limit is defined such that the storage +// size calculation cannot overflow.  (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>)) + +// (vectorLength * sizeof(WriteBarrier<Unknown>)) must be <= 0xFFFFFFFFU (which is maximum value of size_t). +#define MAX_STORAGE_VECTOR_LENGTH static_cast<unsigned>((0xFFFFFFFFU - (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>))) / sizeof(WriteBarrier<Unknown>)) + +// These values have to be macros to be used in max() and min() without introducing +// a PIC branch in Mach-O binaries, see <rdar://problem/5971391>. +#define MIN_SPARSE_ARRAY_INDEX 10000U +#define MAX_STORAGE_VECTOR_INDEX (MAX_STORAGE_VECTOR_LENGTH - 1) +// 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer. +#define MAX_ARRAY_INDEX 0xFFFFFFFEU + +// The value BASE_VECTOR_LEN is the maximum number of vector elements we'll allocate +// for an array that was created with a sepcified length (e.g. a = new Array(123)) +#define BASE_VECTOR_LEN 4U +     +// The upper bound to the size we'll grow a zero length array when the first element +// is added. +#define FIRST_VECTOR_GROW 4U + +// Our policy for when to use a vector and when to use a sparse map. +// For all array indices under MIN_SPARSE_ARRAY_INDEX, we always use a vector. +// When indices greater than MIN_SPARSE_ARRAY_INDEX are involved, we use a vector +// as long as it is 1/8 full. If more sparse than that, we use a map. +static const unsigned minDensityMultiplier = 8; + +const ClassInfo JSArray::s_info = {"Array", &JSNonFinalObject::s_info, 0, 0, CREATE_METHOD_TABLE(JSArray)}; + +// We keep track of the size of the last array after it was grown.  We use this +// as a simple heuristic for as the value to grow the next array from size 0. +// This value is capped by the constant FIRST_VECTOR_GROW defined above. +static unsigned lastArraySize = 0; + +static inline size_t storageSize(unsigned vectorLength) +{ +    ASSERT(vectorLength <= MAX_STORAGE_VECTOR_LENGTH); + +    // MAX_STORAGE_VECTOR_LENGTH is defined such that provided (vectorLength <= MAX_STORAGE_VECTOR_LENGTH) +    // - as asserted above - the following calculation cannot overflow. +    size_t size = (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>)) + (vectorLength * sizeof(WriteBarrier<Unknown>)); +    // Assertion to detect integer overflow in previous calculation (should not be possible, provided that +    // MAX_STORAGE_VECTOR_LENGTH is correctly defined). +    ASSERT(((size - (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>))) / sizeof(WriteBarrier<Unknown>) == vectorLength) && (size >= (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>)))); + +    return size; +} + +static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues) +{ +    return length <= MIN_SPARSE_ARRAY_INDEX || length / minDensityMultiplier <= numValues; +} + +#if !CHECK_ARRAY_CONSISTENCY + +inline void JSArray::checkConsistency(ConsistencyCheckType) +{ +} + +#endif + +JSArray::JSArray(JSGlobalData& globalData, Structure* structure) +    : JSNonFinalObject(globalData, structure) +    , m_storage(0) +{ +} + +void JSArray::finishCreation(JSGlobalData& globalData, unsigned initialLength) +{ +    Base::finishCreation(globalData); +    ASSERT(inherits(&s_info)); + +    unsigned initialVectorLength = BASE_VECTOR_LEN; +    unsigned initialStorageSize = storageSize(initialVectorLength); + +    m_storage = static_cast<ArrayStorage*>(fastMalloc(initialStorageSize)); +    m_storage->m_allocBase = m_storage; +    m_storage->m_length = initialLength; +    m_indexBias = 0; +    m_vectorLength = initialVectorLength; +    m_storage->m_sparseValueMap = 0; +    m_storage->subclassData = 0; +    m_storage->m_numValuesInVector = 0; +#if CHECK_ARRAY_CONSISTENCY +    m_storage->m_inCompactInitialization = false; +#endif + +    WriteBarrier<Unknown>* vector = m_storage->m_vector; +    for (size_t i = 0; i < initialVectorLength; ++i) +        vector[i].clear(); + +    checkConsistency(); +     +    Heap::heap(this)->reportExtraMemoryCost(initialStorageSize); +} + +JSArray* JSArray::tryFinishCreationUninitialized(JSGlobalData& globalData, unsigned initialLength) +{ +    Base::finishCreation(globalData); +    ASSERT(inherits(&s_info)); + +    // Check for lengths larger than we can handle with a vector. +    if (initialLength > MAX_STORAGE_VECTOR_LENGTH) +        return 0; + +    unsigned initialVectorLength = max(initialLength, BASE_VECTOR_LEN); +    unsigned initialStorageSize = storageSize(initialVectorLength); + +    m_storage = static_cast<ArrayStorage*>(fastMalloc(initialStorageSize)); +    m_storage->m_allocBase = m_storage; +    m_storage->m_length = 0; +    m_indexBias = 0; +    m_vectorLength = initialVectorLength; +    m_storage->m_sparseValueMap = 0; +    m_storage->subclassData = 0; +    m_storage->m_numValuesInVector = initialLength; +#if CHECK_ARRAY_CONSISTENCY +    m_storage->m_inCompactInitialization = true; +#endif + +    WriteBarrier<Unknown>* vector = m_storage->m_vector; +    for (size_t i = initialLength; i < initialVectorLength; ++i) +        vector[i].clear(); + +    Heap::heap(this)->reportExtraMemoryCost(initialStorageSize); +    return this; +} + +JSArray::~JSArray() +{ +    ASSERT(jsCast<JSArray*>(this)); + +    // If we are unable to allocate memory for m_storage then this may be null. +    if (!m_storage) +        return; + +    checkConsistency(DestructorConsistencyCheck); +    delete m_storage->m_sparseValueMap; +    fastFree(m_storage->m_allocBase); +} + +void JSArray::destroy(JSCell* cell) +{ +    jsCast<JSArray*>(cell)->JSArray::~JSArray(); +} + +SparseArrayValueMap::iterator SparseArrayValueMap::find(unsigned i) +{ +    return m_map.find(i); +} + +inline void SparseArrayValueMap::put(JSGlobalData& globalData, JSArray* array, unsigned i, JSValue value) +{ +    SparseArrayEntry temp; +    pair<Map::iterator, bool> result = m_map.add(i, temp); +    result.first->second.set(globalData, array, value); +    if (!result.second) // pre-existing entry +        return; + +    size_t capacity = m_map.capacity(); +    if (capacity != m_reportedCapacity) { +        Heap::heap(array)->reportExtraMemoryCost((capacity - m_reportedCapacity) * (sizeof(unsigned) + sizeof(WriteBarrier<Unknown>))); +        m_reportedCapacity = capacity; +    } +} + +inline void SparseArrayValueMap::visitChildren(SlotVisitor& visitor) +{ +    iterator end = m_map.end(); +    for (iterator it = m_map.begin(); it != end; ++it) +        visitor.append(&it->second); +} + +bool JSArray::getOwnPropertySlotByIndex(JSCell* cell, ExecState* exec, unsigned i, PropertySlot& slot) +{ +    JSArray* thisObject = jsCast<JSArray*>(cell); +    ArrayStorage* storage = thisObject->m_storage; +     +    if (i >= storage->m_length) { +        if (i > MAX_ARRAY_INDEX) +            return thisObject->methodTable()->getOwnPropertySlot(thisObject, exec, Identifier::from(exec, i), slot); +        return false; +    } + +    if (i < thisObject->m_vectorLength) { +        JSValue value = storage->m_vector[i].get(); +        if (value) { +            slot.setValue(value); +            return true; +        } +    } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) { +        SparseArrayValueMap::iterator it = map->find(i); +        if (it != map->notFound()) { +            slot.setValue(it->second.get()); +            return true; +        } +    } + +    return JSObject::getOwnPropertySlot(thisObject, exec, Identifier::from(exec, i), slot); +} + +bool JSArray::getOwnPropertySlot(JSCell* cell, ExecState* exec, const Identifier& propertyName, PropertySlot& slot) +{ +    JSArray* thisObject = jsCast<JSArray*>(cell); +    if (propertyName == exec->propertyNames().length) { +        slot.setValue(jsNumber(thisObject->length())); +        return true; +    } + +    bool isArrayIndex; +    unsigned i = propertyName.toArrayIndex(isArrayIndex); +    if (isArrayIndex) +        return JSArray::getOwnPropertySlotByIndex(thisObject, exec, i, slot); + +    return JSObject::getOwnPropertySlot(thisObject, exec, propertyName, slot); +} + +bool JSArray::getOwnPropertyDescriptor(JSObject* object, ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor) +{ +    JSArray* thisObject = jsCast<JSArray*>(object); +    if (propertyName == exec->propertyNames().length) { +        descriptor.setDescriptor(jsNumber(thisObject->length()), DontDelete | DontEnum); +        return true; +    } + +    ArrayStorage* storage = thisObject->m_storage; +     +    bool isArrayIndex; +    unsigned i = propertyName.toArrayIndex(isArrayIndex); +    if (isArrayIndex) { +        if (i >= storage->m_length) +            return false; +        if (i < thisObject->m_vectorLength) { +            WriteBarrier<Unknown>& value = storage->m_vector[i]; +            if (value) { +                descriptor.setDescriptor(value.get(), 0); +                return true; +            } +        } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) { +            SparseArrayValueMap::iterator it = map->find(i); +            if (it != map->notFound()) { +                descriptor.setDescriptor(it->second.get(), 0); +                return true; +            } +        } +    } +    return JSObject::getOwnPropertyDescriptor(thisObject, exec, propertyName, descriptor); +} + +// ECMA 15.4.5.1 +void JSArray::put(JSCell* cell, ExecState* exec, const Identifier& propertyName, JSValue value, PutPropertySlot& slot) +{ +    JSArray* thisObject = jsCast<JSArray*>(cell); +    bool isArrayIndex; +    unsigned i = propertyName.toArrayIndex(isArrayIndex); +    if (isArrayIndex) { +        putByIndex(thisObject, exec, i, value); +        return; +    } + +    if (propertyName == exec->propertyNames().length) { +        unsigned newLength = value.toUInt32(exec); +        if (value.toNumber(exec) != static_cast<double>(newLength)) { +            throwError(exec, createRangeError(exec, "Invalid array length")); +            return; +        } +        thisObject->setLength(newLength); +        return; +    } + +    JSObject::put(thisObject, exec, propertyName, value, slot); +} + +void JSArray::putByIndex(JSCell* cell, ExecState* exec, unsigned i, JSValue value) +{ +    JSArray* thisObject = jsCast<JSArray*>(cell); +    thisObject->checkConsistency(); + +    ArrayStorage* storage = thisObject->m_storage; + +    // Fast case - store to the vector. +    if (i < thisObject->m_vectorLength) { +        WriteBarrier<Unknown>& valueSlot = storage->m_vector[i]; +        unsigned length = storage->m_length; + +        // Update m_length & m_numValuesInVector as necessary. +        if (i >= length) { +            length = i + 1; +            storage->m_length = length; +            ++storage->m_numValuesInVector; +        } else if (!valueSlot) +            ++storage->m_numValuesInVector; + +        valueSlot.set(exec->globalData(), thisObject, value); +        thisObject->checkConsistency(); +        return; +    } + +    // Handle 2^32-1 - this is not an array index (see ES5.1 15.4), and is treated as a regular property. +    if (UNLIKELY(i > MAX_ARRAY_INDEX)) { +        PutPropertySlot slot; +        thisObject->methodTable()->put(thisObject, exec, Identifier::from(exec, i), value, slot); +        return; +    } + +    // For all other cases, call putByIndexBeyondVectorLength. +    thisObject->putByIndexBeyondVectorLength(exec->globalData(), i, value); +    thisObject->checkConsistency(); +} + +NEVER_INLINE void JSArray::putByIndexBeyondVectorLength(JSGlobalData& globalData, unsigned i, JSValue value) +{ +    // i should be a valid array index that is outside of the current vector. +    ASSERT(i >= m_vectorLength); +    ASSERT(i <= MAX_ARRAY_INDEX); + +    ArrayStorage* storage = m_storage; +    SparseArrayValueMap* map = storage->m_sparseValueMap; + +    // Update m_length if necessary. +    unsigned length = storage->m_length; +    if (i >= length) { +        length = i + 1; +        storage->m_length = length; +    } + +    // First, handle cases where we don't currently have a sparse map. +    if (LIKELY(!map)) { +        // Check that it is sensible to still be using a vector, and then try to grow the vector. +        if (LIKELY((isDenseEnoughForVector(i, storage->m_numValuesInVector)) && increaseVectorLength(i + 1))) { +            // success! - reread m_storage since it has likely been reallocated, and store to the vector. +            storage = m_storage; +            storage->m_vector[i].set(globalData, this, value); +            ++storage->m_numValuesInVector; +            return; +        } +        // We don't want to, or can't use a vector to hold this property - allocate a sparse map & add the value. +        map = new SparseArrayValueMap; +        storage->m_sparseValueMap = map; +        map->put(globalData, this, i, value); +        return; +    } + +    // We are currently using a map - check whether we still want to be doing so. +    // We will continue  to use a sparse map if SparseMode is set, a vector would be too sparse, or if allocation fails. +    unsigned numValuesInArray = storage->m_numValuesInVector + map->size(); +    if (map->sparseMode() || !isDenseEnoughForVector(length, numValuesInArray) || !increaseVectorLength(length)) { +        map->put(globalData, this, i, value); +        return; +    } + +    // Reread m_storage afterincreaseVectorLength, update m_numValuesInVector. +    storage = m_storage; +    storage->m_numValuesInVector = numValuesInArray; + +    // Copy all values from the map into the vector, and delete the map. +    WriteBarrier<Unknown>* vector = storage->m_vector; +    SparseArrayValueMap::const_iterator end = map->end(); +    for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it) +        vector[it->first].set(globalData, this, it->second.get()); +    delete map; +    storage->m_sparseValueMap = 0; + +    // Store the new property into the vector. +    WriteBarrier<Unknown>& valueSlot = vector[i]; +    if (!valueSlot) +        ++storage->m_numValuesInVector; +    valueSlot.set(globalData, this, value); +} + +bool JSArray::deleteProperty(JSCell* cell, ExecState* exec, const Identifier& propertyName) +{ +    JSArray* thisObject = jsCast<JSArray*>(cell); +    bool isArrayIndex; +    unsigned i = propertyName.toArrayIndex(isArrayIndex); +    if (isArrayIndex) +        return thisObject->methodTable()->deletePropertyByIndex(thisObject, exec, i); + +    if (propertyName == exec->propertyNames().length) +        return false; + +    return JSObject::deleteProperty(thisObject, exec, propertyName); +} + +bool JSArray::deletePropertyByIndex(JSCell* cell, ExecState* exec, unsigned i) +{ +    JSArray* thisObject = jsCast<JSArray*>(cell); +    thisObject->checkConsistency(); + +    ArrayStorage* storage = thisObject->m_storage; +     +    if (i < thisObject->m_vectorLength) { +        WriteBarrier<Unknown>& valueSlot = storage->m_vector[i]; +        if (!valueSlot) { +            thisObject->checkConsistency(); +            return false; +        } +        valueSlot.clear(); +        --storage->m_numValuesInVector; +        thisObject->checkConsistency(); +        return true; +    } + +    if (SparseArrayValueMap* map = storage->m_sparseValueMap) { +        SparseArrayValueMap::iterator it = map->find(i); +        if (it != map->notFound()) { +            map->remove(it); +            thisObject->checkConsistency(); +            return true; +        } +    } + +    thisObject->checkConsistency(); + +    if (i > MAX_ARRAY_INDEX) +        return thisObject->methodTable()->deleteProperty(thisObject, exec, Identifier::from(exec, i)); + +    return false; +} + +void JSArray::getOwnPropertyNames(JSObject* object, ExecState* exec, PropertyNameArray& propertyNames, EnumerationMode mode) +{ +    JSArray* thisObject = jsCast<JSArray*>(object); +    // FIXME: Filling PropertyNameArray with an identifier for every integer +    // is incredibly inefficient for large arrays. We need a different approach, +    // which almost certainly means a different structure for PropertyNameArray. + +    ArrayStorage* storage = thisObject->m_storage; +     +    unsigned usedVectorLength = min(storage->m_length, thisObject->m_vectorLength); +    for (unsigned i = 0; i < usedVectorLength; ++i) { +        if (storage->m_vector[i]) +            propertyNames.add(Identifier::from(exec, i)); +    } + +    if (SparseArrayValueMap* map = storage->m_sparseValueMap) { +        SparseArrayValueMap::const_iterator end = map->end(); +        for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it) +            propertyNames.add(Identifier::from(exec, it->first)); +    } + +    if (mode == IncludeDontEnumProperties) +        propertyNames.add(exec->propertyNames().length); + +    JSObject::getOwnPropertyNames(thisObject, exec, propertyNames, mode); +} + +ALWAYS_INLINE unsigned JSArray::getNewVectorLength(unsigned desiredLength) +{ +    ASSERT(desiredLength <= MAX_STORAGE_VECTOR_LENGTH); + +    unsigned increasedLength; +    unsigned maxInitLength = min(m_storage->m_length, 100000U); + +    if (desiredLength < maxInitLength) +        increasedLength = maxInitLength; +    else if (!m_vectorLength) +        increasedLength = max(desiredLength, lastArraySize); +    else { +        // Mathematically equivalent to: +        //   increasedLength = (newLength * 3 + 1) / 2; +        // or: +        //   increasedLength = (unsigned)ceil(newLength * 1.5)); +        // This form is not prone to internal overflow. +        increasedLength = desiredLength + (desiredLength >> 1) + (desiredLength & 1); +    } + +    ASSERT(increasedLength >= desiredLength); + +    lastArraySize = min(increasedLength, FIRST_VECTOR_GROW); + +    return min(increasedLength, MAX_STORAGE_VECTOR_LENGTH); +} + +bool JSArray::increaseVectorLength(unsigned newLength) +{ +    // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map +    // to the vector. Callers have to account for that, because they can do it more efficiently. +    if (newLength > MAX_STORAGE_VECTOR_LENGTH) +        return false; + +    ArrayStorage* storage = m_storage; + +    unsigned vectorLength = m_vectorLength; +    ASSERT(newLength > vectorLength); +    unsigned newVectorLength = getNewVectorLength(newLength); +    void* baseStorage = storage->m_allocBase; + +    // Fast case - there is no precapacity. In these cases a realloc makes sense. +    if (LIKELY(!m_indexBias)) { +        if (!tryFastRealloc(baseStorage, storageSize(newVectorLength)).getValue(baseStorage)) +            return false; + +        storage = m_storage = reinterpret_cast_ptr<ArrayStorage*>(baseStorage); +        