summaryrefslogtreecommitdiff
path: root/Source/JavaScriptCore/assembler/MacroAssemblerX86_64.h
blob: 7783d940ab6295c863cb00dadaa0a4a633ec8221 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
/*
 * Copyright (C) 2008, 2012, 2014-2016 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#ifndef MacroAssemblerX86_64_h
#define MacroAssemblerX86_64_h

#if ENABLE(ASSEMBLER) && CPU(X86_64)

#include "MacroAssemblerX86Common.h"

#define REPATCH_OFFSET_CALL_R11 3

inline bool CAN_SIGN_EXTEND_32_64(int64_t value) { return value == (int64_t)(int32_t)value; }

namespace JSC {

class MacroAssemblerX86_64 : public MacroAssemblerX86Common {
public:
    static const Scale ScalePtr = TimesEight;

    using MacroAssemblerX86Common::add32;
    using MacroAssemblerX86Common::and32;
    using MacroAssemblerX86Common::branchAdd32;
    using MacroAssemblerX86Common::or32;
    using MacroAssemblerX86Common::sub32;
    using MacroAssemblerX86Common::load8;
    using MacroAssemblerX86Common::load32;
    using MacroAssemblerX86Common::store32;
    using MacroAssemblerX86Common::store8;
    using MacroAssemblerX86Common::call;
    using MacroAssemblerX86Common::jump;
    using MacroAssemblerX86Common::addDouble;
    using MacroAssemblerX86Common::loadDouble;
    using MacroAssemblerX86Common::convertInt32ToDouble;

    void add32(TrustedImm32 imm, AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister());
        add32(imm, Address(scratchRegister()));
    }
    
    void and32(TrustedImm32 imm, AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister());
        and32(imm, Address(scratchRegister()));
    }
    
    void add32(AbsoluteAddress address, RegisterID dest)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister());
        add32(Address(scratchRegister()), dest);
    }
    
    void or32(TrustedImm32 imm, AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister());
        or32(imm, Address(scratchRegister()));
    }

    void or32(RegisterID reg, AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister());
        or32(reg, Address(scratchRegister()));
    }

    void sub32(TrustedImm32 imm, AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister());
        sub32(imm, Address(scratchRegister()));
    }
    
    void load8(const void* address, RegisterID dest)
    {
        move(TrustedImmPtr(address), dest);
        load8(dest, dest);
    }

    void load32(const void* address, RegisterID dest)
    {
        if (dest == X86Registers::eax)
            m_assembler.movl_mEAX(address);
        else {
            move(TrustedImmPtr(address), dest);
            load32(dest, dest);
        }
    }

    void addDouble(AbsoluteAddress address, FPRegisterID dest)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister());
        m_assembler.addsd_mr(0, scratchRegister(), dest);
    }

    void convertInt32ToDouble(TrustedImm32 imm, FPRegisterID dest)
    {
        move(imm, scratchRegister());
        m_assembler.cvtsi2sd_rr(scratchRegister(), dest);
    }

    void store32(TrustedImm32 imm, void* address)
    {
        move(TrustedImmPtr(address), scratchRegister());
        store32(imm, scratchRegister());
    }

    void store32(RegisterID source, void* address)
    {
        if (source == X86Registers::eax)
            m_assembler.movl_EAXm(address);
        else {
            move(TrustedImmPtr(address), scratchRegister());
            store32(source, scratchRegister());
        }
    }
    
    void store8(TrustedImm32 imm, void* address)
    {
        move(TrustedImmPtr(address), scratchRegister());
        store8(imm, Address(scratchRegister()));
    }

    void store8(RegisterID reg, void* address)
    {
        move(TrustedImmPtr(address), scratchRegister());
        store8(reg, Address(scratchRegister()));
    }

#if OS(WINDOWS)
    Call callWithSlowPathReturnType()
    {
        // On Win64, when the return type is larger than 8 bytes, we need to allocate space on the stack for the return value.
        // On entry, rcx should contain a pointer to this stack space. The other parameters are shifted to the right,
        // rdx should contain the first argument, r8 should contain the second argument, and r9 should contain the third argument.
        // On return, rax contains a pointer to this stack value. See http://msdn.microsoft.com/en-us/library/7572ztz4.aspx.
        // We then need to copy the 16 byte return value into rax and rdx, since JIT expects the return value to be split between the two.
        // It is assumed that the parameters are already shifted to the right, when entering this method.
        // Note: this implementation supports up to 3 parameters.

        // JIT relies on the CallerFrame (frame pointer) being put on the stack,
        // On Win64 we need to manually copy the frame pointer to the stack, since MSVC may not maintain a frame pointer on 64-bit.
        // See http://msdn.microsoft.com/en-us/library/9z1stfyw.aspx where it's stated that rbp MAY be used as a frame pointer.
        store64(X86Registers::ebp, Address(X86Registers::esp, -16));

        // We also need to allocate the shadow space on the stack for the 4 parameter registers.
        // In addition, we need to allocate 16 bytes for the return value.
        // Also, we should allocate 16 bytes for the frame pointer, and return address (not populated).
        sub64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp);

        // The first parameter register should contain a pointer to the stack allocated space for the return value.
        move(X86Registers::esp, X86Registers::ecx);
        add64(TrustedImm32(4 * sizeof(int64_t)), X86Registers::ecx);

        DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister());
        Call result = Call(m_assembler.call(scratchRegister()), Call::Linkable);

        add64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp);

        // Copy the return value into rax and rdx.
        load64(Address(X86Registers::eax, sizeof(int64_t)), X86Registers::edx);
        load64(Address(X86Registers::eax), X86Registers::eax);

        ASSERT_UNUSED(label, differenceBetween(label, result) == REPATCH_OFFSET_CALL_R11);
        return result;
    }
#endif

    Call call()
    {
#if OS(WINDOWS)
        // JIT relies on the CallerFrame (frame pointer) being put on the stack,
        // On Win64 we need to manually copy the frame pointer to the stack, since MSVC may not maintain a frame pointer on 64-bit.
        // See http://msdn.microsoft.com/en-us/library/9z1stfyw.aspx where it's stated that rbp MAY be used as a frame pointer.
        store64(X86Registers::ebp, Address(X86Registers::esp, -16));

        // On Windows we need to copy the arguments that don't fit in registers to the stack location where the callee expects to find them.
        // We don't know the number of arguments at this point, so the arguments (5, 6, ...) should always be copied.

        // Copy argument 5
        load64(Address(X86Registers::esp, 4 * sizeof(int64_t)), scratchRegister());
        store64(scratchRegister(), Address(X86Registers::esp, -4 * static_cast<int32_t>(sizeof(int64_t))));

        // Copy argument 6
        load64(Address(X86Registers::esp, 5 * sizeof(int64_t)), scratchRegister());
        store64(scratchRegister(), Address(X86Registers::esp, -3 * static_cast<int32_t>(sizeof(int64_t))));

        // We also need to allocate the shadow space on the stack for the 4 parameter registers.
        // Also, we should allocate 16 bytes for the frame pointer, and return address (not populated).
        // In addition, we need to allocate 16 bytes for two more parameters, since the call can have up to 6 parameters.
        sub64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp);
#endif
        DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister());
        Call result = Call(m_assembler.call(scratchRegister()), Call::Linkable);
#if OS(WINDOWS)
        add64(TrustedImm32(8 * sizeof(int64_t)), X86Registers::esp);
#endif
        ASSERT_UNUSED(label, differenceBetween(label, result) == REPATCH_OFFSET_CALL_R11);
        return result;
    }

    // Address is a memory location containing the address to jump to
    void jump(AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister());
        jump(Address(scratchRegister()));
    }

    Call tailRecursiveCall()
    {
        DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister());
        Jump newJump = Jump(m_assembler.jmp_r(scratchRegister()));
        ASSERT_UNUSED(label, differenceBetween(label, newJump) == REPATCH_OFFSET_CALL_R11);
        return Call::fromTailJump(newJump);
    }

    Call makeTailRecursiveCall(Jump oldJump)
    {
        oldJump.link(this);
        DataLabelPtr label = moveWithPatch(TrustedImmPtr(0), scratchRegister());
        Jump newJump = Jump(m_assembler.jmp_r(scratchRegister()));
        ASSERT_UNUSED(label, differenceBetween(label, newJump) == REPATCH_OFFSET_CALL_R11);
        return Call::fromTailJump(newJump);
    }

    Jump branchAdd32(ResultCondition cond, TrustedImm32 src, AbsoluteAddress dest)
    {
        move(TrustedImmPtr(dest.m_ptr), scratchRegister());
        add32(src, Address(scratchRegister()));
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    void add64(RegisterID src, RegisterID dest)
    {
        m_assembler.addq_rr(src, dest);
    }
    
    void add64(Address src, RegisterID dest)
    {
        m_assembler.addq_mr(src.offset, src.base, dest);
    }

    void add64(RegisterID src, Address dest)
    {
        m_assembler.addq_rm(src, dest.offset, dest.base);
    }

    void add64(AbsoluteAddress src, RegisterID dest)
    {
        move(TrustedImmPtr(src.m_ptr), scratchRegister());
        add64(Address(scratchRegister()), dest);
    }

    void add64(TrustedImm32 imm, RegisterID srcDest)
    {
        if (imm.m_value == 1)
            m_assembler.incq_r(srcDest);
        else
            m_assembler.addq_ir(imm.m_value, srcDest);
    }

    void add64(TrustedImm64 imm, RegisterID dest)
    {
        if (imm.m_value == 1)
            m_assembler.incq_r(dest);
        else {
            move(imm, scratchRegister());
            add64(scratchRegister(), dest);
        }
    }

    void add64(TrustedImm32 imm, RegisterID src, RegisterID dest)
    {
        m_assembler.leaq_mr(imm.m_value, src, dest);
    }

    void add64(TrustedImm32 imm, Address address)
    {
        if (imm.m_value == 1)
            m_assembler.incq_m(address.offset, address.base);
        else
            m_assembler.addq_im(imm.m_value, address.offset, address.base);
    }

    void add64(TrustedImm32 imm, AbsoluteAddress address)
    {
        move(TrustedImmPtr(address.m_ptr), scratchRegister());
        add64(imm, Address(scratchRegister()));
    }

    void add64(RegisterID a, RegisterID b, RegisterID dest)
    {
        x86Lea64(BaseIndex(a, b, TimesOne), dest);
    }

