summaryrefslogtreecommitdiff
path: root/Source/JavaScriptCore/b3/B3EliminateCommonSubexpressions.cpp
blob: 567938e1eeffe7a044eb4f4f5edbaa93348e783a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
/*
 * Copyright (C) 2016 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#include "config.h"
#include "B3EliminateCommonSubexpressions.h"

#if ENABLE(B3_JIT)

#include "B3BasicBlockInlines.h"
#include "B3BlockWorklist.h"
#include "B3Dominators.h"
#include "B3HeapRange.h"
#include "B3InsertionSetInlines.h"
#include "B3MemoryValue.h"
#include "B3PhaseScope.h"
#include "B3ProcedureInlines.h"
#include "B3PureCSE.h"
#include "B3SlotBaseValue.h"
#include "B3StackSlot.h"
#include "B3ValueKey.h"
#include "B3ValueInlines.h"
#include "B3Variable.h"
#include "B3VariableValue.h"
#include "DFGGraph.h"
#include <wtf/CommaPrinter.h>
#include <wtf/HashMap.h>
#include <wtf/ListDump.h>
#include <wtf/RangeSet.h>

namespace JSC { namespace B3 {

namespace {

const bool verbose = false;

// FIXME: We could treat Patchpoints with a non-empty set of reads as a "memory value" and somehow
// eliminate redundant ones. We would need some way of determining if two patchpoints are replacable.
// It doesn't seem right to use the reads set for this. We could use the generator, but that feels
// lame because the FTL will pretty much use a unique generator for each patchpoint even when two
// patchpoints have the same semantics as far as CSE would be concerned. We could invent something
// like a "value ID" for patchpoints. By default, each one gets a unique value ID, but FTL could force
// some patchpoints to share the same one as a signal that they will return the same value if executed
// in the same heap with the same inputs.

typedef Vector<MemoryValue*, 1> MemoryMatches;

class MemoryValueMap {
public:
    MemoryValueMap() { }

    void add(MemoryValue* memory)
    {
        Matches& matches = m_map.add(memory->lastChild(), Matches()).iterator->value;
        if (matches.contains(memory))
            return;
        matches.append(memory);
    }

    template<typename Functor>
    void removeIf(const Functor& functor)
    {
        m_map.removeIf(
            [&] (HashMap<Value*, Matches>::KeyValuePairType& entry) -> bool {
                entry.value.removeAllMatching(
                    [&] (Value* value) -> bool {
                        if (MemoryValue* memory = value->as<MemoryValue>())
                            return functor(memory);
                        return true;
                    });
                return entry.value.isEmpty();
            });
    }

    Matches* find(Value* ptr)
    {
        auto iter = m_map.find(ptr);
        if (iter == m_map.end())
            return nullptr;
        return &iter->value;
    }

    template<typename Functor>
    MemoryValue* find(Value* ptr, const Functor& functor)
    {
        if (Matches* matches = find(ptr)) {
            for (Value* candidateValue : *matches) {
                if (MemoryValue* candidateMemory = candidateValue->as<MemoryValue>()) {
                    if (functor(candidateMemory))
                        return candidateMemory;
                }
            }
        }
        return nullptr;
    }

    void dump(PrintStream& out) const
    {
        out.print("{");
        CommaPrinter comma;
        for (auto& entry : m_map)
            out.print(comma, pointerDump(entry.key), "=>", pointerListDump(entry.value));
        out.print("}");
    }
    
private:
    // This uses Matches for two reasons:
    // - It cannot be a MemoryValue* because the key is imprecise. Many MemoryValues could have the
    //   same key while being unaliased.
    // - It can't be a MemoryMatches array because the MemoryValue*'s could be turned into Identity's.
    HashMap<Value*, Matches> m_map;
};

struct ImpureBlockData {
    void dump(PrintStream& out) const
    {
        out.print(
            "{reads = ", reads, ", writes = ", writes, ", storesAtHead = ", storesAtHead,
            ", memoryValuesAtTail = ", memoryValuesAtTail, "}");
    }

    RangeSet<HeapRange> reads; // This only gets used for forward store elimination.
    RangeSet<HeapRange> writes; // This gets used for both load and store elimination.

