diff options
author | Konstantin Tokarev <annulen@yandex.ru> | 2016-08-25 19:20:41 +0300 |
---|---|---|
committer | Konstantin Tokarev <annulen@yandex.ru> | 2017-02-02 12:30:55 +0000 |
commit | 6882a04fb36642862b11efe514251d32070c3d65 (patch) | |
tree | b7959826000b061fd5ccc7512035c7478742f7b0 /Source/JavaScriptCore/runtime/MathObject.cpp | |
parent | ab6df191029eeeb0b0f16f127d553265659f739e (diff) | |
download | qtwebkit-6882a04fb36642862b11efe514251d32070c3d65.tar.gz |
Imported QtWebKit TP3 (git b57bc6801f1876c3220d5a4bfea33d620d477443)
Change-Id: I3b1d8a2808782c9f34d50240000e20cb38d3680f
Reviewed-by: Konstantin Tokarev <annulen@yandex.ru>
Diffstat (limited to 'Source/JavaScriptCore/runtime/MathObject.cpp')
-rw-r--r-- | Source/JavaScriptCore/runtime/MathObject.cpp | 678 |
1 files changed, 207 insertions, 471 deletions
diff --git a/Source/JavaScriptCore/runtime/MathObject.cpp b/Source/JavaScriptCore/runtime/MathObject.cpp index 71c53a3e4..997b0647e 100644 --- a/Source/JavaScriptCore/runtime/MathObject.cpp +++ b/Source/JavaScriptCore/runtime/MathObject.cpp @@ -1,6 +1,6 @@ /* * Copyright (C) 1999-2000 Harri Porten (porten@kde.org) - * Copyright (C) 2007, 2008 Apple Inc. All Rights Reserved. + * Copyright (C) 2007, 2008, 2013, 2015 Apple Inc. All Rights Reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public @@ -22,98 +22,115 @@ #include "MathObject.h" #include "Lookup.h" +#include "MathCommon.h" #include "ObjectPrototype.h" -#include "Operations.h" +#include "JSCInlines.h" #include <time.h> #include <wtf/Assertions.h> #include <wtf/MathExtras.h> #include <wtf/RandomNumber.h> #include <wtf/RandomNumberSeed.h> +#include <wtf/Vector.h> namespace JSC { -ASSERT_HAS_TRIVIAL_DESTRUCTOR(MathObject); - -static EncodedJSValue JSC_HOST_CALL mathProtoFuncAbs(ExecState*); -static EncodedJSValue JSC_HOST_CALL mathProtoFuncACos(ExecState*); -static EncodedJSValue JSC_HOST_CALL mathProtoFuncASin(ExecState*); -static EncodedJSValue JSC_HOST_CALL mathProtoFuncATan(ExecState*); -static EncodedJSValue JSC_HOST_CALL mathProtoFuncATan2(ExecState*); -static EncodedJSValue JSC_HOST_CALL mathProtoFuncCeil(ExecState*); -static EncodedJSValue JSC_HOST_CALL mathProtoFuncCos(ExecState*); -static EncodedJSValue JSC_HOST_CALL mathProtoFuncExp(ExecState*); -static EncodedJSValue JSC_HOST_CALL mathProtoFuncFloor(ExecState*); -static EncodedJSValue JSC_HOST_CALL mathProtoFuncLog(ExecState*); -static EncodedJSValue JSC_HOST_CALL mathProtoFuncMax(ExecState*); -static EncodedJSValue JSC_HOST_CALL mathProtoFuncMin(ExecState*); -static EncodedJSValue JSC_HOST_CALL mathProtoFuncPow(ExecState*); -static EncodedJSValue JSC_HOST_CALL mathProtoFuncRandom(ExecState*); -static EncodedJSValue JSC_HOST_CALL mathProtoFuncRound(ExecState*); -static EncodedJSValue JSC_HOST_CALL mathProtoFuncSin(ExecState*); -static EncodedJSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState*); -static EncodedJSValue JSC_HOST_CALL mathProtoFuncTan(ExecState*); -static EncodedJSValue JSC_HOST_CALL mathProtoFuncIMul(ExecState*); +STATIC_ASSERT_IS_TRIVIALLY_DESTRUCTIBLE(MathObject); + +EncodedJSValue JSC_HOST_CALL mathProtoFuncACos(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncACosh(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncASin(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncASinh(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncATan(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncATanh(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncATan2(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncCbrt(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncCeil(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncClz32(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncCos(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncCosh(