diff options
Diffstat (limited to 'Source/JavaScriptCore/runtime/Uint16WithFraction.h')
-rw-r--r-- | Source/JavaScriptCore/runtime/Uint16WithFraction.h | 270 |
1 files changed, 270 insertions, 0 deletions
diff --git a/Source/JavaScriptCore/runtime/Uint16WithFraction.h b/Source/JavaScriptCore/runtime/Uint16WithFraction.h new file mode 100644 index 000000000..0e5c5f91c --- /dev/null +++ b/Source/JavaScriptCore/runtime/Uint16WithFraction.h @@ -0,0 +1,270 @@ +/* + * Copyright (C) 2011 Apple Inc. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY + * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef Uint16WithFraction_h +#define Uint16WithFraction_h + +#include <wtf/MathExtras.h> + +namespace JSC { + +// Would be nice if this was a static const member, but the OS X linker +// seems to want a symbol in the binary in that case... +#define oneGreaterThanMaxUInt16 0x10000 + +// A uint16_t with an infinite precision fraction. Upon overflowing +// the uint16_t range, this class will clamp to oneGreaterThanMaxUInt16. +// This is used in converting the fraction part of a number to a string. +class Uint16WithFraction { +public: + explicit Uint16WithFraction(double number, uint16_t divideByExponent = 0) + { + ASSERT(number && isfinite(number) && !signbit(number)); + + // Check for values out of uint16_t range. + if (number >= oneGreaterThanMaxUInt16) { + m_values.append(oneGreaterThanMaxUInt16); + m_leadingZeros = 0; + return; + } + + // Append the units to m_values. + double integerPart = floor(number); + m_values.append(static_cast<uint32_t>(integerPart)); + + bool sign; + int32_t exponent; + uint64_t mantissa; + decomposeDouble(number - integerPart, sign, exponent, mantissa); + ASSERT(!sign && exponent < 0); + exponent -= divideByExponent; + + int32_t zeroBits = -exponent; + --zeroBits; + + // Append the append words for to m_values. + while (zeroBits >= 32) { + m_values.append(0); + zeroBits -= 32; + } + + // Left align the 53 bits of the mantissa within 96 bits. + uint32_t values[3]; + values[0] = static_cast<uint32_t>(mantissa >> 21); + values[1] = static_cast<uint32_t>(mantissa << 11); + values[2] = 0; + // Shift based on the remainder of the exponent. + if (zeroBits) { + values[2] = values[1] << (32 - zeroBits); + values[1] = (values[1] >> zeroBits) | (values[0] << (32 - zeroBits)); + values[0] = (values[0] >> zeroBits); + } + m_values.append(values[0]); + m_values.append(values[1]); + m_values.append(values[2]); + + // Canonicalize; remove any trailing zeros. + while (m_values.size() > 1 && !m_values.last()) + m_values.removeLast(); + + // Count the number of leading zero, this is useful in optimizing multiplies. + m_leadingZeros = 0; + while (m_leadingZeros < m_values.size() && !m_values[m_leadingZeros]) + ++m_leadingZeros; + } + + Uint16WithFraction& operator*=(uint16_t multiplier) + { + ASSERT(checkConsistency()); + + // iteratate backwards over the fraction until we reach the leading zeros, + // passing the carry from one calculation into the next. + uint64_t accumulator = 0; + for (size_t i = m_values.size(); i > m_leadingZeros; ) { + --i; + accumulator += static_cast<uint64_t>(m_values[i]) * static_cast<uint64_t>(multiplier); + m_values[i] = static_cast<uint32_t>(accumulator); + accumulator >>= 32; + } + + if (!m_leadingZeros) { + // With a multiplicand and multiplier in the uint16_t range, this cannot carry + // (even allowing for the infinity value). + ASSERT(!accumulator); + // Check for overflow & clamp to 'infinity'. + if (m_values[0] >= oneGreaterThanMaxUInt16) { + m_values.shrink(1); + m_values[0] = oneGreaterThanMaxUInt16; + m_leadingZeros = 0; + return *this; + } + } else if (accumulator) { + // Check for carry from the last multiply, if so overwrite last leading zero. + m_values[--m_leadingZeros] = static_cast<uint32_t>(accumulator); + // The limited range of the multiplier should mean that even if we carry into + // the units, we don't need to check for overflow of the uint16_t range. + ASSERT(m_values[0] < oneGreaterThanMaxUInt16); + } + + // Multiplication by an even value may introduce trailing zeros; if so, clean them + // up. (Keeping the value in a normalized form makes some of the comparison operations + // more efficient). + while (m_values.size() > 1 && !m_values.last()) + m_values.removeLast(); + ASSERT(checkConsistency()); + return *this; + } + + bool operator<(const Uint16WithFraction& other) + { + ASSERT(checkConsistency()); + ASSERT(other.checkConsistency()); + + // Iterate over the common lengths of arrays. + size_t minSize = std::min(m_values.size(), other.m_values.size()); + for (size_t index = 0; index < minSize; ++index) { + // If we