m_storage->m_allocBase = baseStorage; + +        WriteBarrier<Unknown>* vector = storage->m_vector; +        for (unsigned i = vectorLength; i < newVectorLength; ++i) +            vector[i].clear(); + +        m_vectorLength = newVectorLength; +         +        Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength)); +        return true; +    } + +    // Remove some, but not all of the precapacity. Atomic decay, & capped to not overflow array length. +    unsigned newIndexBias = min(m_indexBias >> 1, MAX_STORAGE_VECTOR_LENGTH - newVectorLength); +    // Calculate new stoarge capcity, allowing room for the pre-capacity. +    unsigned newStorageCapacity = newVectorLength + newIndexBias; +    void* newAllocBase; +    if (!tryFastMalloc(storageSize(newStorageCapacity)).getValue(newAllocBase)) +        return false; +    // The sum of m_vectorLength and m_indexBias will never exceed MAX_STORAGE_VECTOR_LENGTH. +    ASSERT(m_vectorLength <= MAX_STORAGE_VECTOR_LENGTH && (MAX_STORAGE_VECTOR_LENGTH - m_vectorLength) >= m_indexBias); +    unsigned currentCapacity = m_vectorLength + m_indexBias; +    // Currently there is no way to report to the heap that the extra capacity is shrinking! +    if (newStorageCapacity > currentCapacity) +        Heap::heap(this)->reportExtraMemoryCost((newStorageCapacity - currentCapacity) * sizeof(WriteBarrier<Unknown>)); + +    m_vectorLength = newVectorLength; +    m_indexBias = newIndexBias; +    m_storage = reinterpret_cast_ptr<ArrayStorage*>(reinterpret_cast<WriteBarrier<Unknown>*>(newAllocBase) + m_indexBias); + +    // Copy the ArrayStorage header & current contents of the vector, clear the new post-capacity. +    memmove(m_storage, storage, storageSize(vectorLength)); +    for (unsigned i = vectorLength; i < m_vectorLength; ++i) +        m_storage->m_vector[i].clear(); + +    // Free the old allocation, update m_allocBase. +    fastFree(m_storage->m_allocBase); +    m_storage->m_allocBase = newAllocBase; + +    return true; +} + +// This method makes room in the vector, but leaves the new space uncleared. +bool JSArray::unshiftCountSlowCase(unsigned count) +{ +    // If not, we should have handled this on the fast path. +    ASSERT(count > m_indexBias); + +    ArrayStorage* storage = m_storage; + +    // Step 1: +    // Gather 4 key metrics: +    //  * usedVectorLength - how many entries are currently in the vector (conservative estimate - fewer may be in use in sparse vectors). +    //  * requiredVectorLength - how many entries are will there be in the vector, after allocating space for 'count' more. +    //  * currentCapacity - what is the current size of the vector, including any pre-capacity. +    //  * desiredCapacity - how large should we like to grow the vector to - based on 2x requiredVectorLength. + +    unsigned length = storage->m_length; +    unsigned usedVectorLength = min(m_vectorLength, length); +    ASSERT(usedVectorLength <= MAX_STORAGE_VECTOR_LENGTH); +    // Check that required vector length is possible, in an overflow-safe fashion. +    if (count > MAX_STORAGE_VECTOR_LENGTH - usedVectorLength) +        return false; +    unsigned requiredVectorLength = usedVectorLength + count; +    ASSERT(requiredVectorLength <= MAX_STORAGE_VECTOR_LENGTH); +    // The sum of m_vectorLength and m_indexBias will never exceed MAX_STORAGE_VECTOR_LENGTH. +    ASSERT(m_vectorLength <= MAX_STORAGE_VECTOR_LENGTH && (MAX_STORAGE_VECTOR_LENGTH - m_vectorLength) >= m_indexBias); +    unsigned currentCapacity = m_vectorLength + m_indexBias; +    // The calculation of desiredCapacity won't overflow, due to the range of MAX_STORAGE_VECTOR_LENGTH. +    unsigned desiredCapacity = min(MAX_STORAGE_VECTOR_LENGTH, max(BASE_VECTOR_LEN, requiredVectorLength) << 1); + +    // Step 2: +    // We're either going to choose to allocate a new ArrayStorage, or we're going to reuse the existing on. + +    void* newAllocBase; +    unsigned newStorageCapacity; +    // If the current storage array is sufficiently large (but not too large!) then just keep using it. +    if (currentCapacity > desiredCapacity && isDenseEnoughForVector(currentCapacity, requiredVectorLength)) { +        newAllocBase = storage->m_allocBase; +        newStorageCapacity = currentCapacity; +    } else { +        if (!tryFastMalloc(storageSize(desiredCapacity)).getValue(newAllocBase)) +            return false; +        newStorageCapacity = desiredCapacity; +        // Currently there is no way to report to the heap that the extra capacity is shrinking! +        if (desiredCapacity > currentCapacity) +            Heap::heap(this)->reportExtraMemoryCost((desiredCapacity - currentCapacity) * sizeof(WriteBarrier<Unknown>)); +    } + +    // Step 3: +    // Work out where we're going to move things to. + +    // Determine how much of the vector to use as pre-capacity, and how much as post-capacity. +    // If the vector had no free post-capacity (length >= m_vectorLength), don't give it any. +    // If it did, we calculate the amount that will remain based on an atomic decay - leave the +    // vector with half the post-capacity it had previously. +    unsigned postCapacity = 0; +    if (length < m_vectorLength) { +        // Atomic decay, + the post-capacity cannot be greater than what is available. +        postCapacity = min((m_vectorLength - length) >> 1, newStorageCapacity - requiredVectorLength); +        // If we're moving contents within the same allocation, the post-capacity is being reduced. +        ASSERT(newAllocBase != storage->m_allocBase || postCapacity < m_vectorLength - length); +    } + +    m_vectorLength = requiredVectorLength + postCapacity; +    m_indexBias = newStorageCapacity - m_vectorLength; +    m_storage = reinterpret_cast_ptr<ArrayStorage*>(reinterpret_cast<WriteBarrier<Unknown>*>(newAllocBase) + m_indexBias); + +    // Step 4: +    // Copy array data / header into their new locations, clear post-capacity & free any old allocation. + +    // If this is being moved within the existing buffer of memory, we are always shifting data +    // to the right (since count > m_indexBias). As such this memmove cannot trample the header. +    memmove(m_storage->m_vector + count, storage->m_vector, sizeof(WriteBarrier<Unknown>) * usedVectorLength); +    memmove(m_storage, storage, storageSize(0)); + +    // Are we copying into a new allocation? +    if (newAllocBase != m_storage->m_allocBase) { +        // Free the old allocation, update m_allocBase. +        fastFree(m_storage->m_allocBase); +        m_storage->m_allocBase = newAllocBase; + +        // We need to clear any entries in the vector beyond length. We only need to +        // do this if this was a new allocation, because if we're using an existing +        // allocation the post-capacity will already be cleared, and in an existing +        // allocation we can only beshrinking the amount of post capacity. +        for (unsigned i = requiredVectorLength; i < m_vectorLength; ++i) +            m_storage->m_vector[i].clear(); +    } + +    return true; +} + +void JSArray::setLength(unsigned newLength) +{ +    checkConsistency(); + +    ArrayStorage* storage = m_storage; +     +    unsigned length = storage->m_length; + +    if (newLength < length) { +        unsigned usedVectorLength = min(length, m_vectorLength); +        for (unsigned i = newLength; i < usedVectorLength; ++i) { +            WriteBarrier<Unknown>& valueSlot = storage->m_vector[i]; +            bool hadValue = valueSlot; +            valueSlot.clear(); +            storage->m_numValuesInVector -= hadValue; +        } + +        if (SparseArrayValueMap* map = storage->m_sparseValueMap) { +            SparseArrayValueMap copy = *map; +            SparseArrayValueMap::const_iterator end = copy.end(); +            for (SparseArrayValueMap::const_iterator it = copy.begin(); it != end; ++it) { +                if (it->first >= newLength) +                    map->remove(it->first); +            } +            if (map->isEmpty() && !map->sparseMode()) { +                delete map; +                storage->m_sparseValueMap = 0; +            } +        } +    } + +    storage->m_length = newLength; + +    checkConsistency(); +} + +JSValue JSArray::pop() +{ +    checkConsistency(); + +    ArrayStorage* storage = m_storage; +     +    unsigned length = storage->m_length; +    if (!length) +        return jsUndefined(); + +    --length; + +    JSValue result; + +    if (length < m_vectorLength) { +        WriteBarrier<Unknown>& valueSlot = storage->m_vector[length]; +        if (valueSlot) { +            --storage->m_numValuesInVector; +            result = valueSlot.get(); +            valueSlot.clear(); +        } else +            result = jsUndefined(); +    } else { +        result = jsUndefined(); +        if (SparseArrayValueMap* map = storage->m_sparseValueMap) { +            SparseArrayValueMap::iterator it = map->find(length); +            if (it != map->end()) { +                result = it->second.get(); +                map->remove(it); +                if (map->isEmpty() && !map->sparseMode()) { +                    delete map; +                    storage->m_sparseValueMap = 0; +                } +            } +        } +    } + +    storage->m_length = length; + +    checkConsistency(); + +    return result; +} + +// Push & putIndex are almost identical, with two small differences. +//  - we always are writing beyond the current array bounds, so it is always necessary to update m_length & m_numValuesInVector. +//  - pushing to an array of length 2^32-1 stores the property, but throws a range error. +void JSArray::push(ExecState* exec, JSValue value) +{ +    checkConsistency(); +    ArrayStorage* storage = m_storage; + +    // Fast case - push within vector, always update m_length & m_numValuesInVector. +    unsigned length = storage->m_length; +    if (length < m_vectorLength) { +        storage->m_vector[length].set(exec->globalData(), this, value); +        storage->m_length = length + 1; +        ++storage->m_numValuesInVector; +        checkConsistency(); +        return; +    } + +    // Pushing to an array of length 2^32-1 stores the property, but throws a range error. +    if (UNLIKELY(storage->m_length == 0xFFFFFFFFu)) { +        methodTable()->putByIndex(this, exec, storage->m_length, value); +        // Per ES5.1 15.4.4.7 step 6 & 15.4.5.1 step 3.d. +        throwError(exec, createRangeError(exec, "Invalid array length")); +        return; +    } + +    // Handled the same as putIndex. +    putByIndexBeyondVectorLength(exec->globalData(), storage->m_length, value); +    checkConsistency(); +} + +void JSArray::shiftCount(ExecState* exec, unsigned count) +{ +    ASSERT(count > 0); +     +    ArrayStorage* storage = m_storage; +     +    unsigned oldLength = storage->m_length; +     +    if (!oldLength) +        return; +     +    if (oldLength != storage->m_numValuesInVector) { +        // If m_length and m_numValuesInVector aren't the same, we have a sparse vector +        // which means we need to go through each entry looking for the the "empty" +        // slots and then fill them with possible properties.  See ECMA spec. +        // 15.4.4.9 steps 11 through 13. +        for (unsigned i = count; i < oldLength; ++i) { +            if ((i >= m_vectorLength) || (!m_storage->m_vector[i])) { +                PropertySlot slot(this); +                JSValue p = prototype(); +                if ((!p.isNull()) && (asObject(p)->getPropertySlot(exec, i, slot))) +                    methodTable()->putByIndex(this, exec, i, slot.getValue(exec, i)); +            } +        } + +        storage = m_storage; // The put() above could have grown the vector and realloc'ed storage. + +        // Need to decrement numValuesInvector based on number of real entries +        for (unsigned i = 0; i < (unsigned)count; ++i) +            if ((i < m_vectorLength) && (storage->m_vector[i])) +                --storage->m_numValuesInVector; +    } else +        storage->m_numValuesInVector -= count; +     +    storage->m_length -= count; +     +    if (m_vectorLength) { +        count = min(m_vectorLength, (unsigned)count); +         +        m_vectorLength -= count; +         +        if (m_vectorLength) { +            char* newBaseStorage = reinterpret_cast<char*>(storage) + count * sizeof(WriteBarrier<Unknown>); +            memmove(newBaseStorage, storage, storageSize(0)); +            m_storage = reinterpret_cast_ptr<ArrayStorage*>(newBaseStorage); + +            m_indexBias += count; +        } +    } +} +     +void JSArray::unshiftCount(ExecState* exec, unsigned count) +{ +    ArrayStorage* storage = m_storage; +    unsigned length = storage->m_length; + +    if (length != storage->m_numValuesInVector) { +        // If m_length and m_numValuesInVector aren't the same, we have a sparse vector +        // which means we need to go through each entry looking for the the "empty" +        // slots and then fill them with possible properties.  