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncExp(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncExpm1(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncFround(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncHypot(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncLog(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncLog1p(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncLog10(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncLog2(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncMax(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncMin(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncPow(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncRandom(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncRound(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncSign(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncSin(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncSinh(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncTan(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncTanh(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncTrunc(ExecState*); +EncodedJSValue JSC_HOST_CALL mathProtoFuncIMul(ExecState*); } -#include "MathObject.lut.h" - namespace JSC { -const ClassInfo MathObject::s_info = { "Math", &Base::s_info, 0, ExecState::mathTable, CREATE_METHOD_TABLE(MathObject) }; - -/* Source for MathObject.lut.h -@begin mathTable - abs mathProtoFuncAbs DontEnum|Function 1 - acos mathProtoFuncACos DontEnum|Function 1 - asin mathProtoFuncASin DontEnum|Function 1 - atan mathProtoFuncATan DontEnum|Function 1 - atan2 mathProtoFuncATan2 DontEnum|Function 2 - ceil mathProtoFuncCeil DontEnum|Function 1 - cos mathProtoFuncCos DontEnum|Function 1 - exp mathProtoFuncExp DontEnum|Function 1 - floor mathProtoFuncFloor DontEnum|Function 1 - log mathProtoFuncLog DontEnum|Function 1 - max mathProtoFuncMax DontEnum|Function 2 - min mathProtoFuncMin DontEnum|Function 2 - pow mathProtoFuncPow DontEnum|Function 2 - random mathProtoFuncRandom DontEnum|Function 0 - round mathProtoFuncRound DontEnum|Function 1 - sin mathProtoFuncSin DontEnum|Function 1 - sqrt mathProtoFuncSqrt DontEnum|Function 1 - tan mathProtoFuncTan DontEnum|Function 1 - imul mathProtoFuncIMul DontEnum|Function 2 -@end -*/ - -MathObject::MathObject(JSGlobalObject* globalObject, Structure* structure) - : JSNonFinalObject(globalObject->vm(), structure) -{ -} - -void MathObject::finishCreation(ExecState* exec, JSGlobalObject* globalObject) -{ - Base::finishCreation(globalObject->vm()); - ASSERT(inherits(&s_info)); - - putDirectWithoutTransition(exec->vm(), Identifier(exec, "E"), jsNumber(exp(1.0)), DontDelete | DontEnum | ReadOnly); - putDirectWithoutTransition(exec->vm(), Identifier(exec, "LN2"), jsNumber(log(2.0)), DontDelete | DontEnum | ReadOnly); - putDirectWithoutTransition(exec->vm(), Identifier(exec, "LN10"), jsNumber(log(10.0)), DontDelete | DontEnum | ReadOnly); - putDirectWithoutTransition(exec->vm(), Identifier(exec, "LOG2E"), jsNumber(1.0 / log(2.0)), DontDelete | DontEnum | ReadOnly); - putDirectWithoutTransition(exec->vm(), Identifier(exec, "LOG10E"), jsNumber(0.4342944819032518), DontDelete | DontEnum | ReadOnly); // See ECMA-262 15.8.1.5 - putDirectWithoutTransition(exec->vm(), Identifier(exec, "PI"), jsNumber(piDouble), DontDelete | DontEnum | ReadOnly); - putDirectWithoutTransition(exec->vm(), Identifier(exec, "SQRT1_2"), jsNumber(sqrt(0.5)), DontDelete | DontEnum | ReadOnly); - putDirectWithoutTransition(exec->vm(), Identifier(exec, "SQRT2"), jsNumber(sqrt(2.0)), DontDelete | DontEnum | ReadOnly); -} +const ClassInfo MathObject::s_info = { "Math", &Base::s_info, 0, CREATE_METHOD_TABLE(MathObject) }; -bool MathObject::getOwnPropertySlot(JSCell* cell, ExecState* exec, PropertyName propertyName, PropertySlot &slot) +MathObject::MathObject(VM& vm, Structure* structure) + : JSNonFinalObject(vm, structure) { - return getStaticFunctionSlot<JSObject>(exec, ExecState::mathTable(exec), jsCast<MathObject*>(cell), propertyName, slot); } -bool MathObject::getOwnPropertyDescriptor(JSObject* object, ExecState* exec, PropertyName propertyName, PropertyDescriptor& descriptor) +void MathObject::finishCreation(VM& vm, JSGlobalObject* globalObject) { - return getStaticFunctionDescriptor<JSObject>(exec, ExecState::mathTable(exec), jsCast<MathObject*>(object), propertyName, descriptor); + Base::finishCreation(vm); + ASSERT(inherits(info())); + + putDirectWithoutTransition(vm, Identifier::fromString(&vm, "E"), jsNumber(exp(1.0)), DontDelete | DontEnum | ReadOnly); + putDirectWithoutTransition(vm, Identifier::fromString(&vm, "LN2"), jsNumber(log(2.0)), DontDelete | DontEnum | ReadOnly); + putDirectWithoutTransition(vm, Identifier::fromString(&vm, "LN10"), jsNumber(log(10.0)), DontDelete | DontEnum | ReadOnly); + putDirectWithoutTransition(vm, Identifier::fromString(&vm, "LOG2E"), jsNumber(1.0 / log(2.0)), DontDelete | DontEnum | ReadOnly); + putDirectWithoutTransition(vm, Identifier::fromString(&vm, "LOG10E"), jsNumber(0.4342944819032518), DontDelete | DontEnum | ReadOnly); + putDirectWithoutTransition(vm, Identifier::fromString(&vm, "PI"), jsNumber(piDouble), DontDelete | DontEnum | ReadOnly); + putDirectWithoutTransition(vm, Identifier::fromString(&vm, "SQRT1_2"), jsNumber(sqrt(0.5)), DontDelete | DontEnum | ReadOnly); + putDirectWithoutTransition(vm, Identifier::fromString(&vm, "SQRT2"), jsNumber(sqrt(2.0)), DontDelete | DontEnum | ReadOnly); + putDirectWithoutTransition(vm, vm.propertyNames->toStringTagSymbol, jsString(&vm, "Math"), DontEnum | ReadOnly); + + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "abs"), 1, mathProtoFuncAbs, AbsIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "acos"), 1, mathProtoFuncACos, NoIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "asin"), 1, mathProtoFuncASin, NoIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "atan"), 1, mathProtoFuncATan, NoIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "acosh"), 1, mathProtoFuncACosh, NoIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "asinh"), 1, mathProtoFuncASinh, NoIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "atanh"), 1, mathProtoFuncATanh, NoIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "atan2"), 2, mathProtoFuncATan2, NoIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "cbrt"), 1, mathProtoFuncCbrt, NoIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "ceil"), 1, mathProtoFuncCeil, CeilIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "clz32"), 1, mathProtoFuncClz32, Clz32Intrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "cos"), 1, mathProtoFuncCos, CosIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "cosh"), 1, mathProtoFuncCosh, NoIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "exp"), 1, mathProtoFuncExp, ExpIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "expm1"), 1, mathProtoFuncExpm1, NoIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "floor"), 1, mathProtoFuncFloor, FloorIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "fround"), 1, mathProtoFuncFround, FRoundIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "hypot"), 2, mathProtoFuncHypot, NoIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "log"), 1, mathProtoFuncLog, LogIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "log10"), 1, mathProtoFuncLog10, NoIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "log1p"), 1, mathProtoFuncLog1p, NoIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "log2"), 1, mathProtoFuncLog2, NoIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "max"), 