    void x86Lea64(BaseIndex index, RegisterID dest)
    {
        if (!index.scale && !index.offset) {
            if (index.base == dest) {
                add64(index.index, dest);
                return;
            }
            if (index.index == dest) {
                add64(index.base, dest);
                return;
            }
        }
        m_assembler.leaq_mr(index.offset, index.base, index.index, index.scale, dest);
    }

    void addPtrNoFlags(TrustedImm32 imm, RegisterID srcDest)
    {
        m_assembler.leaq_mr(imm.m_value, srcDest, srcDest);
    }

    void and64(RegisterID src, RegisterID dest)
    {
        m_assembler.andq_rr(src, dest);
    }

    void and64(TrustedImm32 imm, RegisterID srcDest)
    {
        m_assembler.andq_ir(imm.m_value, srcDest);
    }

    void and64(TrustedImmPtr imm, RegisterID srcDest)
    {
        intptr_t intValue = imm.asIntptr();
        if (intValue <= std::numeric_limits<int32_t>::max()
            && intValue >= std::numeric_limits<int32_t>::min()) {
            and64(TrustedImm32(static_cast<int32_t>(intValue)), srcDest);
            return;
        }
        move(imm, scratchRegister());
        and64(scratchRegister(), srcDest);
    }

    void and64(RegisterID op1, RegisterID op2, RegisterID dest)
    {
        if (op1 == op2 && op1 != dest && op2 != dest)
            move(op1, dest);
        else if (op1 == dest)
            and64(op2, dest);
        else {
            move(op2, dest);
            and64(op1, dest);
        }
    }

    void countLeadingZeros64(RegisterID src, RegisterID dst)
    {
        if (supportsLZCNT()) {
            m_assembler.lzcntq_rr(src, dst);
            return;
        }
        m_assembler.bsrq_rr(src, dst);
        clz64AfterBsr(dst);
    }

    void countLeadingZeros64(Address src, RegisterID dst)
    {
        if (supportsLZCNT()) {
            m_assembler.lzcntq_mr(src.offset, src.base, dst);
            return;
        }
        m_assembler.bsrq_mr(src.offset, src.base, dst);
        clz64AfterBsr(dst);
    }

    void lshift64(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.shlq_i8r(imm.m_value, dest);
    }
    
    void lshift64(RegisterID src, RegisterID dest)
    {
        if (src == X86Registers::ecx)
            m_assembler.shlq_CLr(dest);
        else {
            ASSERT(src != dest);
            
            // Can only shift by ecx, so we do some swapping if we see anything else.
            swap(src, X86Registers::ecx);
            m_assembler.shlq_CLr(dest);
            swap(src, X86Registers::ecx);
        }
    }
    
    void rshift64(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.sarq_i8r(imm.m_value, dest);
    }

    void rshift64(RegisterID src, RegisterID dest)
    {
        if (src == X86Registers::ecx)
            m_assembler.sarq_CLr(dest);
        else {
            ASSERT(src != dest);
            
            // Can only shift by ecx, so we do some swapping if we see anything else.
            swap(src, X86Registers::ecx);
            m_assembler.sarq_CLr(dest);
            swap(src, X86Registers::ecx);
        }
    }

    void urshift64(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.shrq_i8r(imm.m_value, dest);
    }

    void urshift64(RegisterID src, RegisterID dest)
    {
        if (src == X86Registers::ecx)
            m_assembler.shrq_CLr(dest);
        else {
            ASSERT(src != dest);
            
            // Can only shift by ecx, so we do some swapping if we see anything else.
            swap(src, X86Registers::ecx);
            m_assembler.shrq_CLr(dest);
            swap(src, X86Registers::ecx);
        }
    }

    void mul64(RegisterID src, RegisterID dest)
    {
        m_assembler.imulq_rr(src, dest);
    }

    void mul64(RegisterID src1, RegisterID src2, RegisterID dest)
    {
        if (src2 == dest) {
            m_assembler.imulq_rr(src1, dest);
            return;
        }
        move(src1, dest);
        m_assembler.imulq_rr(src2, dest);
    }
    
    void x86ConvertToQuadWord64()
    {
        m_assembler.cqo();
    }

    void x86ConvertToQuadWord64(RegisterID rax, RegisterID rdx)
    {
        ASSERT_UNUSED(rax, rax == X86Registers::eax);
        ASSERT_UNUSED(rdx, rdx == X86Registers::edx);
        x86ConvertToQuadWord64();
    }

    void x86Div64(RegisterID denominator)
    {
        m_assembler.idivq_r(denominator);
    }

    void x86Div64(RegisterID rax, RegisterID rdx, RegisterID denominator)
    {
        ASSERT_UNUSED(rax, rax == X86Registers::eax);
        ASSERT_UNUSED(rdx, rdx == X86Registers::edx);
        x86Div64(denominator);
    }

    void neg64(RegisterID dest)
    {
        m_assembler.negq_r(dest);
    }

    void or64(RegisterID src, RegisterID dest)
    {
        m_assembler.orq_rr(src, dest);
    }

    void or64(TrustedImm64 imm, RegisterID srcDest)
    {
        if (imm.m_value <= std::numeric_limits<int32_t>::max()
            && imm.m_value >= std::numeric_limits<int32_t>::min()) {
            or64(TrustedImm32(static_cast<int32_t>(imm.m_value)), srcDest);
            return;
        }
        move(imm, scratchRegister());
        or64(scratchRegister(), srcDest);
    }

