summaryrefslogtreecommitdiff
path: root/Source/JavaScriptCore/runtime/JSGlobalObjectFunctions.cpp
diff options
context:
space:
mode:
authorSimon Hausmann <simon.hausmann@nokia.com>2012-01-06 14:44:00 +0100
committerSimon Hausmann <simon.hausmann@nokia.com>2012-01-06 14:44:00 +0100
commit40736c5763bf61337c8c14e16d8587db021a87d4 (patch)
treeb17a9c00042ad89cb1308e2484491799aa14e9f8 /Source/JavaScriptCore/runtime/JSGlobalObjectFunctions.cpp
downloadqtwebkit-40736c5763bf61337c8c14e16d8587db021a87d4.tar.gz
Imported WebKit commit 2ea9d364d0f6efa8fa64acf19f451504c59be0e4 (http://svn.webkit.org/repository/webkit/trunk@104285)
Diffstat (limited to 'Source/JavaScriptCore/runtime/JSGlobalObjectFunctions.cpp')
-rw-r--r--Source/JavaScriptCore/runtime/JSGlobalObjectFunctions.cpp718
1 files changed, 718 insertions, 0 deletions
diff --git a/Source/JavaScriptCore/runtime/JSGlobalObjectFunctions.cpp b/Source/JavaScriptCore/runtime/JSGlobalObjectFunctions.cpp
new file mode 100644
index 000000000..bf6b31ef1
--- /dev/null
+++ b/Source/JavaScriptCore/runtime/JSGlobalObjectFunctions.cpp
@@ -0,0 +1,718 @@
+/*
+ * Copyright (C) 1999-2002 Harri Porten (porten@kde.org)
+ * Copyright (C) 2001 Peter Kelly (pmk@post.com)
+ * Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved.
+ * Copyright (C) 2007 Cameron Zwarich (cwzwarich@uwaterloo.ca)
+ * Copyright (C) 2007 Maks Orlovich
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Library General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Library General Public License for more details.
+ *
+ * You should have received a copy of the GNU Library General Public License
+ * along with this library; see the file COPYING.LIB. If not, write to
+ * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+ *
+ */
+
+#include "config.h"
+#include "JSGlobalObjectFunctions.h"
+
+#include "CallFrame.h"
+#include "Interpreter.h"
+#include "JSGlobalObject.h"
+#include "JSString.h"
+#include "JSStringBuilder.h"
+#include "Lexer.h"
+#include "LiteralParser.h"
+#include "Nodes.h"
+#include "Parser.h"
+#include "UStringBuilder.h"
+#include "dtoa.h"
+#include <stdio.h>
+#include <stdlib.h>
+#include <wtf/ASCIICType.h>
+#include <wtf/Assertions.h>
+#include <wtf/MathExtras.h>
+#include <wtf/StringExtras.h>
+#include <wtf/unicode/UTF8.h>
+
+using namespace WTF;
+using namespace Unicode;
+
+namespace JSC {
+
+static JSValue encode(ExecState* exec, const char* doNotEscape)
+{
+ UString str = exec->argument(0).toString(exec);
+ CString cstr = str.utf8(true);
+ if (!cstr.data())
+ return throwError(exec, createURIError(exec, "String contained an illegal UTF-16 sequence."));
+
+ JSStringBuilder builder;
+ const char* p = cstr.data();
+ for (size_t k = 0; k < cstr.length(); k++, p++) {
+ char c = *p;
+ if (c && strchr(doNotEscape, c))
+ builder.append(c);
+ else {
+ char tmp[4];
+ snprintf(tmp, sizeof(tmp), "%%%02X", static_cast<unsigned char>(c));
+ builder.append(tmp);
+ }
+ }
+ return builder.build(exec);
+}
+
+template <typename CharType>
+ALWAYS_INLINE
+static JSValue decode(ExecState* exec, const CharType* characters, int length, const char* doNotUnescape, bool strict)