2, mathProtoFuncMax, MaxIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "min"), 2, mathProtoFuncMin, MinIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "pow"), 2, mathProtoFuncPow, PowIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "random"), 0, mathProtoFuncRandom, RandomIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "round"), 1, mathProtoFuncRound, RoundIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "sign"), 1, mathProtoFuncSign, NoIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "sin"), 1, mathProtoFuncSin, SinIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "sinh"), 1, mathProtoFuncSinh, NoIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "sqrt"), 1, mathProtoFuncSqrt, SqrtIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "tan"), 1, mathProtoFuncTan, NoIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "tanh"), 1, mathProtoFuncTanh, NoIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "trunc"), 1, mathProtoFuncTrunc, NoIntrinsic, DontEnum); + putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier::fromString(&vm, "imul"), 2, mathProtoFuncIMul, IMulIntrinsic, DontEnum); } // ------------------------------ Functions -------------------------------- @@ -150,6 +167,14 @@ EncodedJSValue JSC_HOST_CALL mathProtoFuncCeil(ExecState* exec) return JSValue::encode(jsNumber(ceil(exec->argument(0).toNumber(exec)))); } +EncodedJSValue JSC_HOST_CALL mathProtoFuncClz32(ExecState* exec) +{ + uint32_t value = exec->argument(0).toUInt32(exec); + if (exec->hadException()) + return JSValue::encode(jsNull()); + return JSValue::encode(JSValue(clz32(value))); +} + EncodedJSValue JSC_HOST_CALL mathProtoFuncCos(ExecState* exec) { return JSValue::encode(jsDoubleNumber(cos(exec->argument(0).toNumber(exec)))); @@ -165,6 +190,35 @@ EncodedJSValue JSC_HOST_CALL mathProtoFuncFloor(ExecState* exec) return JSValue::encode(jsNumber(floor(exec->argument(0).toNumber(exec)))); } +EncodedJSValue JSC_HOST_CALL mathProtoFuncHypot(ExecState* exec) +{ + unsigned argsCount = exec->argumentCount(); + double max = 0; + Vector<double, 8> args; + args.reserveInitialCapacity(argsCount); + for (unsigned i = 0; i < argsCount; ++i) { + args.uncheckedAppend(exec->uncheckedArgument(i).toNumber(exec)); + if (exec->hadException()) + return JSValue::encode(jsNull()); + if (std::isinf(args[i])) + return JSValue::encode(jsDoubleNumber(+std::numeric_limits<double>::infinity())); + max = std::max(fabs(args[i]), max); + } + if (!max) + max = 1; + // Kahan summation algorithm significantly reduces the numerical error in the total obtained. + double sum = 0; + double compensation = 0; + for (double argument : args) { + double scaledArgument = argument / max; + double summand = scaledArgument * scaledArgument - compensation; + double preliminary = sum + summand; + compensation = (preliminary - sum) - summand; + sum = preliminary; + } + return JSValue::encode(jsDoubleNumber(sqrt(sum) * max)); +} + EncodedJSValue JSC_HOST_CALL mathProtoFuncLog(ExecState* exec) { return JSValue::encode(jsDoubleNumber(log(exec->argument(0).toNumber(exec)))); @@ -175,12 +229,10 @@ EncodedJSValue JSC_HOST_CALL mathProtoFuncMax(ExecState* exec) unsigned argsCount = exec->argumentCount(); double result = -std::numeric_limits<double>::infinity(); for (unsigned k = 0; k < argsCount; ++k) { - double val = exec->argument(k).toNumber(exec); + double val = exec->uncheckedArgument(k).toNumber(exec); if (std::isnan(val)) { - result = QNaN; - break; - } - if (val > result || (!val && !result && !std::signbit(val))) + result = PNaN; + } else if (val > result || (!val && !result && !std::signbit(val))) result = val; } return JSValue::encode(jsNumber(result)); @@ -191,54 +243,15 @@ EncodedJSValue JSC_HOST_CALL mathProtoFuncMin(ExecState* exec) unsigned argsCount = exec->argumentCount(); double