    void or64(TrustedImm32 imm, RegisterID dest)
    {
        m_assembler.orq_ir(imm.m_value, dest);
    }

    void or64(RegisterID op1, RegisterID op2, RegisterID dest)
    {
        if (op1 == op2)
            move(op1, dest);
        else if (op1 == dest)
            or64(op2, dest);
        else {
            move(op2, dest);
            or64(op1, dest);
        }
    }

    void or64(TrustedImm32 imm, RegisterID src, RegisterID dest)
    {
        move(src, dest);
        or64(imm, dest);
    }
    
    void rotateRight64(TrustedImm32 imm, RegisterID srcDst)
    {
        m_assembler.rorq_i8r(imm.m_value, srcDst);
    }

    void sub64(RegisterID src, RegisterID dest)
    {
        m_assembler.subq_rr(src, dest);
    }
    
    void sub64(TrustedImm32 imm, RegisterID dest)
    {
        if (imm.m_value == 1)
            m_assembler.decq_r(dest);
        else
            m_assembler.subq_ir(imm.m_value, dest);
    }
    
    void sub64(TrustedImm64 imm, RegisterID dest)
    {
        if (imm.m_value == 1)
            m_assembler.decq_r(dest);
        else {
            move(imm, scratchRegister());
            sub64(scratchRegister(), dest);
        }
    }

    void sub64(TrustedImm32 imm, Address address)
    {
        m_assembler.subq_im(imm.m_value, address.offset, address.base);
    }

    void sub64(Address src, RegisterID dest)
    {
        m_assembler.subq_mr(src.offset, src.base, dest);
    }

    void sub64(RegisterID src, Address dest)
    {
        m_assembler.subq_rm(src, dest.offset, dest.base);
    }

    void xor64(RegisterID src, RegisterID dest)
    {
        m_assembler.xorq_rr(src, dest);
    }

    void xor64(RegisterID op1, RegisterID op2, RegisterID dest)
    {
        if (op1 == op2)
            move(TrustedImm32(0), dest);
        else if (op1 == dest)
            xor64(op2, dest);
        else {
            move(op2, dest);
            xor64(op1, dest);
        }
    }
    
    void xor64(RegisterID src, Address dest)
    {
        m_assembler.xorq_rm(src, dest.offset, dest.base);
    }

    void xor64(TrustedImm32 imm, RegisterID srcDest)
    {
        m_assembler.xorq_ir(imm.m_value, srcDest);
    }

    void not64(RegisterID srcDest)
    {
        m_assembler.notq_r(srcDest);
    }

    void not64(Address dest)
    {
        m_assembler.notq_m(dest.offset, dest.base);
    }

    void load64(ImplicitAddress address, RegisterID dest)
    {
        m_assembler.movq_mr(address.offset, address.base, dest);
    }

    void load64(BaseIndex address, RegisterID dest)
    {
        m_assembler.movq_mr(address.offset, address.base, address.index, address.scale, dest);
    }

    void load64(const void* address, RegisterID dest)
    {
        if (dest == X86Registers::eax)
            m_assembler.movq_mEAX(address);
        else {
            move(TrustedImmPtr(address), dest);
            load64(dest, dest);
        }
    }

    DataLabel32 load64WithAddressOffsetPatch(Address address, RegisterID dest)
    {
        padBeforePatch();
        m_assembler.movq_mr_disp32(address.offset, address.base, dest);
        return DataLabel32(this);
    }
    
    DataLabelCompact load64WithCompactAddressOffsetPatch(Address address, RegisterID dest)
    {
        padBeforePatch();
        m_assembler.movq_mr_disp8(address.offset, address.base, dest);
        return DataLabelCompact(this);
    }

    void store64(RegisterID src, ImplicitAddress address)
    {
        m_assembler.movq_rm(src, address.offset, address.base);
    }

    void store64(RegisterID src, BaseIndex address)
    {
        m_assembler.movq_rm(src, address.offset, address.base, address.index, address.scale);
    }
    
    void store64(RegisterID src, void* address)
    {
        if (src == X86Registers::eax)
            m_assembler.movq_EAXm(address);
        else {
            move(TrustedImmPtr(address), scratchRegister());
            store64(src, scratchRegister());
        }
    }

    void store64(TrustedImm32 imm, ImplicitAddress address)
    {
        m_assembler.movq_i32m(imm.m_value, address.offset, address.base);
    }

    void store64(TrustedImm64 imm, ImplicitAddress address)
    {
        if (CAN_SIGN_EXTEND_32_64(imm.m_value)) {
            store64(TrustedImm32(static_cast<int32_t>(imm.m_value)), address);
            return;
        }

        move(imm, scratchRegister());
        store64(scratchRegister(), address);
    }

    void store64(TrustedImm64 imm, BaseIndex address)
    {
        move(imm, scratchRegister());
        m_assembler.movq_rm(scratchRegister(), address.offset, address.base, address.index, address.scale);
    }
    