    MemoryValueMap storesAtHead;
    MemoryValueMap memoryValuesAtTail;
};

class CSE {
public:
    CSE(Procedure& proc)
        : m_proc(proc)
        , m_dominators(proc.dominators())
        , m_impureBlockData(proc.size())
        , m_insertionSet(proc)
    {
    }

    bool run()
    {
        if (verbose)
            dataLog("B3 before CSE:\n", m_proc);
        
        m_proc.resetValueOwners();

        // Summarize the impure effects of each block, and the impure values available at the end of
        // each block. This doesn't edit code yet.
        for (BasicBlock* block : m_proc) {
            ImpureBlockData& data = m_impureBlockData[block];
            for (Value* value : *block) {
                Effects effects = value->effects();
                MemoryValue* memory = value->as<MemoryValue>();
                
                if (memory && memory->isStore()
                    && !data.reads.overlaps(memory->range())
                    && !data.writes.overlaps(memory->range()))
                    data.storesAtHead.add(memory);
                data.reads.add(effects.reads);

                if (HeapRange writes = effects.writes)
                    clobber(data, writes);

                if (memory)
                    data.memoryValuesAtTail.add(memory);
            }

            if (verbose)
                dataLog("Block ", *block, ": ", data, "\n");
        }

        // Perform CSE. This edits code.
        Vector<BasicBlock*> postOrder = m_proc.blocksInPostOrder();
        for (unsigned i = postOrder.size(); i--;) {
            m_block = postOrder[i];
            if (verbose)
                dataLog("Looking at ", *m_block, ":\n");

            m_data = ImpureBlockData();
            for (m_index = 0; m_index < m_block->size(); ++m_index) {
                m_value = m_block->at(m_index);
                process();
            }
            m_insertionSet.execute(m_block);
            m_impureBlockData[m_block] = m_data;
        }

        // The previous pass might have requested that we insert code in some basic block other than
        // the one that it was looking at. This inserts them.
        for (BasicBlock* block : m_proc) {
            for (unsigned valueIndex = 0; valueIndex < block->size(); ++valueIndex) {
                auto iter = m_sets.find(block->at(valueIndex));
                if (iter == m_sets.end())
                    continue;

                for (Value* value : iter->value)
                    m_insertionSet.insertValue(valueIndex + 1, value);
            }
            m_insertionSet.execute(block);
        }

        if (verbose)
            dataLog("B3 after CSE:\n", m_proc);

        return m_changed;
    }
    
private:
    void process()
    {
        m_value->performSubstitution();

        if (m_pureCSE.process(m_value, m_dominators)) {
            ASSERT(!m_value->effects().writes);
            m_changed = true;
            return;
        }

        MemoryValue* memory = m_value->as<MemoryValue>();
        if (memory && processMemoryBeforeClobber(memory))
            return;

        if (HeapRange writes = m_value->effects().writes)
            clobber(m_data, writes);
        
        if (memory)
            processMemoryAfterClobber(memory);
    }

    // Return true if we got rid of the operation. If you changed IR in this function, you have to
    // set m_changed even if you also return true.
    bool processMemoryBeforeClobber(MemoryValue* memory)
    {
        Value* value = memory->child(0);
        Value* ptr = memory->lastChild();
        HeapRange range = memory->range();
        int32_t offset = memory->offset();

        switch (memory->opcode()) {
        case Store8:
            return handleStoreBeforeClobber(
                ptr, range,
                [&] (MemoryValue* candidate) -> bool {
                    return candidate->offset() == offset
                        && ((candidate->opcode() == Store8 && candidate->child(0) == value)
                            || ((candidate->opcode() == Load8Z || candidate->opcode() == Load8S)
                                && candidate == value));
                });
        case Store16:
            return handleStoreBeforeClobber(
                ptr, range,
                [&] (MemoryValue* candidate) -> bool {
                    return candidate->offset() == offset
                        && ((candidate->opcode() == Store16 && candidate->child(0) == value)
                            || ((candidate->opcode() == Load16Z || candidate->opcode() == Load16S)
                                && candidate == value));
                });
        case Store:
            return handleStoreBeforeClobber(
                ptr, range,
                [&] (MemoryValue* candidate) -> bool {
                    return candidate->offset() == offset
                        && ((candidate->opcode() == Store && candidate->child(0) == value)
                            || (candidate->opcode() == Load && candidate == value));
                });
        default:
            return false;
        }
    }