See ECMA spec. +        // 15.4.4.13 steps 8 through 10. +        for (unsigned i = 0; i < length; ++i) { +            if ((i >= m_vectorLength) || (!m_storage->m_vector[i])) { +                PropertySlot slot(this); +                JSValue p = prototype(); +                if ((!p.isNull()) && (asObject(p)->getPropertySlot(exec, i, slot))) +                    methodTable()->putByIndex(this, exec, i, slot.getValue(exec, i)); +            } +        } +    } +     +    storage = m_storage; // The put() above could have grown the vector and realloc'ed storage. +     +    if (m_indexBias >= count) { +        m_indexBias -= count; +        char* newBaseStorage = reinterpret_cast<char*>(storage) - count * sizeof(WriteBarrier<Unknown>); +        memmove(newBaseStorage, storage, storageSize(0)); +        m_storage = reinterpret_cast_ptr<ArrayStorage*>(newBaseStorage); +        m_vectorLength += count; +    } else if (!unshiftCountSlowCase(count)) { +        throwOutOfMemoryError(exec); +        return; +    } + +    WriteBarrier<Unknown>* vector = m_storage->m_vector; +    for (unsigned i = 0; i < count; i++) +        vector[i].clear(); +} + +void JSArray::visitChildren(JSCell* cell, SlotVisitor& visitor) +{ +    JSArray* thisObject = jsCast<JSArray*>(cell); +    ASSERT_GC_OBJECT_INHERITS(thisObject, &s_info); +    COMPILE_ASSERT(StructureFlags & OverridesVisitChildren, OverridesVisitChildrenWithoutSettingFlag); +    ASSERT(thisObject->structure()->typeInfo().overridesVisitChildren()); + +    JSNonFinalObject::visitChildren(thisObject, visitor); +     +    ArrayStorage* storage = thisObject->m_storage; + +    unsigned usedVectorLength = std::min(storage->m_length, thisObject->m_vectorLength); +    visitor.appendValues(storage->m_vector, usedVectorLength); + +    if (SparseArrayValueMap* map = storage->m_sparseValueMap) +        map->visitChildren(visitor); +} + +static int compareNumbersForQSort(const void* a, const void* b) +{ +    double da = static_cast<const JSValue*>(a)->asNumber(); +    double db = static_cast<const JSValue*>(b)->asNumber(); +    return (da > db) - (da < db); +} + +static int compareByStringPairForQSort(const void* a, const void* b) +{ +    const ValueStringPair* va = static_cast<const ValueStringPair*>(a); +    const ValueStringPair* vb = static_cast<const ValueStringPair*>(b); +    return codePointCompare(va->second, vb->second); +} + +void JSArray::sortNumeric(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData) +{ +    ASSERT(!inSparseMode()); + +    ArrayStorage* storage = m_storage; + +    unsigned lengthNotIncludingUndefined = compactForSorting(); +    if (storage->m_sparseValueMap) { +        throwOutOfMemoryError(exec); +        return; +    } + +    if (!lengthNotIncludingUndefined) +        return; +         +    bool allValuesAreNumbers = true; +    size_t size = storage->m_numValuesInVector; +    for (size_t i = 0; i < size; ++i) { +        if (!storage->m_vector[i].isNumber()) { +            allValuesAreNumbers = false; +            break; +        } +    } + +    if (!allValuesAreNumbers) +        return sort(exec, compareFunction, callType, callData); + +    // For numeric comparison, which is fast, qsort is faster than mergesort. We +    // also don't require mergesort's stability, since there's no user visible +    // side-effect from swapping the order of equal primitive values. +    qsort(storage->m_vector, size, sizeof(WriteBarrier<Unknown>), compareNumbersForQSort); + +    checkConsistency(SortConsistencyCheck); +} + +void JSArray::sort(ExecState* exec) +{ +    ASSERT(!inSparseMode()); + +    ArrayStorage* storage = m_storage; + +    unsigned lengthNotIncludingUndefined = compactForSorting(); +    if (storage->m_sparseValueMap) { +        throwOutOfMemoryError(exec); +        return; +    } + +    if (!lengthNotIncludingUndefined) +        return; + +    // Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that. +    // This is a considerable improvement over doing it twice per comparison, though it requires a large temporary +    // buffer. Besides, this protects us from crashing if some objects have custom toString methods that return +    // random or otherwise changing results, effectively making compare function inconsistent. + +    Vector<ValueStringPair> values(lengthNotIncludingUndefined); +    if (!values.begin()) { +        throwOutOfMemoryError(exec); +        return; +    } +     +    Heap::heap(this)->pushTempSortVector(&values); + +    for (size_t i = 0; i < lengthNotIncludingUndefined; i++) { +        JSValue value = storage->m_vector[i].get(); +        ASSERT(!value.isUndefined()); +        values[i].first = value; +    } + +    // FIXME: The following loop continues to call toString on subsequent values even after +    // a toString call raises an exception. + +    for (size_t i = 0; i < lengthNotIncludingUndefined; i++) +        values[i].second = values[i].first.toString(exec); + +    if (exec->hadException()) { +        Heap::heap(this)->popTempSortVector(&values); +        return; +    } + +    // FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather +    // than O(N log N). + +#if HAVE(MERGESORT) +    mergesort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort); +#else +    // FIXME: The qsort library function is likely to not be a stable sort. +    // ECMAScript-262 does not specify a stable sort, but in practice, browsers perform a stable sort. +    qsort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort); +#endif + +    // If the toString function changed the length of the array or vector storage, +    // increase the length to handle the orignal number of actual values. +    if (m_vectorLength < lengthNotIncludingUndefined) +        increaseVectorLength(lengthNotIncludingUndefined); +    if (storage->m_length < lengthNotIncludingUndefined) +        storage->m_length = lengthNotIncludingUndefined; + +    JSGlobalData& globalData = exec->globalData(); +    for (size_t i = 0; i < lengthNotIncludingUndefined; i++) +        storage->m_vector[i].set(globalData, this, values[i].first); + +    Heap::heap(this)->popTempSortVector(&values); +     +    checkConsistency(SortConsistencyCheck); +} + +struct AVLTreeNodeForArrayCompare { +    JSValue value; + +    // Child pointers.  