    DataLabel32 store64WithAddressOffsetPatch(RegisterID src, Address address)
    {
        padBeforePatch();
        m_assembler.movq_rm_disp32(src, address.offset, address.base);
        return DataLabel32(this);
    }

    void swap64(RegisterID src, RegisterID dest)
    {
        m_assembler.xchgq_rr(src, dest);
    }

    void swap64(RegisterID src, Address dest)
    {
        m_assembler.xchgq_rm(src, dest.offset, dest.base);
    }

    void move64ToDouble(RegisterID src, FPRegisterID dest)
    {
        m_assembler.movq_rr(src, dest);
    }

    void moveDoubleTo64(FPRegisterID src, RegisterID dest)
    {
        m_assembler.movq_rr(src, dest);
    }

    void compare64(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest)
    {
        if (!right.m_value) {
            if (auto resultCondition = commuteCompareToZeroIntoTest(cond)) {
                test64(*resultCondition, left, left, dest);
                return;
            }
        }

        m_assembler.cmpq_ir(right.m_value, left);
        set32(x86Condition(cond), dest);
    }
    
    void compare64(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest)
    {
        m_assembler.cmpq_rr(right, left);
        set32(x86Condition(cond), dest);
    }

    void compareDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right, RegisterID dest)
    {
        if (cond & DoubleConditionBitInvert)
            m_assembler.ucomisd_rr(left, right);
        else
            m_assembler.ucomisd_rr(right, left);

        if (cond == DoubleEqual) {
            if (left == right) {
                m_assembler.setnp_r(dest);
                return;
            }

            Jump isUnordered(m_assembler.jp());
            m_assembler.sete_r(dest);
            isUnordered.link(this);
            return;
        }

        if (cond == DoubleNotEqualOrUnordered) {
            if (left == right) {
                m_assembler.setp_r(dest);
                return;
            }

            m_assembler.setp_r(dest);
            m_assembler.setne_r(dest);
            return;
        }

        ASSERT(!(cond & DoubleConditionBitSpecial));
        m_assembler.setCC_r(static_cast<X86Assembler::Condition>(cond & ~DoubleConditionBits), dest);
    }

    Jump branch64(RelationalCondition cond, RegisterID left, RegisterID right)
    {
        m_assembler.cmpq_rr(right, left);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branch64(RelationalCondition cond, RegisterID left, TrustedImm32 right)
    {
        if (!right.m_value) {
            if (auto resultCondition = commuteCompareToZeroIntoTest(cond))
                return branchTest64(*resultCondition, left, left);
        }
        m_assembler.cmpq_ir(right.m_value, left);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branch64(RelationalCondition cond, RegisterID left, TrustedImm64 right)
    {
        if (((cond == Equal) || (cond == NotEqual)) && !right.m_value) {
            m_assembler.testq_rr(left, left);
            return Jump(m_assembler.jCC(x86Condition(cond)));
        }
        move(right, scratchRegister());
        return branch64(cond, left, scratchRegister());
    }

    Jump branch64(RelationalCondition cond, RegisterID left, Address right)
    {
        m_assembler.cmpq_mr(right.offset, right.base, left);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branch64(RelationalCondition cond, AbsoluteAddress left, RegisterID right)
    {
        move(TrustedImmPtr(left.m_ptr), scratchRegister());
        return branch64(cond, Address(scratchRegister()), right);
    }

    Jump branch64(RelationalCondition cond, Address left, RegisterID right)
    {
        m_assembler.cmpq_rm(right, left.offset, left.base);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branch64(RelationalCondition cond, Address left, TrustedImm32 right)
    {
        m_assembler.cmpq_im(right.m_value, left.offset, left.base);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branch64(RelationalCondition cond, Address left, TrustedImm64 right)
    {
        move(right, scratchRegister());
        return branch64(cond, left, scratchRegister());
    }

    Jump branch64(RelationalCondition cond, BaseIndex address, RegisterID right)
    {
        m_assembler.cmpq_rm(right, address.offset, address.base, address.index, address.scale);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchPtr(RelationalCondition cond, BaseIndex left, RegisterID right)
    {
        return branch64(cond, left, right);
    }

    Jump branchPtr(RelationalCondition cond, BaseIndex left, TrustedImmPtr right)
    {
        move(right, scratchRegister());
        return branchPtr(cond, left, scratchRegister());
    }

    Jump branchTest64(ResultCondition cond, RegisterID reg, RegisterID mask)
    {
        m_assembler.testq_rr(reg, mask);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }
    
    Jump branchTest64(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
    {
        // if we are only interested in the low seven bits, this can be tested with a testb
        if (mask.m_value == -1)
            m_assembler.testq_rr(reg, reg);
        else if ((mask.m_value & ~0x7f) == 0)
            m_assembler.testb_i8r(mask.m_value, reg);
        else
            m_assembler.testq_i32r(mask.m_value, reg);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchTest64(ResultCondition cond, RegisterID reg, TrustedImm64 mask)
    {
        move(mask, scratchRegister());
        return branchTest64(cond, reg, scratchRegister());
    }

    void test64(ResultCondition cond, RegisterID reg, TrustedImm32 mask, RegisterID dest)
    {
        if (mask.m_value == -1)
            m_assembler.testq_rr(reg, reg);
        else if ((mask.m_value & ~0x7f) == 0)
            m_assembler.testb_i8r(mask.m_value, reg);
        else
            m_assembler.testq_i32r(mask.m_value, reg);
        set32(x86Condition(cond), dest);
    }

    void test64(ResultCondition cond, RegisterID reg, RegisterID mask, RegisterID dest)
    {
        m_assembler.testq_rr(reg, mask);
        set32(x86Condition(cond), dest);
    }