    void clobber(ImpureBlockData& data, HeapRange writes)
    {
        data.writes.add(writes);
        
        data.memoryValuesAtTail.removeIf(
            [&] (MemoryValue* memory) {
                return memory->range().overlaps(writes);
            });
    }

    void processMemoryAfterClobber(MemoryValue* memory)
    {
        Value* ptr = memory->lastChild();
        HeapRange range = memory->range();
        int32_t offset = memory->offset();
        Type type = memory->type();

        // FIXME: Empower this to insert more casts and shifts. For example, a Load8 could match a
        // Store and mask the result. You could even have:
        //
        // Store(@value, @ptr, offset = 0)
        // Load8Z(@ptr, offset = 2)
        //
        // Which could be turned into something like this:
        //
        // Store(@value, @ptr, offset = 0)
        // ZShr(@value, 16)
        
        switch (memory->opcode()) {
        case Load8Z: {
            handleMemoryValue(
                ptr, range,
                [&] (MemoryValue* candidate) -> bool {
                    return candidate->offset() == offset
                        && (candidate->opcode() == Load8Z || candidate->opcode() == Store8);
                },
                [&] (MemoryValue* match, Vector<Value*>& fixups) -> Value* {
                    if (match->opcode() == Store8) {
                        Value* mask = m_proc.add<Const32Value>(m_value->origin(), 0xff);
                        fixups.append(mask);
                        Value* zext = m_proc.add<Value>(
                            BitAnd, m_value->origin(), match->child(0), mask);
                        fixups.append(zext);
                        return zext;
                    }
                    return nullptr;
                });
            break;
        }

        case Load8S: {
            handleMemoryValue(
                ptr, range,
                [&] (MemoryValue* candidate) -> bool {
                    return candidate->offset() == offset
                        && (candidate->opcode() == Load8S || candidate->opcode() == Store8);
                },
                [&] (MemoryValue* match, Vector<Value*>& fixups) -> Value* {
                    if (match->opcode() == Store8) {
                        Value* sext = m_proc.add<Value>(
                            SExt8, m_value->origin(), match->child(0));
                        fixups.append(sext);
                        return sext;
                    }
                    return nullptr;
                });
            break;
        }

        case Load16Z: {
            handleMemoryValue(
                ptr, range,
                [&] (MemoryValue* candidate) -> bool {
                    return candidate->offset() == offset
                        && (candidate->opcode() == Load16Z || candidate->opcode() == Store16);
                },
                [&] (MemoryValue* match, Vector<Value*>& fixups) -> Value* {
                    if (match->opcode() == Store16) {
                        Value* mask = m_proc.add<Const32Value>(m_value->origin(), 0xffff);
                        fixups.append(mask);
                        Value* zext = m_proc.add<Value>(
                            BitAnd, m_value->origin(), match->child(0), mask);
                        fixups.append(zext);
                        return zext;
                    }
                    return nullptr;
                });
            break;
        }

        case Load16S: {
            handleMemoryValue(
                ptr, range, [&] (MemoryValue* candidate) -> bool {
                    return candidate->offset() == offset
                        && (candidate->opcode() == Load16S || candidate->opcode() == Store16);
                },
                [&] (MemoryValue* match, Vector<Value*>& fixups) -> Value* {
                    if (match->opcode() == Store16) {
                        Value* sext = m_proc.add<Value>(
                            SExt16, m_value->origin(), match->child(0));
                        fixups.append(sext);
                        return sext;
                    }
                    return nullptr;
                });
            break;
        }

        case Load: {
            handleMemoryValue(
                ptr, range,
                [&] (MemoryValue* candidate) -> bool {
                    if (candidate->offset() != offset)
                        return false;

                    if (candidate->opcode() == Load && candidate->type() == type)
                        return true;