result = +std::numeric_limits<double>::infinity(); for (unsigned k = 0; k < argsCount; ++k) { - double val = exec->argument(k).toNumber(exec); + double val = exec->uncheckedArgument(k).toNumber(exec); if (std::isnan(val)) { - result = QNaN; - break; - } - if (val < result || (!val && !result && std::signbit(val))) + result = PNaN; + } else if (val < result || (!val && !result && std::signbit(val))) result = val; } return JSValue::encode(jsNumber(result)); } -#if PLATFORM(IOS) && CPU(ARM_THUMB2) - -static double fdlibmPow(double x, double y); - -static ALWAYS_INLINE bool isDenormal(double x) -{ - static const uint64_t signbit = 0x8000000000000000ULL; - static const uint64_t minNormal = 0x0001000000000000ULL; - return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 < minNormal - 1; -} - -static ALWAYS_INLINE bool isEdgeCase(double x) -{ - static const uint64_t signbit = 0x8000000000000000ULL; - static const uint64_t infinity = 0x7fffffffffffffffULL; - return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 >= infinity - 1; -} - -static ALWAYS_INLINE double mathPow(double x, double y) -{ - if (!isDenormal(x) && !isDenormal(y)) { - double libmResult = pow(x,y); - if (libmResult || isEdgeCase(x) || isEdgeCase(y)) - return libmResult; - } - return fdlibmPow(x,y); -} - -#else - -ALWAYS_INLINE double mathPow(double x, double y) -{ - return pow(x, y); -} - -#endif - EncodedJSValue JSC_HOST_CALL mathProtoFuncPow(ExecState* exec) { // ECMA 15.8.2.1.13 @@ -246,11 +259,7 @@ EncodedJSValue JSC_HOST_CALL mathProtoFuncPow(ExecState* exec) double arg = exec->argument(0).toNumber(exec); double arg2 = exec->argument(1).toNumber(exec); - if (std::isnan(arg2)) - return JSValue::encode(jsNaN()); - if (std::isinf(arg2) && fabs(arg) == 1) - return JSValue::encode(jsNaN()); - return JSValue::encode(jsNumber(mathPow(arg, arg2))); + return JSValue::encode(JSValue(operationMathPow(arg, arg2))); } EncodedJSValue JSC_HOST_CALL mathProtoFuncRandom(ExecState* exec) @@ -260,14 +269,22 @@ EncodedJSValue JSC_HOST_CALL mathProtoFuncRandom(ExecState* exec) EncodedJSValue JSC_HOST_CALL mathProtoFuncRound(ExecState* exec) { + return JSValue::encode(jsNumber(jsRound(exec->argument(0).toNumber(exec)))); +} + +EncodedJSValue JSC_HOST_CALL mathProtoFuncSign(ExecState* exec) +{ double arg = exec->argument(0).toNumber(exec); - double integer = ceil(arg); - return JSValue::encode(jsNumber(integer - (integer - arg > 0.5))); + if (std::isnan(arg)) + return JSValue::encode(jsNaN()); + if (!arg) + return JSValue::encode(std::signbit(arg) ? jsNumber(-0.0) : jsNumber(0)); + return JSValue::encode(jsNumber(std::signbit(arg) ? -1 : 1)); } EncodedJSValue JSC_HOST_CALL mathProtoFuncSin(ExecState* exec) { - return JSValue::encode(exec->vm().cachedSin(exec->argument(0).toNumber(exec))); + return JSValue::encode(jsDoubleNumber(sin(exec->argument(0).toNumber(exec)))); } EncodedJSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState* exec) @@ -289,353 +306,72 @@ EncodedJSValue JSC_HOST_CALL mathProtoFuncIMul(ExecState* exec) return JSValue::encode(jsNumber(left * right)); } -#if PLATFORM(IOS) && CPU(ARM_THUMB2) +EncodedJSValue JSC_HOST_CALL mathProtoFuncACosh(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(acosh(exec->argument(0).toNumber(exec)))); +} -// The following code is taken from netlib.org: -// http://www.netlib.org/fdlibm/fdlibm.h -// http://www.netlib.org/fdlibm/e_pow.c -// http://www.netlib.org/fdlibm/s_scalbn.c -// -// And was originally distributed under the following license: +EncodedJSValue JSC_HOST_CALL mathProtoFuncASinh(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(asinh(exec->argument(0).toNumber(exec)))); +} -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunSoft, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ -/* - * ==================================================== - * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. - * - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ +EncodedJSValue JSC_HOST_CALL mathProtoFuncATanh(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(atanh(exec->argument(0).toNumber(exec)))); +} -/* __ieee754_pow(x,y) return x**y - * - * n - * Method: Let x = 2 * (1+f) - * 1. Compute and return log2(x) in two pieces: - * log2(x) = w1 + w2, - * where w1 has 53-24 = 29 bit trailing zeros. - * 2. Perform y*log2(x) = n+y' by simulating muti-precision - * arithmetic, where |y'|<=0.5. - * 3. Return x**y = 2**n*exp(y'*log2) - * - * Special cases: - * 1. (anything) ** 0 is 1 - * 2. (anything) ** 1 is itself - * 3. (anything) ** NAN is NAN - * 4. NAN ** (anything except 0) is NAN - * 5. +-(|x| > 1) ** +INF is +INF - * 6. +-(|x| > 1) ** -INF is +0 - * 7. +-(|x| < 1) ** +INF is +0 - * 8. +-(|x| < 1) ** -INF is +INF - * 9. +-1 ** +-INF is NAN - * 10. +0 ** (+anything except 0, NAN) is +0 - * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 - * 12. +0 ** (-anything except 0, NAN) is +INF - * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF - * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) - * 15. +INF ** (+anything except 0,NAN) is +INF - * 16. +INF ** (-anything except 0,NAN) is +0 - * 17. -INF ** (anything) = -0 ** (-anything) - * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) - * 19. (-anything except 0 and inf) ** (non-integer) is NAN - * - * Accuracy: - * pow(x,y) returns x**y nearly rounded. In particular - * pow(integer,integer) - * always returns the correct integer provided it is - * representable. - * - * Constants : - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. - */ +EncodedJSValue JSC_HOST_CALL mathProtoFuncCbrt(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(cbrt(exec->argument(0).toNumber(exec)))); +} -#define __HI(x) *(1+(int*)&x) -#define __LO(x) *(int*)&x - -static const double -bp[] = {1.0, 1.5,}, -dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ -dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ -zero = 0.0, -one = 1.0, -two = 2.0, -two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ -huge = 1.0e300, -tiny = 1.0e-300, - /* for scalbn */ -two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ -twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */ - /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ -L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ -L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ -L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ -L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ -L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ -L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ -P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ -P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ -P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ -P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ -P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ -lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ -lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ -lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ -ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ -cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ -cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ -cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ -ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ -ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ -ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ - -inline double fdlibmScalbn (double x, int n) -{ - int k,hx,lx; - hx = __HI(x); - lx = __LO(x); - k = (hx&0x7ff00000)>>20; /* extract exponent */ - if (k==0) { /* 0 or subnormal x */ - if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */ - x *= two54; - hx = __HI(x); - k = ((hx&0x7ff00000)>>20) - 54; - if (n< -50000) return tiny*x; /*underflow*/ - } - if (k==0x7ff) return x+x; /* NaN or Inf */ - k = k+n; - if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */ - if (k > 0) /* normal result */ - {__HI(x) = (hx&0x800fffff)|(k<<20); return x;} - if (k <= -54) { - if (n > 50000) /* in case integer overflow in n+k */ - return huge*copysign(huge,x); /*overflow*/ - else return tiny*copysign(tiny,x); /*underflow*/ - } - k += 54; /* subnormal result */ - __HI(x) = (hx&0x800fffff)|(k<<20); - return x*twom54; -} - -double fdlibmPow(double x, double y) -{ - double z,ax,z_h,z_l,p_h,p_l; - double y1,t1,t2,r,s,t,u,v,w; - int i0,i1,i,j,k,yisint,n; - int hx,hy,ix,iy; - unsigned lx,ly; - - i0 = ((*(int*)&one)>>29)^1; i1=1-i0; - hx = __HI(x); lx = __LO(x); - hy = __HI(y); ly = __LO(y); - ix = hx&0x7fffffff; iy = hy&0x7fffffff; - - /* y==zero: x**0 = 1 */ - if((iy|ly)==0) return one; - - /* +-NaN return x+y */ - if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || - iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) - return x+y; - - /* determine if y is an odd int when x < 0 - * yisint = 0 ... y is not an integer - * yisint = 1 ... y is an odd int - * yisint = 2 ... y is an even int - */ - yisint = 0; - if(hx<0) { - if(iy>=0x43400000) yisint = 2; /* even integer y */ - else if(iy>=0x3ff00000) { - k = (iy>>20)-0x3ff; /* exponent */ - if(k>20) { - j = ly>>(52-k); - if(static_cast<unsigned>(j<<(52-k))==ly) yisint = 2-(j&1); - } else if(ly==0) { - j = iy>>(20-k); - if((j<<(20-k))==iy) yisint = 2-(j&1); - } - } - } - - /* special value of y */ - if(ly==0) { - if (iy==0x7ff00000) { /* y is +-inf */ - if(((ix-0x3ff00000)|lx)==0) - return y - y; /* inf**+-1 is NaN */ - else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ - return (hy>=0)? y: zero; - else /* (|x|<1)**-,+inf = inf,0 */ - return (hy<0)?-y: zero; - } - if(iy==0x3ff00000) { /* y is +-1 */ - if(hy<0) return one/x; else return x; - } - if(hy==0x40000000) return x*x; /* y is 2 */ - if(hy==0x3fe00000) { /* y is 0.5 */ - if(hx>=0) /* x >= +0 */ - return sqrt(x); - } - } +EncodedJSValue JSC_HOST_CALL mathProtoFuncCosh(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(cosh(exec->argument(0).toNumber(exec)))); +} - ax = fabs(x); - /* special value of x */ - if(lx==0) { - if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ - z = ax; /*x is +-0,+-inf,+-1*/ - if(hy<0) z = one/z; /* z = (1/|x|) */ - if(hx<0) { - if(((ix-0x3ff00000)|yisint)==0) { - z = (z-z)/(z-z); /* (-1)**non-int is NaN */ - } else if(yisint==1) - z = -z; /* (x<0)**odd = -(|x|**odd) */ - } - return z; - } - } - - n = (hx>>31)+1; - - /* (x<0)**(non-int) is NaN */ - if((n|yisint)==0) return (x-x)/(x-x); - - s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ - if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */ - - /* |y| is huge */ - if(iy>0x41e00000) { /* if |y| > 2**31 */ - if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ - if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; - if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; - } - /* over/underflow if x is not close to one */ - if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny; - if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny; - /* now |1-x| is tiny <= 2**-20, suffice to compute - log(x) by x-x^2/2+x^3/3-x^4/4 */ - t = ax-one; /* t has 20 trailing zeros */ - w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); - u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ - v = t*ivln2_l-w*ivln2; - t1 = u+v; - __LO(t1) = 0; - t2 = v-(t1-u); - } else { - double ss,s2,s_h,s_l,t_h,t_l; - n = 0; - /* take care subnormal number */ - if(ix<0x00100000) - {ax *= two53; n -= 53; ix = __HI(ax); } - n += ((ix)>>20)-0x3ff; - j = ix&0x000fffff; - /* determine