diff options
author | Simon Hausmann <simon.hausmann@nokia.com> | 2012-01-06 14:44:00 +0100 |
---|---|---|
committer | Simon Hausmann <simon.hausmann@nokia.com> | 2012-01-06 14:44:00 +0100 |
commit | 40736c5763bf61337c8c14e16d8587db021a87d4 (patch) | |
tree | b17a9c00042ad89cb1308e2484491799aa14e9f8 /Source/JavaScriptCore/runtime/JSGlobalObjectFunctions.cpp | |
download | qtwebkit-40736c5763bf61337c8c14e16d8587db021a87d4.tar.gz |
Imported WebKit commit 2ea9d364d0f6efa8fa64acf19f451504c59be0e4 (http://svn.webkit.org/repository/webkit/trunk@104285)
Diffstat (limited to 'Source/JavaScriptCore/runtime/JSGlobalObjectFunctions.cpp')
-rw-r--r-- | Source/JavaScriptCore/runtime/JSGlobalObjectFunctions.cpp | 718 |
1 files changed, 718 insertions, 0 deletions
diff --git a/Source/JavaScriptCore/runtime/JSGlobalObjectFunctions.cpp b/Source/JavaScriptCore/runtime/JSGlobalObjectFunctions.cpp new file mode 100644 index 000000000..bf6b31ef1 --- /dev/null +++ b/Source/JavaScriptCore/runtime/JSGlobalObjectFunctions.cpp @@ -0,0 +1,718 @@ +/* + * Copyright (C) 1999-2002 Harri Porten (porten@kde.org) + * Copyright (C) 2001 Peter Kelly (pmk@post.com) + * Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved. + * Copyright (C) 2007 Cameron Zwarich (cwzwarich@uwaterloo.ca) + * Copyright (C) 2007 Maks Orlovich + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Library General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Library General Public License for more details. + * + * You should have received a copy of the GNU Library General Public License + * along with this library; see the file COPYING.LIB. If not, write to + * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, + * Boston, MA 02110-1301, USA. + * + */ + +#include "config.h" +#include "JSGlobalObjectFunctions.h" + +#include "CallFrame.h" +#include "Interpreter.h" +#include "JSGlobalObject.h" +#include "JSString.h" +#include "JSStringBuilder.h" +#include "Lexer.h" +#include "LiteralParser.h" +#include "Nodes.h" +#include "Parser.h" +#include "UStringBuilder.h" +#include "dtoa.h" +#include <stdio.h> +#include <stdlib.h> +#include <wtf/ASCIICType.h> +#include <wtf/Assertions.h> +#include <wtf/MathExtras.h> +#include <wtf/StringExtras.h> +#include <wtf/unicode/UTF8.h> + +using namespace WTF; +using namespace Unicode; + +namespace JSC { + +static JSValue encode(ExecState* exec, const char* doNotEscape) +{ + UString str = exec->argument(0).toString(exec); + CString cstr = str.utf8(true); + if (!cstr.data()) + return throwError(exec, createURIError(exec, "String contained an illegal UTF-16 sequence.")); + + JSStringBuilder builder; + const char* p = cstr.data(); + for (size_t k = 0; k < cstr.length(); k++, p++) { + char c = *p; + if (c && strchr(doNotEscape, c)) + builder.append(c); + else { + char tmp[4]; + snprintf(tmp, sizeof(tmp), "%%%02X", static_cast<unsigned char>(c)); + builder.append(tmp); + } + } + return builder.build(exec); +} + +template <typename CharType> +ALWAYS_INLINE +static JSValue decode(ExecState* exec, const CharType* characters, int length, const char* doNotUnescape, bool strict) +{ + JSStringBuilder builder; + int k = 0; + UChar u = 0; + while (k < length) { + const CharType* p = characters + k; + CharType c = *p; + if (c == '%') { + int charLen = 0; + if (k <= length - 3 && isASCIIHexDigit(p[1]) && isASCIIHexDigit(p[2])) { + const char b0 = Lexer<CharType>::convertHex(p[1], p[2]); + const int sequenceLen = UTF8SequenceLength(b0); + if (sequenceLen && k <= length - sequenceLen * 3) { + charLen = sequenceLen * 3; + char sequence[5]; + sequence[0] = b0; + for (int i = 