+{
+ JSStringBuilder builder;
+ int k = 0;
+ UChar u = 0;
+ while (k < length) {
+ const CharType* p = characters + k;
+ CharType c = *p;
+ if (c == '%') {
+ int charLen = 0;
+ if (k <= length - 3 && isASCIIHexDigit(p[1]) && isASCIIHexDigit(p[2])) {
+ const char b0 = Lexer<CharType>::convertHex(p[1], p[2]);
+ const int sequenceLen = UTF8SequenceLength(b0);
+ if (sequenceLen && k <= length - sequenceLen * 3) {
+ charLen = sequenceLen * 3;
+ char sequence[5];
+ sequence[0] = b0;
+ for (int i = 1; i < sequenceLen; ++i) {
+ const CharType* q = p + i * 3;
+ if (q[0] == '%' && isASCIIHexDigit(q[1]) && isASCIIHexDigit(q[2]))
+ sequence[i] = Lexer<CharType>::convertHex(q[1], q[2]);
+ else {
+ charLen = 0;
+ break;
+ }
+ }
+ if (charLen != 0) {
+ sequence[sequenceLen] = 0;
+ const int character = decodeUTF8Sequence(sequence);
+ if (character < 0 || character >= 0x110000)
+ charLen = 0;
+ else if (character >= 0x10000) {
+ // Convert to surrogate pair.
+ builder.append(static_cast<UChar>(0xD800 | ((character - 0x10000) >> 10)));
+ u = static_cast<UChar>(0xDC00 | ((character - 0x10000) & 0x3FF));
+ } else
+ u = static_cast<UChar>(character);
+ }
+ }
+ }
+ if (charLen == 0) {
+ if (strict)
+ return throwError(exec, createURIError(exec, "URI error"));
+ // The only case where we don't use "strict" mode is the "unescape" function.
+ // For that, it's good to support the wonky "%u" syntax for compatibility with WinIE.
+ if (k <= length - 6 && p[1] == 'u'
+ && isASCIIHexDigit(p[2]) && isASCIIHexDigit(p[3])
+ && isASCIIHexDigit(p[4]) && isASCIIHexDigit(p[5])) {
+ charLen = 6;
+ u = Lexer<UChar>::convertUnicode(p[2], p[3], p[4], p[5]);
+ }
+ }
+ if (charLen && (u == 0 || u >= 128 || !strchr(doNotUnescape, u))) {
+ if (u < 256)
+ builder.append(static_cast<LChar>(u));
+ else
+ builder.append(u);
+ k += charLen;
+ continue;
+ }
+ }
+ k++;
+ builder.append(c);
+ }
+ return builder.build(exec);
+}
+
+static JSValue decode(ExecState* exec, const char* doNotUnescape, bool strict)
+{
+ JSStringBuilder builder;
+ UString str = exec->argument(0).toString(exec);
+
+ if (str.is8Bit())
+ return decode(exec, str.characters8(), str.length(), doNotUnescape, strict);
+ return decode(exec, str.characters16(), str.length(), doNotUnescape, strict);
+}
+
+bool isStrWhiteSpace(UChar c)
+{
+ switch (c) {
+ // ECMA-262-5th 7.2 & 7.3
+ case 0x0009:
+ case 0x000A:
+ case 0x000B:
+ case 0x000C:
+ case 0x000D:
+ case 0x0020:
+ case 0x00A0:
+ case 0x2028:
+ case 0x2029:
+ case 0xFEFF:
+ return true;
+ default:
+ return c > 0xff && isSeparatorSpace(c);
+ }
+}
+
+static int parseDigit(unsigned short c, int radix)
+{
+ int digit = -1;
+
+ if (c >= '0' && c <= '9')
+ digit = c - '0';
+ else if (c >= 'A' && c <= 'Z')
+ digit = c - 'A' + 10;
+ else if (c >= 'a' && c <= 'z')
+ digit = c - 'a' + 10;
+
+ if (digit >= radix)
+ return -1;
+ return digit;
+}
+
+double parseIntOverflow(const LChar* s, int length, int radix)
+{
+ double number = 0.0;
+ double radixMultiplier = 1.0;
+
+ for (const LChar* p = s + length - 1; p >= s; p--) {
+ if (radixMultiplier == std::numeric_limits<double>::infinity()) {
+ if (*p != '0') {