    Jump branchTest64(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
    {
        load64(address.m_ptr, scratchRegister());
        return branchTest64(cond, scratchRegister(), mask);
    }

    Jump branchTest64(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
    {
        if (mask.m_value == -1)
            m_assembler.cmpq_im(0, address.offset, address.base);
        else
            m_assembler.testq_i32m(mask.m_value, address.offset, address.base);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchTest64(ResultCondition cond, Address address, RegisterID reg)
    {
        m_assembler.testq_rm(reg, address.offset, address.base);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchTest64(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
    {
        if (mask.m_value == -1)
            m_assembler.cmpq_im(0, address.offset, address.base, address.index, address.scale);
        else
            m_assembler.testq_i32m(mask.m_value, address.offset, address.base, address.index, address.scale);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }


    Jump branchAdd64(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
    {
        add64(imm, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchAdd64(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest)
    {
        if (src1 == dest)
            return branchAdd64(cond, src2, dest);
        move(src2, dest);
        return branchAdd64(cond, src1, dest);
    }

    Jump branchAdd64(ResultCondition cond, Address src1, RegisterID src2, RegisterID dest)
    {
        move(src2, dest);
        return branchAdd64(cond, src1, dest);
    }

    Jump branchAdd64(ResultCondition cond, RegisterID src1, Address src2, RegisterID dest)
    {
        move(src1, dest);
        return branchAdd64(cond, src2, dest);
    }

    Jump branchAdd64(ResultCondition cond, RegisterID src, RegisterID dest)
    {
        add64(src, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchAdd64(ResultCondition cond, Address src, RegisterID dest)
    {
        add64(src, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchMul64(ResultCondition cond, RegisterID src, RegisterID dest)
    {
        mul64(src, dest);
        if (cond != Overflow)
            m_assembler.testq_rr(dest, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchMul64(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest)
    {
        if (src1 == dest)
            return branchMul64(cond, src2, dest);
        move(src2, dest);
        return branchMul64(cond, src1, dest);
    }

    Jump branchSub64(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
    {
        sub64(imm, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchSub64(ResultCondition cond, RegisterID src, RegisterID dest)
    {
        sub64(src, dest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    Jump branchSub64(ResultCondition cond, RegisterID src1, TrustedImm32 src2, RegisterID dest)
    {
        move(src1, dest);
        return branchSub64(cond, src2, dest);
    }

    Jump branchNeg64(ResultCondition cond, RegisterID srcDest)
    {
        neg64(srcDest);
        return Jump(m_assembler.jCC(x86Condition(cond)));
    }

    void moveConditionally64(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID src, RegisterID dest)
    {
        m_assembler.cmpq_rr(right, left);
        cmov(x86Condition(cond), src, dest);
    }

    void moveConditionally64(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID thenCase, RegisterID elseCase, RegisterID dest)
    {
        m_assembler.cmpq_rr(right, left);

        if (thenCase != dest && elseCase != dest) {
            move(elseCase, dest);
            elseCase = dest;
        }

        if (elseCase == dest)
            cmov(x86Condition(cond), thenCase, dest);
        else
            cmov(x86Condition(invert(cond)), elseCase, dest);
    }

    void moveConditionally64(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID thenCase, RegisterID elseCase, RegisterID dest)
    {
        if (!right.m_value) {
            if (auto resultCondition = commuteCompareToZeroIntoTest(cond)) {
                moveConditionallyTest64(*resultCondition, left, left, thenCase, elseCase, dest);
                return;
            }
        }

        m_assembler.cmpq_ir(right.m_value, left);

        if (thenCase != dest && elseCase != dest) {
            move(elseCase, dest);
            elseCase = dest;
        }

        if (elseCase == dest)
            cmov(x86Condition(cond), thenCase, dest);
        else
            cmov(x86Condition(invert(cond)), elseCase, dest);
    }

    void moveConditionallyTest64(ResultCondition cond, RegisterID testReg, RegisterID mask, RegisterID src, RegisterID dest)
    {
        m_assembler.testq_rr(testReg, mask);
        cmov(x86Condition(cond), src, dest);
    }

    void moveConditionallyTest64(ResultCondition cond, RegisterID left, RegisterID right, RegisterID thenCase, RegisterID elseCase, RegisterID dest)
    {
        ASSERT(isInvertible(cond));
        ASSERT_WITH_MESSAGE(cond != Overflow, "TEST does not set the Overflow Flag.");

        m_assembler.testq_rr(right, left);

        if (thenCase != dest && elseCase != dest) {
            move(elseCase, dest);
            elseCase = dest;
        }

        if (elseCase == dest)
            cmov(x86Condition(cond), thenCase, dest);
        else
            cmov(x86Condition(invert(cond)), elseCase, dest);
    }
    
    void moveConditionallyTest64(ResultCondition cond, RegisterID testReg, TrustedImm32 mask, RegisterID src, RegisterID dest)
    {
        // if we are only interested in the low seven bits, this can be tested with a testb
        if (mask.m_value == -1)
            m_assembler.testq_rr(testReg, testReg);
        else if ((mask.m_value & ~0x7f) == 0)
            m_assembler.testb_i8r(mask.m_value, testReg);
        else
            m_assembler.testq_i32r(mask.m_value, testReg);
        cmov(x86Condition(cond), src, dest);
    }