1; i < sequenceLen; ++i) { + const CharType* q = p + i * 3; + if (q[0] == '%' && isASCIIHexDigit(q[1]) && isASCIIHexDigit(q[2])) + sequence[i] = Lexer<CharType>::convertHex(q[1], q[2]); + else { + charLen = 0; + break; + } + } + if (charLen != 0) { + sequence[sequenceLen] = 0; + const int character = decodeUTF8Sequence(sequence); + if (character < 0 || character >= 0x110000) + charLen = 0; + else if (character >= 0x10000) { + // Convert to surrogate pair. + builder.append(static_cast<UChar>(0xD800 | ((character - 0x10000) >> 10))); + u = static_cast<UChar>(0xDC00 | ((character - 0x10000) & 0x3FF)); + } else + u = static_cast<UChar>(character); + } + } + } + if (charLen == 0) { + if (strict) + return throwError(exec, createURIError(exec, "URI error")); + // The only case where we don't use "strict" mode is the "unescape" function. + // For that, it's good to support the wonky "%u" syntax for compatibility with WinIE. + if (k <= length - 6 && p[1] == 'u' + && isASCIIHexDigit(p[2]) && isASCIIHexDigit(p[3]) + && isASCIIHexDigit(p[4]) && isASCIIHexDigit(p[5])) { + charLen = 6; + u = Lexer<UChar>::convertUnicode(p[2], p[3], p[4], p[5]); + } + } + if (charLen && (u == 0 || u >= 128 || !strchr(doNotUnescape, u))) { + if (u < 256) + builder.append(static_cast<LChar>(u)); + else + builder.append(u); + k += charLen; + continue; + } + } + k++; + builder.append(c); + } + return builder.build(exec); +} + +static JSValue decode(ExecState* exec, const char* doNotUnescape, bool strict) +{ + JSStringBuilder builder; + UString str = exec->argument(0).toString(exec); + + if (str.is8Bit()) + return decode(exec, str.characters8(), str.length(), doNotUnescape, strict); + return decode(exec, str.characters16(), str.length(), doNotUnescape, strict); +} + +bool isStrWhiteSpace(UChar c) +{ + switch (c) { + // ECMA-262-5th 7.2 & 7.3 + case 0x0009: + case 0x000A: + case 0x000B: + case 0x000C: + case 0x000D: + case 0x0020: + case 0x00A0: + case 0x2028: + case 0x2029: + case 0xFEFF: + return true; + default: + return c > 0xff && isSeparatorSpace(c); + } +} + +static int parseDigit(unsigned short c, int radix) +{ + int digit = -1; + + if (c >= '0' && c <= '9') + digit = c - '0'; + else if (c >= 'A' && c <= 'Z') + digit = c - 'A' + 10; + else if (c >= 'a' && c <= 'z') + digit = c - 'a' + 10; + + if (digit >= radix) + return -1; + return digit; +} + +double parseIntOverflow(const LChar* s, int length, int radix) +{ + double number = 0.0; + double radixMultiplier = 1.0; + + for (const LChar* p = s + length - 1; p >= s; p--) { + if (radixMultiplier == std::numeric_limits<double>::infinity()) { + if (*p != '0') { + number = std::numeric_limits<double>::infinity(); + break; + } + } else { + int digit = parseDigit(*p, radix); + number += digit * radixMultiplier; + } + + radixMultiplier *= radix; + } + + return number; +} + +double parseIntOverflow(const UChar* s, int length, int radix) +{ + double number = 0.0; + double radixMultiplier = 1.0; + + for (const UChar* p = s + length - 1; p >= s; p--) { + if (radixMultiplier == std::numeric_limits<double>::infinity()) { + if (*p != '0') { + number = std::numeric_limits<double>::infinity(); + break; + } + } else { + int digit = parseDigit(*p, radix); + number += digit * radixMultiplier; + } + + radixMultiplier *= radix; + } + + return number; +} + +// ES5.1 15.1.2.2 +template <typename CharType> +ALWAYS_INLINE +static double parseInt(const UString& s, const CharType* data, int radix) +{ + // 1. Let inputString be ToString(string). + // 2. Let S be a newly created substring of inputString consisting of the first character that is not