interval */ - ix = j|0x3ff00000; /* normalize ix */ - if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ - else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ - else {k=0;n+=1;ix -= 0x00100000;} - __HI(ax) = ix; - - /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ - u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ - v = one/(ax+bp[k]); - ss = u*v; - s_h = ss; - __LO(s_h) = 0; - /* t_h=ax+bp[k] High */ - t_h = zero; - __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18); - t_l = ax - (t_h-bp[k]); - s_l = v*((u-s_h*t_h)-s_h*t_l); - /* compute log(ax) */ - s2 = ss*ss; - r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); - r += s_l*(s_h+ss); - s2 = s_h*s_h; - t_h = 3.0+s2+r; - __LO(t_h) = 0; - t_l = r-((t_h-3.0)-s2); - /* u+v = ss*(1+...) */ - u = s_h*t_h; - v = s_l*t_h+t_l*ss; - /* 2/(3log2)*(ss+...) */ - p_h = u+v; - __LO(p_h) = 0; - p_l = v-(p_h-u); - z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ - z_l = cp_l*p_h+p_l*cp+dp_l[k]; - /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ - t = (double)n; - t1 = (((z_h+z_l)+dp_h[k])+t); - __LO(t1) = 0; - t2 = z_l-(((t1-t)-dp_h[k])-z_h); - } +EncodedJSValue JSC_HOST_CALL mathProtoFuncExpm1(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(expm1(exec->argument(0).toNumber(exec)))); +} - /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ - y1 = y; - __LO(y1) = 0; - p_l = (y-y1)*t1+y*t2; - p_h = y1*t1; - z = p_l+p_h; - j = __HI(z); - i = __LO(z); - if (j>=0x40900000) { /* z >= 1024 */ - if(((j-0x40900000)|i)!=0) /* if z > 1024 */ - return s*huge*huge; /* overflow */ - else { - if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ - } - } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ - if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ - return s*tiny*tiny; /* underflow */ - else { - if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ - } - } - /* - * compute 2**(p_h+p_l) - */ - i = j&0x7fffffff; - k = (i>>20)-0x3ff; - n = 0; - if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ - n = j+(0x00100000>>(k+1)); - k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ - t = zero; - __HI(t) = (n&~(0x000fffff>>k)); - n = ((n&0x000fffff)|0x00100000)>>(20-k); - if(j<0) n = -n; - p_h -= t; - } - t = p_l+p_h; - __LO(t) = 0; - u = t*lg2_h; - v = (p_l-(t-p_h))*lg2+t*lg2_l; - z = u+v; - w = v-(z-u); - t = z*z; - t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); - r = (z*t1)/(t1-two)-(w+z*w); - z = one-(r-z); - j = __HI(z); - j += (n<<20); - if((j>>20)<=0) z = fdlibmScalbn(z,n); /* subnormal output */ - else __HI(z) += (n<<20); - return s*z; -} - -#endif +EncodedJSValue JSC_HOST_CALL mathProtoFuncFround(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(static_cast<float>(exec->argument(0).toNumber(exec)))); +} + +EncodedJSValue JSC_HOST_CALL mathProtoFuncLog1p(ExecState* exec) +{ + double value = exec->argument(0).toNumber(exec); + if (value == 0) + return JSValue::encode(jsDoubleNumber(value)); + return JSValue::encode(jsDoubleNumber(log1p(value))); +} + +EncodedJSValue JSC_HOST_CALL mathProtoFuncLog10(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(log10(exec->argument(0).toNumber(exec)))); +} + +EncodedJSValue JSC_HOST_CALL mathProtoFuncLog2(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(log2(exec->argument(0).toNumber(exec)))); +} + +EncodedJSValue JSC_HOST_CALL mathProtoFuncSinh(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(sinh(exec->argument(0).toNumber(exec)))); +} + +EncodedJSValue JSC_HOST_CALL mathProtoFuncTanh(ExecState* exec) +{ + return JSValue::encode(jsDoubleNumber(tanh(exec->argument(0).toNumber(exec)))); +} + +EncodedJSValue JSC_HOST_CALL mathProtoFuncTrunc(ExecState*exec) +{ + return JSValue::encode(jsNumber(exec->argument(0).toIntegerPreserveNaN(exec))); +} } // namespace JSC |