find a value that is not equal, compare and return. + uint32_t fromThis = m_values[index]; + uint32_t fromOther = other.m_values[index]; + if (fromThis != fromOther) + return fromThis < fromOther; + } + // If these numbers have the same lengths, they are equal, + // otherwise which ever number has a longer fraction in larger. + return other.m_values.size() > minSize; + } + + // Return the floor (non-fractional portion) of the number, clearing this to zero, + // leaving the fractional part unchanged. + uint32_t floorAndSubtract() + { + // 'floor' is simple the integer portion of the value. + uint32_t floor = m_values[0]; + + // If floor is non-zero, + if (floor) { + m_values[0] = 0; + m_leadingZeros = 1; + while (m_leadingZeros < m_values.size() && !m_values[m_leadingZeros]) + ++m_leadingZeros; + } + + return floor; + } + + // Compare this value to 0.5, returns -1 for less than, 0 for equal, 1 for greater. + int comparePoint5() + { + ASSERT(checkConsistency()); + // If units != 0, this is greater than 0.5. + if (m_values[0]) + return 1; + // If size == 1 this value is 0, hence < 0.5. + if (m_values.size() == 1) + return -1; + // Compare to 0.5. + if (m_values[1] > 0x80000000ul) + return 1; + if (m_values[1] < 0x80000000ul) + return -1; + // Check for more words - since normalized numbers have no trailing zeros, if + // there are more that two digits we can assume at least one more is non-zero, + // and hence the value is > 0.5. + return m_values.size() > 2 ? 1 : 0; + } + + // Return true if the sum of this plus addend would be greater than 1. + bool sumGreaterThanOne(const Uint16WithFraction& addend) + { + ASSERT(checkConsistency()); + ASSERT(addend.checkConsistency()); + + // First, sum the units. If the result is greater than one, return true. + // If equal to one, return true if either number has a fractional part. + uint32_t sum = m_values[0] + addend.m_values[0]; + if (sum) + return sum > 1 || std::max(m_values.size(), addend.m_values.size()) > 1; + + // We could still produce a result greater than zero if addition of the next + // word from the fraction were to carry, leaving a result > 0. + + // Iterate over the common lengths of arrays. + size_t minSize = std::min(m_values.size(), addend.m_values.size()); + for (size_t index = 1; index < minSize; ++index) { + // Sum the next word from this & the addend. + uint32_t fromThis = m_values[index]; + uint32_t fromAddend = addend.m_values[index]; + sum = fromThis + fromAddend; + + // Check for overflow. If so, check whether the remaining result is non-zero, + // or if there are any further words in the fraction. + if (sum < fromThis) + return sum || (index + 1) < std::max(m_values.size(), addend.m_values.size()); + + // If the sum is uint32_t max, then we would carry a 1 if addition of the next + // digits in the number were to overflow. + if (sum != 0xFFFFFFFF) + return false; + } + return false; + } + +private: + bool checkConsistency() const + { + // All values should have at least one value. + return (m_values.size()) + // The units value must be a uint16_t, or the value is the overflow value. + && (m_values[0] < oneGreaterThanMaxUInt16 || (m_values[0] == oneGreaterThanMaxUInt16 && m_values.size() == 1)) + // There should be no trailing zeros (unless this value is zero!). + && (m_values.last() || m_values.size() == 1); + } + + // The internal storage of the number. This vector is always at least one entry in size, + // with the first entry holding the portion of the number greater than zero. The first + // value always hold a value in the uint16_t range, or holds the value oneGreaterThanMaxUInt16 to + // indicate the value has overflowed to >= 0x10000. If the units value is oneGreaterThanMaxUInt16, + // there can be no fraction (size must be 1). + // + // Subsequent values in the array represent portions of the fractional part of this number. + // The total value of the number is the sum of (m_values[i] / pow(2^32, i)), for each i + // in the array. The vector should contain no trailing zeros, except for the value '0', + // represented by a vector contianing a single zero value. These constraints are checked + // by 'checkConsistency()', above. + // + // The inline capacity of the vector is set to be able to contain any IEEE double (1 for + // the units column, 32 for zeros introduced due to an exponent up to -3FE, and 2 for + // bits taken from the mantissa). + Vector<uint32_t, 36> m_values; + + // Cache a count of the number of leading zeros in m_values. We can use this to optimize + // methods that would otherwise need visit all words in the vector, e.g. multiplication. + size_t m_leadingZeros; +}; + +} + +#endif + |