a + // StrWhiteSpaceChar and all characters following that character. (In other words, remove leading white + // space.) If inputString does not contain any such characters, let S be the empty string. + int length = s.length(); + int p = 0; + while (p < length && isStrWhiteSpace(data[p])) + ++p; + + // 3. Let sign be 1. + // 4. If S is not empty and the first character of S is a minus sign -, let sign be -1. + // 5. If S is not empty and the first character of S is a plus sign + or a minus sign -, then remove the first character from S. + double sign = 1; + if (p < length) { + if (data[p] == '+') + ++p; + else if (data[p] == '-') { + sign = -1; + ++p; + } + } + + // 6. Let R = ToInt32(radix). + // 7. Let stripPrefix be true. + // 8. If R != 0,then + // b. If R != 16, let stripPrefix be false. + // 9. Else, R == 0 + // a. LetR = 10. + // 10. If stripPrefix is true, then + // a. If the length of S is at least 2 and the first two characters of S are either ―0x or ―0X, + // then remove the first two characters from S and let R = 16. + // 11. If S contains any character that is not a radix-R digit, then let Z be the substring of S + // consisting of all characters before the first such character; otherwise, let Z be S. + if ((radix == 0 || radix == 16) && length - p >= 2 && data[p] == '0' && (data[p + 1] == 'x' || data[p + 1] == 'X')) { + radix = 16; + p += 2; + } else if (radix == 0) + radix = 10; + + // 8.a If R < 2 or R > 36, then return NaN. + if (radix < 2 || radix > 36) + return std::numeric_limits<double>::quiet_NaN(); + + // 13. Let mathInt be the mathematical integer value that is represented by Z in radix-R notation, using the letters + // A-Z and a-z for digits with values 10 through 35. (However, if R is 10 and Z contains more than 20 significant + // digits, every significant digit after the 20th may be replaced by a 0 digit, at the option of the implementation; + // and if R is not 2, 4, 8, 10, 16, or 32, then mathInt may be an implementation-dependent approximation to the + // mathematical integer value that is represented by Z in radix-R notation.) + // 14. Let number be the Number value for mathInt. + int firstDigitPosition = p; + bool sawDigit = false; + double number = 0; + while (p < length) { + int digit = parseDigit(data[p], radix); + if (digit == -1) + break; + sawDigit = true; + number *= radix; + number += digit; + ++p; + } + if (number >= mantissaOverflowLowerBound) { + if (radix == 10) + number = WTF::strtod(s.substringSharingImpl(firstDigitPosition, p - firstDigitPosition).utf8().data(), 0); + else if (radix == 2 || radix == 4 || radix == 8 || radix == 16 || radix == 32) + number = parseIntOverflow(s.substringSharingImpl(firstDigitPosition, p - firstDigitPosition).utf8().data(), p - firstDigitPosition, radix); + } + + // 12. If Z is empty, return NaN. + if (!sawDigit) + return std::numeric_limits<double>::quiet_NaN(); + + // 15. Return sign x number. + return sign * number; +} + +static double parseInt(const UString& s, int radix) +{ + if (s.is8Bit()) + return parseInt(s, s.characters8(), radix); + return parseInt(s, s.characters16(), radix); +} + +static const int SizeOfInfinity = 8; + +template <typename CharType> +static bool isInfinity(const CharType* data, const CharType* end) +{ + return (end - data) >= SizeOfInfinity + && data[0] == 'I' + && data[1] == 'n' + && data[2] == 'f' + && data[3] == 'i' + && data[4] == 'n' + && data[5] == 'i' + && data[6] == 't' + && data[7] == 'y'; +} + +// See ecma-262 9.3.1 +template <typename CharType> +static double jsHexIntegerLiteral(const CharType*& data, const CharType* end) +{ + // Hex number. + data += 2; + const CharType* firstDigitPosition = data; + double number = 0; + while (true) { + number = number * 16 + toASCIIHexValue(*data); + ++data; + if (data == end) + break; + if (!isASCIIHexDigit(*data)) + break; + } + if (number >= mantissaOverflowLowerBound) + number = parseIntOverflow(firstDigitPosition, data - firstDigitPosition, 16); + + return number; +} + +// See ecma-262 9.3.1 +template <typename CharType> +static double jsStrDecimalLiteral(const CharType*& data, const CharType* end) +{ + ASSERT(data < end); + + // Copy the sting into a null-terminated byte buffer, and call strtod. + Vector<char, 32> byteBuffer; + for (const CharType* characters = data; characters < end; ++characters) { + CharType character = *characters; + byteBuffer.append(isASCII(character) ? static_cast<char>(character) : 0); + } + byteBuffer.append(0); + char* endOfNumber; + double number = WTF::strtod(byteBuffer.data(), &endOfNumber); + + // Check if strtod found a number; if so return it. + ptrdiff_t consumed = endOfNumber - byteBuffer.data(); + if (consumed) { + data += consumed; + return number; + } + + // Check for [+-]?Infinity + switch (*data) { + case 'I': + if (isInfinity(data, end)) { + data += SizeOfInfinity; + return std::numeric_limits<double>::infinity(); + } + break; + + case '+': + if (isInfinity(data + 1, end)) { + data += SizeOfInfinity + 1; + return std::numeric_limits<double>::infinity(); + } + break; + + case '-': + if (isInfinity(data + 1, end)) { + data += SizeOfInfinity + 1; + return -std::numeric_limits<double>::infinity(); + } + break; + } + + // Not a number. + return std::numeric_limits<double>::quiet_NaN(); +} + +template <typename CharType> +static double toDouble(const CharType* characters, unsigned size) +{ + const CharType* endCharacters = characters + size; + + // Skip leading white space. + for (; characters < endCharacters; ++characters) { + if (!isStrWhiteSpace(*characters)) + break; + } + + // Empty string. + if (characters == endCharacters) + return 0.0; + + double number; + if (characters[0] == '0' && characters + 2 < endCharacters && (characters[1] | 0x20) == 'x' && isASCIIHexDigit(characters[2])) + number = jsHexIntegerLiteral(characters, endCharacters); + else + number = jsStrDecimalLiteral(characters, endCharacters); + + // Allow trailing white space. + for (; characters < endCharacters; ++characters) { + if (!isStrWhiteSpace(*characters)) + break; + } + if (characters != endCharacters) + return std::numeric_limits<double>::quiet_NaN(); + + return number; +} + +// See ecma-262 9.3.1 +double jsToNumber(const UString& s) +{ + unsigned size = s.length(); + + if (size == 1) { + UChar c = s[0]; + if (isASCIIDigit(c)) + return c - '0'; + if (isStrWhiteSpace(c)) + return 0; + return std::numeric_limits<double>::quiet_NaN(); + } + + if (s.is8Bit()) + return toDouble(s.characters8(), size); + return toDouble(s.characters16(), size); +} + +static double parseFloat(const UString& s) +{ + unsigned size = s.length(); + + if (size == 1) { + UChar c = s[0]; + if (isASCIIDigit(c)) + return c - '0'; + return std::numeric_limits<double>::quiet_NaN(); + } + + if (s.is8Bit()) { + const LChar* data = s.characters8(); + const LChar* end = data + size; + + // Skip leading white space. + for (; data < end; ++data) { + if (!isStrWhiteSpace(*data)) + break; + } + + // Empty string. + if (data == end) + return std::numeric_limits<double>::quiet_NaN(); + + return jsStrDecimalLiteral(data, end); + } + + const UChar* data = s.characters16(); + const UChar* end = data + size; + + // Skip leading white space. + for (; data < end; ++data) { + if (!isStrWhiteSpace(*data)) + break; + } + + // Empty string. + if (data == end) + return std::numeric_limits<double>::quiet_NaN(); + + return jsStrDecimalLiteral(data, end); +} + +EncodedJSValue JSC_HOST_CALL globalFuncEval(ExecState* exec) +{ + JSObject* thisObject = exec->hostThisValue().toThisObject(exec); + JSObject* unwrappedObject = thisObject->unwrappedObject(); + if (!unwrappedObject->isGlobalObject() || static_cast<JSGlobalObject*>(unwrappedObject)->evalFunction() != exec->callee()) + return throwVMError(exec, createEvalError(exec, "The \"this\" value passed to eval must be the global object from which eval originated")); + + JSValue x = exec->argument(0); + if (!x.isString()) + return JSValue::encode(x); + + UString s = x.toString(exec); + + if (s.is8Bit()) { + LiteralParser<LChar> preparser(exec, s.characters8(), s.length(), NonStrictJSON); + if (JSValue parsedObject = preparser.tryLiteralParse()) + return JSValue::encode(parsedObject); + } else { + LiteralParser<UChar> preparser(exec, s.characters16(), s.length(), NonStrictJSON); + if (JSValue parsedObject = preparser.tryLiteralParse()) + return JSValue::encode(parsedObject); + } + + EvalExecutable* eval = EvalExecutable::create(exec, makeSource(s), false); + JSObject* error = eval->compile(exec, static_cast<JSGlobalObject*>(unwrappedObject)->globalScopeChain()); + if (error) + return throwVMError(exec, error); + + return JSValue::encode(exec->interpreter()->execute(eval, exec, thisObject, static_cast<JSGlobalObject*>(unwrappedObject)->globalScopeChain())); +} + +EncodedJSValue JSC_HOST_CALL globalFuncParseInt(ExecState* exec) +{ + JSValue value = exec->argument(0); + JSValue radixValue = exec->argument(1); + + // Optimized handling for numbers: + // If the argument is 0 or a number in range 10^-6 <= n < INT_MAX+1, then parseInt + // results in a truncation to integer. In the case of -0, this is converted to 0. + // + // This is also a truncation for values in the range INT_MAX+1 <= n < 10^21, + // however these values cannot be trivially truncated to int since 10^21 exceeds + // even the int64_t range. Negative numbers are a little trickier, the case for + // values in the range -10^21 < n <= -1 are similar to those for integer, but + // values in the range -1 < n <= -10^-6 need to truncate to -0, not 0. + static const double tenToTheMinus6 = 0.000001; + static const double intMaxPlusOne = 2147483648.0; + if (value.isNumber()) { + double n = value.asNumber(); + if (((n < intMaxPlusOne && n >= tenToTheMinus6) || !n) && radixValue.isUndefinedOrNull()) + return JSValue::encode(jsNumber(static_cast<int32_t>(n))); + } + + // If ToString throws, we shouldn't call ToInt32. + UString s = value.toString(exec); + if (exec->hadException()) + return JSValue::encode(jsUndefined()); + + return JSValue::encode(jsNumber(parseInt(s, radixValue.toInt32(exec)))); +} + +EncodedJSValue JSC_HOST_CALL globalFuncParseFloat(ExecState* exec) +{ + return JSValue::encode(jsNumber(parseFloat(exec->argument(0).toString(exec)))); +} + +EncodedJSValue JSC_HOST_CALL globalFuncIsNaN(ExecState* exec) +{ + return JSValue::encode(jsBoolean(isnan(exec->argument(0).toNumber(exec)))); +} + +EncodedJSValue JSC_HOST_CALL globalFuncIsFinite(ExecState* exec) +{ + double n = exec->argument(0).toNumber(exec); + return JSValue::encode(jsBoolean(isfinite(n))); +} + +EncodedJSValue JSC_HOST_CALL globalFuncDecodeURI(ExecState* exec) +{ + static const char do_not_unescape_when_decoding_URI[] = + "#$&+,/:;=?