    void moveConditionallyTest64(ResultCondition cond, RegisterID testReg, TrustedImm32 mask, RegisterID thenCase, RegisterID elseCase, RegisterID dest)
    {
        ASSERT(isInvertible(cond));
        ASSERT_WITH_MESSAGE(cond != Overflow, "TEST does not set the Overflow Flag.");

        if (mask.m_value == -1)
            m_assembler.testq_rr(testReg, testReg);
        else if (!(mask.m_value & ~0x7f))
            m_assembler.testb_i8r(mask.m_value, testReg);
        else
            m_assembler.testq_i32r(mask.m_value, testReg);

        if (thenCase != dest && elseCase != dest) {
            move(elseCase, dest);
            elseCase = dest;
        }

        if (elseCase == dest)
            cmov(x86Condition(cond), thenCase, dest);
        else
            cmov(x86Condition(invert(cond)), elseCase, dest);
    }

    template<typename LeftType, typename RightType>
    void moveDoubleConditionally64(RelationalCondition cond, LeftType left, RightType right, FPRegisterID thenCase, FPRegisterID elseCase, FPRegisterID dest)
    {
        static_assert(!std::is_same<LeftType, FPRegisterID>::value && !std::is_same<RightType, FPRegisterID>::value, "One of the tested argument could be aliased on dest. Use moveDoubleConditionallyDouble().");

        if (thenCase != dest && elseCase != dest) {
            moveDouble(elseCase, dest);
            elseCase = dest;
        }

        if (elseCase == dest) {
            Jump falseCase = branch64(invert(cond), left, right);
            moveDouble(thenCase, dest);
            falseCase.link(this);
        } else {
            Jump trueCase = branch64(cond, left, right);
            moveDouble(elseCase, dest);
            trueCase.link(this);
        }
    }

    template<typename TestType, typename MaskType>
    void moveDoubleConditionallyTest64(ResultCondition cond, TestType test, MaskType mask, FPRegisterID thenCase, FPRegisterID elseCase, FPRegisterID dest)
    {
        static_assert(!std::is_same<TestType, FPRegisterID>::value && !std::is_same<MaskType, FPRegisterID>::value, "One of the tested argument could be aliased on dest. Use moveDoubleConditionallyDouble().");

        if (elseCase == dest && isInvertible(cond)) {
            Jump falseCase = branchTest64(invert(cond), test, mask);
            moveDouble(thenCase, dest);
            falseCase.link(this);
        } else if (thenCase == dest) {
            Jump trueCase = branchTest64(cond, test, mask);
            moveDouble(elseCase, dest);
            trueCase.link(this);
        }

        Jump trueCase = branchTest64(cond, test, mask);
        moveDouble(elseCase, dest);
        Jump falseCase = jump();
        trueCase.link(this);
        moveDouble(thenCase, dest);
        falseCase.link(this);
    }
    
    void abortWithReason(AbortReason reason)
    {
        move(TrustedImm32(reason), X86Registers::r11);
        breakpoint();
    }

    void abortWithReason(AbortReason reason, intptr_t misc)
    {
        move(TrustedImm64(misc), X86Registers::r10);
        abortWithReason(reason);
    }

    ConvertibleLoadLabel convertibleLoadPtr(Address address, RegisterID dest)
    {
        ConvertibleLoadLabel result = ConvertibleLoadLabel(this);
        m_assembler.movq_mr(address.offset, address.base, dest);
        return result;
    }

    DataLabelPtr moveWithPatch(TrustedImmPtr initialValue, RegisterID dest)
    {
        padBeforePatch();
        m_assembler.movq_i64r(initialValue.asIntptr(), dest);
        return DataLabelPtr(this);
    }

    DataLabelPtr moveWithPatch(TrustedImm32 initialValue, RegisterID dest)
    {
        padBeforePatch();
        m_assembler.movq_i64r(initialValue.m_value, dest);
        return DataLabelPtr(this);
    }

    Jump branchPtrWithPatch(RelationalCondition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
    {
        dataLabel = moveWithPatch(initialRightValue, scratchRegister());
        return branch64(cond, left, scratchRegister());
    }

    Jump branchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
    {
        dataLabel = moveWithPatch(initialRightValue, scratchRegister());
        return branch64(cond, left, scratchRegister());
    }

    Jump branch32WithPatch(RelationalCondition cond, Address left, DataLabel32& dataLabel, TrustedImm32 initialRightValue = TrustedImm32(0))
    {
        padBeforePatch();
        m_assembler.movl_i32r(initialRightValue.m_value, scratchRegister());
        dataLabel = DataLabel32(this);
        return branch32(cond, left, scratchRegister());
    }

    DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address)
    {
        DataLabelPtr label = moveWithPatch(initialValue, scratchRegister());
        store64(scratchRegister(), address);
        return label;
    }

    PatchableJump patchableBranch64(RelationalCondition cond, RegisterID reg, TrustedImm64 imm)
    {
        return PatchableJump(branch64(cond, reg, imm));
    }