The high bit of gt is robbed and used as the +    // balance factor sign.  The high bit of lt is robbed and used as +    // the magnitude of the balance factor. +    int32_t gt; +    int32_t lt; +}; + +struct AVLTreeAbstractorForArrayCompare { +    typedef int32_t handle; // Handle is an index into m_nodes vector. +    typedef JSValue key; +    typedef int32_t size; + +    Vector<AVLTreeNodeForArrayCompare> m_nodes; +    ExecState* m_exec; +    JSValue m_compareFunction; +    CallType m_compareCallType; +    const CallData* m_compareCallData; +    OwnPtr<CachedCall> m_cachedCall; + +    handle get_less(handle h) { return m_nodes[h].lt & 0x7FFFFFFF; } +    void set_less(handle h, handle lh) { m_nodes[h].lt &= 0x80000000; m_nodes[h].lt |= lh; } +    handle get_greater(handle h) { return m_nodes[h].gt & 0x7FFFFFFF; } +    void set_greater(handle h, handle gh) { m_nodes[h].gt &= 0x80000000; m_nodes[h].gt |= gh; } + +    int get_balance_factor(handle h) +    { +        if (m_nodes[h].gt & 0x80000000) +            return -1; +        return static_cast<unsigned>(m_nodes[h].lt) >> 31; +    } + +    void set_balance_factor(handle h, int bf) +    { +        if (bf == 0) { +            m_nodes[h].lt &= 0x7FFFFFFF; +            m_nodes[h].gt &= 0x7FFFFFFF; +        } else { +            m_nodes[h].lt |= 0x80000000; +            if (bf < 0) +                m_nodes[h].gt |= 0x80000000; +            else +                m_nodes[h].gt &= 0x7FFFFFFF; +        } +    } + +    int compare_key_key(key va, key vb) +    { +        ASSERT(!va.isUndefined()); +        ASSERT(!vb.isUndefined()); + +        if (m_exec->hadException()) +            return 1; + +        double compareResult; +        if (m_cachedCall) { +            m_cachedCall->setThis(jsUndefined()); +            m_cachedCall->setArgument(0, va); +            m_cachedCall->setArgument(1, vb); +            compareResult = m_cachedCall->call().toNumber(m_cachedCall->newCallFrame(m_exec)); +        } else { +            MarkedArgumentBuffer arguments; +            arguments.append(va); +            arguments.append(vb); +            compareResult = call(m_exec, m_compareFunction, m_compareCallType, *m_compareCallData, jsUndefined(), arguments).toNumber(m_exec); +        } +        return (compareResult < 0) ? -1 : 1; // Not passing equality through, because we need to store all values, even if equivalent. +    } + +    int compare_key_node(key k, handle h) { return compare_key_key(k, m_nodes[h].value); } +    int compare_node_node(handle h1, handle h2) { return compare_key_key(m_nodes[h1].value, m_nodes[h2].value); } + +    static handle null() { return 0x7FFFFFFF; } +}; + +void JSArray::sort(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData) +{ +    ASSERT(!inSparseMode()); + +    checkConsistency(); + +    ArrayStorage* storage = m_storage; + +    // FIXME: This ignores exceptions raised in the compare function or in toNumber. + +    // The maximum tree depth is compiled in - but the caller is clearly up to no good +    // if a larger array is passed. +    ASSERT(storage->m_length <= static_cast<unsigned>(std::numeric_limits<int>::max())); +    if (storage->m_length > static_cast<unsigned>(std::numeric_limits<int>::max())) +        return; + +    unsigned usedVectorLength = min(storage->m_length, m_vectorLength); +    unsigned nodeCount = usedVectorLength + (storage->m_sparseValueMap ? storage->m_sparseValueMap->size() : 0); + +    if (!nodeCount) +        return; + +    AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items +    tree.abstractor().m_exec = exec; +    tree.abstractor().m_compareFunction = compareFunction; +    tree.abstractor().m_compareCallType = callType; +    tree.abstractor().m_compareCallData = &callData; +    tree.abstractor().m_nodes.grow(nodeCount); + +    if (callType == CallTypeJS) +        tree.abstractor().m_cachedCall = adoptPtr(new CachedCall(exec, asFunction(compareFunction), 2)); + +    if (!tree.abstractor().m_nodes.begin()) { +        throwOutOfMemoryError(exec); +        return; +    } + +    // FIXME: If the compare function modifies the array, the vector, map, etc. could be modified +    // right out from under us while we're building the tree here. + +    unsigned numDefined = 0; +    unsigned numUndefined = 0; + +    // Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree. +    for (; numDefined < usedVectorLength; ++numDefined) { +        JSValue v = storage->m_vector[numDefined].get(); +        if (!v || v.isUndefined()) +            break; +        tree.abstractor().m_nodes[numDefined].value = v; +        tree.insert(numDefined); +    } +    for (unsigned i = numDefined; i < usedVectorLength; ++i) { +        JSValue v = storage->m_vector[i].get(); +        if (v) { +            if (v.isUndefined()) +                ++numUndefined; +            else { +                tree.abstractor().m_nodes[numDefined].value = v; +                tree.insert(numDefined); +                ++numDefined; +            } +        } +    } + +    unsigned newUsedVectorLength = numDefined + numUndefined; + +    if (SparseArrayValueMap* map = storage->m_sparseValueMap) { +        newUsedVectorLength += map->size(); +        if (newUsedVectorLength > m_vectorLength) { +            // Check that it is possible to allocate an array large enough to hold all the entries. +            if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength)) { +                