+ number = std::numeric_limits<double>::infinity();
+ break;
+ }
+ } else {
+ int digit = parseDigit(*p, radix);
+ number += digit * radixMultiplier;
+ }
+
+ radixMultiplier *= radix;
+ }
+
+ return number;
+}
+
+double parseIntOverflow(const UChar* s, int length, int radix)
+{
+ double number = 0.0;
+ double radixMultiplier = 1.0;
+
+ for (const UChar* p = s + length - 1; p >= s; p--) {
+ if (radixMultiplier == std::numeric_limits<double>::infinity()) {
+ if (*p != '0') {
+ number = std::numeric_limits<double>::infinity();
+ break;
+ }
+ } else {
+ int digit = parseDigit(*p, radix);
+ number += digit * radixMultiplier;
+ }
+
+ radixMultiplier *= radix;
+ }
+
+ return number;
+}
+
+// ES5.1 15.1.2.2
+template <typename CharType>
+ALWAYS_INLINE
+static double parseInt(const UString& s, const CharType* data, int radix)
+{
+ // 1. Let inputString be ToString(string).
+ // 2. Let S be a newly created substring of inputString consisting of the first character that is not a
+ // StrWhiteSpaceChar and all characters following that character. (In other words, remove leading white
+ // space.) If inputString does not contain any such characters, let S be the empty string.
+ int length = s.length();
+ int p = 0;
+ while (p < length && isStrWhiteSpace(data[p]))
+ ++p;
+
+ // 3. Let sign be 1.
+ // 4. If S is not empty and the first character of S is a minus sign -, let sign be -1.
+ // 5. If S is not empty and the first character of S is a plus sign + or a minus sign -, then remove the first character from S.
+ double sign = 1;
+ if (p < length) {
+ if (data[p] == '+')
+ ++p;
+ else if (data[p] == '-') {
+ sign = -1;
+ ++p;
+ }
+ }
+
+ // 6. Let R = ToInt32(radix).
+ // 7. Let stripPrefix be true.
+ // 8. If R != 0,then
+ // b. If R != 16, let stripPrefix be false.
+ // 9. Else, R == 0
+ // a. LetR = 10.
+ // 10. If stripPrefix is true, then
+ // a. If the length of S is at least 2 and the first two characters of S are either ―0x or ―0X,
+ // then remove the first two characters from S and let R = 16.
+ // 11. If S contains any character that is not a radix-R digit, then let Z be the substring of S
+ // consisting of all characters before the first such character; otherwise, let Z be S.
+ if ((radix == 0 || radix == 16) && length - p >= 2 && data[p] == '0' && (data[p + 1] == 'x' || data[p + 1] == 'X')) {
+ radix = 16;
+ p += 2;
+ } else if (radix == 0)
+ radix = 10;
+
+ // 8.a If R < 2 or R > 36, then return NaN.
+ if (radix < 2 || radix > 36)
+ return std::numeric_limits<double>::quiet_NaN();
+
+ // 13. Let mathInt be the mathematical integer value that is represented by Z in radix-R notation, using the letters
+ // A-Z and a-z for digits with values 10 through 35. (However, if R is 10 and Z contains more than 20 significant
+ // digits, every significant digit after the 20th may be replaced by a 0 digit, at the option of the implementation;
+ // and if R is not 2, 4, 8, 10, 16, or 32, then mathInt may be an implementation-dependent approximation to the
+ // mathematical integer value that is represented by Z in radix-R notation.)
+ // 14. Let number be the Number value for mathInt.