@"; + + return JSValue::encode(decode(exec, do_not_unescape_when_decoding_URI, true)); +} + +EncodedJSValue JSC_HOST_CALL globalFuncDecodeURIComponent(ExecState* exec) +{ + return JSValue::encode(decode(exec, "", true)); +} + +EncodedJSValue JSC_HOST_CALL globalFuncEncodeURI(ExecState* exec) +{ + static const char do_not_escape_when_encoding_URI[] = + "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + "abcdefghijklmnopqrstuvwxyz" + "0123456789" + "!#$&'()*+,-./:;=?@_~"; + + return JSValue::encode(encode(exec, do_not_escape_when_encoding_URI)); +} + +EncodedJSValue JSC_HOST_CALL globalFuncEncodeURIComponent(ExecState* exec) +{ + static const char do_not_escape_when_encoding_URI_component[] = + "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + "abcdefghijklmnopqrstuvwxyz" + "0123456789" + "!'()*-._~"; + + return JSValue::encode(encode(exec, do_not_escape_when_encoding_URI_component)); +} + +EncodedJSValue JSC_HOST_CALL globalFuncEscape(ExecState* exec) +{ + static const char do_not_escape[] = + "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + "abcdefghijklmnopqrstuvwxyz" + "0123456789" + "*+-./@_"; + + JSStringBuilder builder; + UString str = exec->argument(0).toString(exec); + if (str.is8Bit()) { + const LChar* c = str.characters8(); + for (unsigned k = 0; k < str.length(); k++, c++) { + int u = c[0]; + if (u && strchr(do_not_escape, static_cast<char>(u))) + builder.append(c, 1); + else { + char tmp[4]; + snprintf(tmp, sizeof(tmp), "%%%02X", u); + builder.append(tmp); + } + } + + return JSValue::encode(builder.build(exec)); + } + + const UChar* c = str.characters16(); + for (unsigned k = 0; k < str.length(); k++, c++) { + int u = c[0]; + if (u > 255) { + char tmp[7]; + snprintf(tmp, sizeof(tmp), "%%u%04X", u); + builder.append(tmp); + } else if (u != 0 && strchr(do_not_escape, static_cast<char>(u))) + builder.append(c, 1); + else { + char tmp[4]; + snprintf(tmp, sizeof(tmp), "%%%02X", u); + builder.append(tmp); + } + } + + return JSValue::encode(builder.build(exec)); +} + +EncodedJSValue JSC_HOST_CALL globalFuncUnescape(ExecState* exec) +{ + UStringBuilder builder; + UString str = exec->argument(0).toString(exec); + int k = 0; + int len = str.length(); + + if (str.is8Bit()) { + const LChar* characters = str.characters8(); + LChar convertedLChar; + while (k < len) { + const LChar* c = characters + k; + if (c[0] == '%' && k <= len - 6 && c[1] == 'u') { + if (isASCIIHexDigit(c[2]) && isASCIIHexDigit(c[3]) && isASCIIHexDigit(c[4]) && isASCIIHexDigit(c[5])) { + builder.append(Lexer<UChar>::convertUnicode(c[2], c[3], c[4], c[5])); + k += 6; + continue; + } + } else if (c[0] == '%' && k <= len - 3 && isASCIIHexDigit(c[1]) && isASCIIHexDigit(c[2])) { + convertedLChar = LChar(Lexer<LChar>::convertHex(c[1], c[2])); + c = &convertedLChar; + k += 2; + } + builder.append(*c); + k++; + } + } else { + const UChar* characters = str.characters16(); + + while (k < len) { + const UChar* c = characters + k; + UChar convertedUChar; + if (c[0] == '%' && k <= len - 6 && c[1] == 'u') { + if (isASCIIHexDigit(c[2]) && isASCIIHexDigit(c[3]) && isASCIIHexDigit(c[4]) && isASCIIHexDigit(c[5])) { + convertedUChar = Lexer<UChar>::convertUnicode(c[2], c[3], c[4], c[5]); + c = &convertedUChar; + k += 5; + } + } else if (c[0] == '%' && k <= len - 3 && isASCIIHexDigit(c[1]) && isASCIIHexDigit(c[2])) { + convertedUChar = UChar(Lexer<UChar>::convertHex(c[1], c[2])); + c = &convertedUChar; + k += 2; + } + k++; + builder.append(*c); + } + } + + return JSValue::encode(jsString(exec, builder.toUString())); +} + +EncodedJSValue JSC_HOST_CALL globalFuncThrowTypeError(ExecState* exec) +{ + return throwVMTypeError(exec); +} + +} // namespace JSC |