throwOutOfMemoryError(exec); +                return; +            } +        } +         +        storage = m_storage; + +        SparseArrayValueMap::const_iterator end = map->end(); +        for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it) { +            tree.abstractor().m_nodes[numDefined].value = it->second.get(); +            tree.insert(numDefined); +            ++numDefined; +        } + +        delete map; +        storage->m_sparseValueMap = 0; +    } + +    ASSERT(tree.abstractor().m_nodes.size() >= numDefined); + +    // FIXME: If the compare function changed the length of the array, the following might be +    // modifying the vector incorrectly. + +    // Copy the values back into m_storage. +    AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter; +    iter.start_iter_least(tree); +    JSGlobalData& globalData = exec->globalData(); +    for (unsigned i = 0; i < numDefined; ++i) { +        storage->m_vector[i].set(globalData, this, tree.abstractor().m_nodes[*iter].value); +        ++iter; +    } + +    // Put undefined values back in. +    for (unsigned i = numDefined; i < newUsedVectorLength; ++i) +        storage->m_vector[i].setUndefined(); + +    // Ensure that unused values in the vector are zeroed out. +    for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i) +        storage->m_vector[i].clear(); + +    storage->m_numValuesInVector = newUsedVectorLength; + +    checkConsistency(SortConsistencyCheck); +} + +void JSArray::fillArgList(ExecState* exec, MarkedArgumentBuffer& args) +{ +    ArrayStorage* storage = m_storage; + +    WriteBarrier<Unknown>* vector = storage->m_vector; +    unsigned vectorEnd = min(storage->m_length, m_vectorLength); +    unsigned i = 0; +    for (; i < vectorEnd; ++i) { +        WriteBarrier<Unknown>& v = vector[i]; +        if (!v) +            break; +        args.append(v.get()); +    } + +    for (; i < storage->m_length; ++i) +        args.append(get(exec, i)); +} + +void JSArray::copyToArguments(ExecState* exec, CallFrame* callFrame, uint32_t length) +{ +    ASSERT(length == this->length()); +    UNUSED_PARAM(length); +    unsigned i = 0; +    WriteBarrier<Unknown>* vector = m_storage->m_vector; +    unsigned vectorEnd = min(length, m_vectorLength); +    for (; i < vectorEnd; ++i) { +        WriteBarrier<Unknown>& v = vector[i]; +        if (!v) +            break; +        callFrame->setArgument(i, v.get()); +    } + +    for (; i < length; ++i) +        callFrame->setArgument(i, get(exec, i)); +} + +unsigned JSArray::compactForSorting() +{ +    ASSERT(!inSparseMode()); + +    checkConsistency(); + +    ArrayStorage* storage = m_storage; + +    unsigned usedVectorLength = min(storage->m_length, m_vectorLength); + +    unsigned numDefined = 0; +    unsigned numUndefined = 0; + +    for (; numDefined < usedVectorLength; ++numDefined) { +        JSValue v = storage->m_vector[numDefined].get(); +        if (!v || v.isUndefined()) +            break; +    } + +    for (unsigned i = numDefined; i < usedVectorLength; ++i) { +        JSValue v = storage->m_vector[i].get(); +        if (v) { +            if (v.isUndefined()) +                ++numUndefined; +            else +                storage->m_vector[numDefined++].setWithoutWriteBarrier(v); +        } +    } + +    unsigned newUsedVectorLength = numDefined + numUndefined; + +    if (SparseArrayValueMap* map = storage->m_sparseValueMap) { +        newUsedVectorLength += map->size(); +        if (newUsedVectorLength > m_vectorLength) { +            // Check that it is possible to allocate an array large enough to hold all the entries - if not, +            // exception is thrown by caller. +            if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength)) +                return 0; + +            storage = m_storage; +        } + +        SparseArrayValueMap::const_iterator end = map->end(); +        for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it) +            storage->m_vector[numDefined++].setWithoutWriteBarrier(it->second.get()); + +        delete map; +        storage->m_sparseValueMap = 0; +    } + +    for (unsigned i = numDefined; i < newUsedVectorLength; ++i) +        storage->m_vector[i].setUndefined(); +    for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i) +        storage->m_vector[i].clear(); + +    storage->m_numValuesInVector = newUsedVectorLength; + +    checkConsistency(SortConsistencyCheck); + +    return numDefined; +} + +void* JSArray::subclassData() const +{ +    return m_storage->subclassData; +} + +void JSArray::setSubclassData(void* d) +{ +    m_storage->subclassData = d; +} + +#if CHECK_ARRAY_CONSISTENCY + +void JSArray::checkConsistency(ConsistencyCheckType type) +{ +    ArrayStorage* storage = m_storage; + +    ASSERT(!storage->m_inCompactInitialization); + +    ASSERT(storage); +    if (type == SortConsistencyCheck) +        ASSERT(!storage->m_sparseValueMap); + +    unsigned numValuesInVector = 0; +    for (unsigned i = 0; i < m_vectorLength; ++i) { +        if (JSValue value = storage->m_vector[i]) { +            ASSERT(i < storage->m_length); +            if (type != DestructorConsistencyCheck) +                value.isUndefined(); // Likely to crash if the object was deallocated. +            ++numValuesInVector; +        } else { +            if (type == SortConsistencyCheck) +                ASSERT(i >= storage->m_numValuesInVector); +        } +    } +    ASSERT(numValuesInVector == storage->m_numValuesInVector); +    ASSERT(numValuesInVector <= storage->m_length); + +    if (storage->m_sparseValueMap) { +        SparseArrayValueMap::iterator end = storage->m_sparseValueMap->end(); +        for (SparseArrayValueMap::iterator it = storage->m_sparseValueMap->begin(); it != end; ++it) { +            unsigned index = it->first; +            ASSERT(index < storage->m_length); +            ASSERT(index >= storage->m_vectorLength); +            ASSERT(index <= MAX_ARRAY_INDEX); +            ASSERT(it->second); +            if (type != DestructorConsistencyCheck) +                it->second.isUndefined(); // Likely to crash if the object was deallocated. +        } +    } +} + +#endif + +} // namespace JSC  | 