+ int firstDigitPosition = p;
+ bool sawDigit = false;
+ double number = 0;
+ while (p < length) {
+ int digit = parseDigit(data[p], radix);
+ if (digit == -1)
+ break;
+ sawDigit = true;
+ number *= radix;
+ number += digit;
+ ++p;
+ }
+ if (number >= mantissaOverflowLowerBound) {
+ if (radix == 10)
+ number = WTF::strtod(s.substringSharingImpl(firstDigitPosition, p - firstDigitPosition).utf8().data(), 0);
+ else if (radix == 2 || radix == 4 || radix == 8 || radix == 16 || radix == 32)
+ number = parseIntOverflow(s.substringSharingImpl(firstDigitPosition, p - firstDigitPosition).utf8().data(), p - firstDigitPosition, radix);
+ }
+
+ // 12. If Z is empty, return NaN.
+ if (!sawDigit)
+ return std::numeric_limits<double>::quiet_NaN();
+
+ // 15. Return sign x number.
+ return sign * number;
+}
+
+static double parseInt(const UString& s, int radix)
+{
+ if (s.is8Bit())
+ return parseInt(s, s.characters8(), radix);
+ return parseInt(s, s.characters16(), radix);
+}
+
+static const int SizeOfInfinity = 8;
+
+template <typename CharType>
+static bool isInfinity(const CharType* data, const CharType* end)
+{
+ return (end - data) >= SizeOfInfinity
+ && data[0] == 'I'
+ && data[1] == 'n'
+ && data[2] == 'f'
+ && data[3] == 'i'
+ && data[4] == 'n'
+ && data[5] == 'i'
+ && data[6] == 't'
+ && data[7] == 'y';
+}
+
+// See ecma-262 9.3.1
+template <typename CharType>
+static double jsHexIntegerLiteral(const CharType*& data, const CharType* end)
+{
+ // Hex number.
+ data += 2;
+ const CharType* firstDigitPosition = data;
+ double number = 0;
+ while (true) {
+ number = number * 16 + toASCIIHexValue(*data);
+ ++data;
+ if (data == end)
+ break;
+ if (!isASCIIHexDigit(*data))
+ break;
+ }
+ if (number >= mantissaOverflowLowerBound)
+ number = parseIntOverflow(firstDigitPosition, data - firstDigitPosition, 16);
+
+ return number;
+}
+
+// See ecma-262 9.3.1
+template <typename CharType>
+static double jsStrDecimalLiteral(const CharType*& data, const CharType* end)
+{
+ ASSERT(data < end);
+
+ // Copy the sting into a null-terminated byte buffer, and call strtod.
+ Vector<char, 32> byteBuffer;
+ for (const CharType* characters = data; characters < end; ++characters) {
+ CharType character = *characters;
+ byteBuffer.append(isASCII(character) ? static_cast<char>(character) : 0);
+ }
+ byteBuffer.append(0);
+ char* endOfNumber;
+ double number = WTF::strtod(byteBuffer.data(), &endOfNumber);
+
+ // Check if strtod found a number; if so return it.
+ ptrdiff_t consumed = endOfNumber - byteBuffer.data();
+ if (consumed) {
+ data += consumed;
+ return number;
+ }
+
+ // Check for [+-]?Infinity
+ switch (*data) {
+ case 'I':
+ if (isInfinity(data, end)) {
+ data += SizeOfInfinity;
+ return std::numeric_limits<double>::infinity();
+ }
+ break;
+
+ case '+':
+ if (isInfinity(data + 1, end)) {
+ data += SizeOfInfinity + 1;
+ return std::numeric_limits<double>::infinity();
+ }
+ break;
+
+ case '-':
+ if (isInfinity(data + 1, end)) {
+ data += SizeOfInfinity + 1;
+ return -std::numeric_limits<double>::infinity();
+ }
+ break;
+ }
+
+ // Not a number.