    PatchableJump patchableBranch64(RelationalCondition cond, RegisterID left, RegisterID right)
    {
        return PatchableJump(branch64(cond, left, right));
    }
    
    using MacroAssemblerX86Common::branch8;
    Jump branch8(RelationalCondition cond, AbsoluteAddress left, TrustedImm32 right)
    {
        MacroAssemblerX86Common::move(TrustedImmPtr(left.m_ptr), scratchRegister());
        return MacroAssemblerX86Common::branch8(cond, Address(scratchRegister()), right);
    }
    
    using MacroAssemblerX86Common::branchTest8;
    Jump branchTest8(ResultCondition cond, ExtendedAddress address, TrustedImm32 mask = TrustedImm32(-1))
    {
        TrustedImmPtr addr(reinterpret_cast<void*>(address.offset));
        MacroAssemblerX86Common::move(addr, scratchRegister());
        return MacroAssemblerX86Common::branchTest8(cond, BaseIndex(scratchRegister(), address.base, TimesOne), mask);
    }
    
    Jump branchTest8(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
    {
        MacroAssemblerX86Common::move(TrustedImmPtr(address.m_ptr), scratchRegister());
        return MacroAssemblerX86Common::branchTest8(cond, Address(scratchRegister()), mask);
    }

    void convertInt64ToDouble(RegisterID src, FPRegisterID dest)
    {
        m_assembler.cvtsi2sdq_rr(src, dest);
    }

    static bool supportsFloatingPoint() { return true; }
    static bool supportsFloatingPointTruncate() { return true; }
    static bool supportsFloatingPointSqrt() { return true; }
    static bool supportsFloatingPointAbs() { return true; }
    
    static FunctionPtr readCallTarget(CodeLocationCall call)
    {
        return FunctionPtr(X86Assembler::readPointer(call.dataLabelPtrAtOffset(-REPATCH_OFFSET_CALL_R11).dataLocation()));
    }

    bool haveScratchRegisterForBlinding() { return m_allowScratchRegister; }
    RegisterID scratchRegisterForBlinding() { return scratchRegister(); }

    static bool canJumpReplacePatchableBranchPtrWithPatch() { return true; }
    static bool canJumpReplacePatchableBranch32WithPatch() { return true; }
    
    static CodeLocationLabel startOfBranchPtrWithPatchOnRegister(CodeLocationDataLabelPtr label)
    {
        const int rexBytes = 1;
        const int opcodeBytes = 1;
        const int immediateBytes = 8;
        const int totalBytes = rexBytes + opcodeBytes + immediateBytes;
        ASSERT(totalBytes >= maxJumpReplacementSize());
        return label.labelAtOffset(-totalBytes);
    }
    
    static CodeLocationLabel startOfBranch32WithPatchOnRegister(CodeLocationDataLabel32 label)
    {
        const int rexBytes = 1;
        const int opcodeBytes = 1;
        const int immediateBytes = 4;
        const int totalBytes = rexBytes + opcodeBytes + immediateBytes;
        ASSERT(totalBytes >= maxJumpReplacementSize());
        return label.labelAtOffset(-totalBytes);
    }
    
    static CodeLocationLabel startOfPatchableBranchPtrWithPatchOnAddress(CodeLocationDataLabelPtr label)
    {
        return startOfBranchPtrWithPatchOnRegister(label);
    }

    static CodeLocationLabel startOfPatchableBranch32WithPatchOnAddress(CodeLocationDataLabel32 label)
    {
        return startOfBranch32WithPatchOnRegister(label);
    }
    
    static void revertJumpReplacementToPatchableBranchPtrWithPatch(CodeLocationLabel instructionStart, Address, void* initialValue)
    {
        X86Assembler::revertJumpTo_movq_i64r(instructionStart.executableAddress(), reinterpret_cast<intptr_t>(initialValue), s_scratchRegister);
    }

    static void revertJumpReplacementToPatchableBranch32WithPatch(CodeLocationLabel instructionStart, Address, int32_t initialValue)
    {
        X86Assembler::revertJumpTo_movl_i32r(instructionStart.executableAddress(), initialValue, s_scratchRegister);
    }

    static void revertJumpReplacementToBranchPtrWithPatch(CodeLocationLabel instructionStart, RegisterID, void* initialValue)
    {
        X86Assembler::revertJumpTo_movq_i64r(instructionStart.executableAddress(), reinterpret_cast<intptr_t>(initialValue), s_scratchRegister);
    }

    static void repatchCall(CodeLocationCall call, CodeLocationLabel destination)
    {
        X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPATCH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress());
    }

    static void repatchCall(CodeLocationCall call, FunctionPtr destination)
    {
        X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPATCH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress());
    }

private:
    // If lzcnt is not available, use this after BSR
    // to count the leading zeros.
    void clz64AfterBsr(RegisterID dst)
    {
        Jump srcIsNonZero = m_assembler.jCC(x86Condition(NonZero));
        move(TrustedImm32(64), dst);

        Jump skipNonZeroCase = jump();
        srcIsNonZero.link(this);
        xor64(TrustedImm32(0x3f), dst);
        skipNonZeroCase.link(this);
    }

    friend class LinkBuffer;

    static void linkCall(void* code, Call call, FunctionPtr function)
    {
        if (!call.isFlagSet(Call::Near))
            X86Assembler::linkPointer(code, call.m_label.labelAtOffset(-REPATCH_OFFSET_CALL_R11), function.value());
        else if (call.isFlagSet(Call::Tail))
            X86Assembler::linkJump(code, call.m_label, function.value());
        else
            X86Assembler::linkCall(code, call.m_label, function.value());
    }
};

} // namespace JSC

#endif // ENABLE(ASSEMBLER)

#endif // MacroAssemblerX86_64_h