+ return std::numeric_limits<double>::quiet_NaN();
+}
+
+template <typename CharType>
+static double toDouble(const CharType* characters, unsigned size)
+{
+ const CharType* endCharacters = characters + size;
+
+ // Skip leading white space.
+ for (; characters < endCharacters; ++characters) {
+ if (!isStrWhiteSpace(*characters))
+ break;
+ }
+
+ // Empty string.
+ if (characters == endCharacters)
+ return 0.0;
+
+ double number;
+ if (characters[0] == '0' && characters + 2 < endCharacters && (characters[1] | 0x20) == 'x' && isASCIIHexDigit(characters[2]))
+ number = jsHexIntegerLiteral(characters, endCharacters);
+ else
+ number = jsStrDecimalLiteral(characters, endCharacters);
+
+ // Allow trailing white space.
+ for (; characters < endCharacters; ++characters) {
+ if (!isStrWhiteSpace(*characters))
+ break;
+ }
+ if (characters != endCharacters)
+ return std::numeric_limits<double>::quiet_NaN();
+
+ return number;
+}
+
+// See ecma-262 9.3.1
+double jsToNumber(const UString& s)
+{
+ unsigned size = s.length();
+
+ if (size == 1) {
+ UChar c = s[0];
+ if (isASCIIDigit(c))
+ return c - '0';
+ if (isStrWhiteSpace(c))
+ return 0;
+ return std::numeric_limits<double>::quiet_NaN();
+ }
+
+ if (s.is8Bit())
+ return toDouble(s.characters8(), size);
+ return toDouble(s.characters16(), size);
+}
+
+static double parseFloat(const UString& s)
+{
+ unsigned size = s.length();
+
+ if (size == 1) {
+ UChar c = s[0];
+ if (isASCIIDigit(c))
+ return c - '0';
+ return std::numeric_limits<double>::quiet_NaN();
+ }
+
+ if (s.is8Bit()) {
+ const LChar* data = s.characters8();
+ const LChar* end = data + size;
+
+ // Skip leading white space.
+ for (; data < end; ++data) {
+ if (!isStrWhiteSpace(*data))
+ break;
+ }
+
+ // Empty string.
+ if (data == end)
+ return std::numeric_limits<double>::quiet_NaN();
+
+ return jsStrDecimalLiteral(data, end);
+ }
+
+ const UChar* data = s.characters16();
+ const UChar* end = data + size;
+
+ // Skip leading white space.
+ for (; data < end; ++data) {
+ if (!isStrWhiteSpace(*data))
+ break;
+ }
+
+ // Empty string.
+ if (data == end)
+ return std::numeric_limits<double>::quiet_NaN();
+
+ return jsStrDecimalLiteral(data, end);
+}
+
+EncodedJSValue JSC_HOST_CALL globalFuncEval(ExecState* exec)
+{
+ JSObject* thisObject = exec->hostThisValue().toThisObject(exec);
+ JSObject* unwrappedObject = thisObject->unwrappedObject();
+ if (!unwrappedObject->isGlobalObject() || static_cast<JSGlobalObject*>(unwrappedObject)->evalFunction() != exec->callee())
+ return throwVMError(exec, createEvalError(exec, "The \"this\" value passed to eval must be the global object from which eval originated"));
+
+ JSValue x = exec->argument(0);
+ if (!x.isString())
+ return JSValue::encode(x);
+
+ UString s = x.toString(exec);
+
+ if (s.is8Bit()) {
+ LiteralParser<LChar> preparser(exec, s.characters8(), s.length(), NonStrictJSON);
+ if (JSValue parsedObject = preparser.tryLiteralParse())
+ return JSValue::encode(parsedObject);
+ } else {
+ LiteralParser<UChar> preparser(exec, s.characters16(), s.length(), NonStrictJSON);
+ if (JSValue parsedObject = preparser.tryLiteralParse())
+ return JSValue::encode(parsedObject);
+ }
+
+ EvalExecutable* eval = EvalExecutable::create(exec, makeSource(s), false);
+ JSObject* error = eval->compile(exec, static_cast<JSGlobalObject*>(unwrappedObject)->globalScopeChain());
+ if (error)
+ return throwVMError(exec, error);
+
+ return JSValue::encode(exec->interpreter()->execute(eval, exec, thisObject, static_cast<JSGlobalObject*>(unwrappedObject)->globalScopeChain()));
+}
+
+EncodedJSValue JSC_HOST_CALL globalFuncParseInt(ExecState* exec)
+{
+ JSValue value = exec->argument(0);
+ JSValue radixValue = exec->argument(1);
+
+ // Optimized handling for numbers:
+ // If the argument is 0 or a number in range 10^-6 <= n < INT_MAX+1, then parseInt
+ // results in a truncation to integer. In the case of -0, this is converted to 0.
+ //
+ // This is also a truncation for values in the range INT_MAX+1 <= n < 10^21,
+ // however these values cannot be trivially truncated to int since 10^21 exceeds
+ // even the int64_t range. Negative numbers are a little trickier, the case for
+ // values in the range -10^21 < n <= -1 are similar to those for integer, but
+ // values in the range -1 < n <= -10^-6 need to truncate to -0, not 0.
+ static const double tenToTheMinus6 = 0.000001;
+ static const double intMaxPlusOne = 2147483648.0;
+ if (value.isNumber()) {
+ double n = value.asNumber();
+ if (((n < intMaxPlusOne && n >= tenToTheMinus6) || !n) && radixValue.isUndefinedOrNull())
+ return JSValue::encode(jsNumber(static_cast<int32_t>(n)));
+ }
+
+ // If ToString throws, we shouldn't call ToInt32.
+ UString s = value.toString(exec);
+ if (exec->hadException())
+ return JSValue::encode(jsUndefined());
+
+ return JSValue::encode(jsNumber(parseInt(s, radixValue.toInt32(exec))));
+}
+
+EncodedJSValue JSC_HOST_CALL globalFuncParseFloat(ExecState* exec)
+{
+ return JSValue::encode(jsNumber(parseFloat(exec->argument(0).toString(exec))));
+}
+
+EncodedJSValue JSC_HOST_CALL globalFuncIsNaN(ExecState* exec)
+{
+ return JSValue::encode(jsBoolean(isnan(exec->argument(0).toNumber(exec))));
+}
+
+EncodedJSValue JSC_HOST_CALL globalFuncIsFinite(ExecState* exec)
+{
+ double n = exec->argument(0).toNumber(exec);
+ return JSValue::encode(jsBoolean(isfinite(n)));
+}
+
+EncodedJSValue JSC_HOST_CALL globalFuncDecodeURI(ExecState* exec)
+{
+ static const char do_not_unescape_when_decoding_URI[] =
+ "#$&+,/:;=?@";
+
+ return JSValue::encode(decode(exec, do_not_unescape_when_decoding_URI, true));
+}
+
+EncodedJSValue JSC_HOST_CALL globalFuncDecodeURIComponent(ExecState* exec)
+{
+ return JSValue::encode(decode(exec, "", true));
+}
+
+EncodedJSValue JSC_HOST_CALL globalFuncEncodeURI(ExecState* exec)
+{
+ static const char do_not_escape_when_encoding_URI[] =
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "abcdefghijklmnopqrstuvwxyz"
+ "0123456789"
+ "!#$&'()*+,-./:;=?@_~";
+
+ return JSValue::encode(encode(exec, do_not_escape_when_encoding_URI));
+}
+
+EncodedJSValue JSC_HOST_CALL globalFuncEncodeURIComponent(ExecState* exec)
+{
+ static const char do_not_escape_when_encoding_URI_component[] =
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "abcdefghijklmnopqrstuvwxyz"
+ "0123456789"
+ "!'()*-._~";
+
+ return JSValue::encode(encode(exec, do_not_escape_when_encoding_URI_component));
+}
+
+EncodedJSValue JSC_HOST_CALL globalFuncEscape(ExecState* exec)
+{
+ static const char do_not_escape[] =
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "abcdefghijklmnopqrstuvwxyz"
+ "0123456789"
+ "*+-./@_";
+
+ JSStringBuilder builder;
+ UString str = exec->argument(0).toString(exec);
+ if (str.is8Bit()) {
+ const LChar* c = str.characters8();
+ for (unsigned k = 0; k < str.length(); k++, c++) {
+ int u = c[0];
+ if (u && strchr(do_not_escape, static_cast<char>(u)))
+ builder.append(c, 1);
+ else {
+ char tmp[4];
+ snprintf(tmp, sizeof(tmp), "%%%02X", u);
+ builder.append(tmp);
+ }
+ }
+
+ return JSValue::encode(builder.build(exec));
+ }
+
+ const UChar* c = str.characters16();
+ for (unsigned k = 0; k < str.length(); k++, c++) {
+ int u = c[0];
+ if (u > 255) {
+ char tmp[7];
+ snprintf(tmp, sizeof(tmp), "%%u%04X", u);
+ builder.append(tmp);
+ } else if (u != 0 && strchr(do_not_escape, static_cast<char>(u)))
+ builder.append(c, 1);
+ else {
+ char tmp[4];
+ snprintf(tmp, sizeof(tmp), "%%%02X", u);
+ builder.append(tmp);
+ }
+ }
+
+ return JSValue::encode(builder.build(exec));
+}
+
+EncodedJSValue JSC_HOST_CALL globalFuncUnescape(ExecState* exec)
+{
+ UStringBuilder builder;
+ UString str = exec->argument(0).toString(exec);
+ int k = 0;
+ int len = str.length();
+
+ if (str.is8Bit()) {
+ const LChar* characters = str.characters8();
+ LChar convertedLChar;
+ while (k < len) {
+ const LChar* c = characters + k;
+ if (c[0] == '%' && k <= len - 6 && c[1] == 'u') {
+ if (isASCIIHexDigit(c[2]) && isASCIIHexDigit(c[3]) && isASCIIHexDigit(c[4]) && isASCIIHexDigit(c[5])) {
+ builder.append(Lexer<UChar>::convertUnicode(c[2], c[3], c[4], c[5]));
+ k += 6;
+ continue;
+ }
+ } else if (c[0] == '%' && k <= len - 3 && isASCIIHexDigit(c[1]) && isASCIIHexDigit(c[2])) {
+ convertedLChar = LChar(Lexer<LChar>::convertHex(c[1], c[2]));
+ c = &convertedLChar;
+ k += 2;
+ }
+ builder.append(*c);
+ k++;
+ }
+ } else {
+ const UChar* characters = str.characters16();
+
+ while (k < len) {
+ const UChar* c = characters + k;
+ UChar convertedUChar;
+ if (c[0] == '%' && k <= len - 6 && c[1] == 'u') {
+ if (isASCIIHexDigit(c[2]) && isASCIIHexDigit(c[3]) && isASCIIHexDigit(c[4]) && isASCIIHexDigit(c[5])) {
+ convertedUChar = Lexer<UChar>::convertUnicode(c[2], c[3], c[4], c[5]);
+ c = &convertedUChar;
+ k += 5;
+ }
+ } else if (c[0] == '%' && k <= len - 3 && isASCIIHexDigit(c[1]) && isASCIIHexDigit(c[2])) {
+ convertedUChar = UChar(Lexer<UChar>::convertHex(c[1], c[2]));
+ c = &convertedUChar;
+ k += 2;
+ }
+ k++;
+ builder.append(*c);
+ }
+ }
+
+ return JSValue::encode(jsString(exec, builder.toUString()));
+}
+
+EncodedJSValue JSC_HOST_CALL globalFuncThrowTypeError(ExecState* exec)
+{
+ return throwVMTypeError(exec);
+}
+
+} // namespace JSC