                    if (candidate->opcode() == Store && candidate->child(0)->type() == type)
                        return true;

                    return false;
                });
            break;
        }

        case Store8: {
            handleStoreAfterClobber(
                ptr, range,
                [&] (MemoryValue* candidate) -> bool {
                    return candidate->opcode() == Store8
                        && candidate->offset() == offset;
                });
            break;
        }
            
        case Store16: {
            handleStoreAfterClobber(
                ptr, range,
                [&] (MemoryValue* candidate) -> bool {
                    return candidate->opcode() == Store16
                        && candidate->offset() == offset;
                });
            break;
        }
            
        case Store: {
            handleStoreAfterClobber(
                ptr, range,
                [&] (MemoryValue* candidate) -> bool {
                    return candidate->opcode() == Store
                        && candidate->offset() == offset;
                });
            break;
        }

        default:
            dataLog("Bad memory value: ", deepDump(m_proc, m_value), "\n");
            RELEASE_ASSERT_NOT_REACHED();
            break;
        }
    }

    template<typename Filter>
    bool handleStoreBeforeClobber(Value* ptr, HeapRange range, const Filter& filter)
    {
        MemoryMatches matches = findMemoryValue(ptr, range, filter);
        if (matches.isEmpty())
            return false;

        m_value->replaceWithNop();
        m_changed = true;
        return true;
    }

    template<typename Filter>
    void handleStoreAfterClobber(Value* ptr, HeapRange range, const Filter& filter)
    {
        if (findStoreAfterClobber(ptr, range, filter)) {
            m_value->replaceWithNop();
            m_changed = true;
            return;
        }

        m_data.memoryValuesAtTail.add(m_value->as<MemoryValue>());
    }

    template<typename Filter>
    bool findStoreAfterClobber(Value* ptr, HeapRange range, const Filter& filter)
    {
        // We can eliminate a store if every forward path hits a store to the same location before
        // hitting any operation that observes the store. This search seems like it should be
        // expensive, but in the overwhelming majority of cases it will almost immediately hit an 
        // operation that interferes.

        if (verbose)
            dataLog(*m_value, ": looking forward for stores to ", *ptr, "...\n");

        // First search forward in this basic block.
        // FIXME: It would be cool to get rid of this linear search. It's not super critical since
        // we will probably bail out very quickly, but it *is* annoying.
        for (unsigned index = m_index + 1; index < m_block->size(); ++index) {
            Value* value = m_block->at(index);

            if (MemoryValue* memoryValue = value->as<MemoryValue>()) {
                if (memoryValue->lastChild() == ptr && filter(memoryValue))
                    return true;
            }

            Effects effects = value->effects();
            if (effects.reads.overlaps(range) || effects.writes.overlaps(range))
                return false;
        }

        if (!m_block->numSuccessors())
            return false;

        BlockWorklist worklist;
        worklist.pushAll(m_block->successorBlocks());

        while (BasicBlock* block = worklist.pop()) {
            ImpureBlockData& data = m_impureBlockData[block];

            MemoryValue* match = data.storesAtHead.find(ptr, filter);
            if (match && match != m_value)
                continue;

            if (data.writes.overlaps(range) || data.reads.overlaps(range))
                return false;

            if (!block->numSuccessors())
                return false;

            worklist.pushAll(block->successorBlocks());
        }

        return true;
    }

    template<typename Filter>
    void handleMemoryValue(Value* ptr, HeapRange range, const Filter& filter)
    {
        handleMemoryValue(
            ptr, range, filter,
            [] (MemoryValue*, Vector<Value*>&) -> Value* {
                return nullptr;
            });
    }

    template<typename Filter, typename Replace>
    void handleMemoryValue(
        Value* ptr, HeapRange range, const Filter& filter, const Replace& replace)
    {
        MemoryMatches matches = findMemoryValue(ptr, range, filter);
        if (replaceMemoryValue(matches, replace))
            return;
        m_data.memoryValuesAtTail.add(m_value->as<MemoryValue>());
    }

    template<typename Replace>
    bool replaceMemoryValue(const MemoryMatches& matches, const Replace& replace)
    {
        if (matches.isEmpty())
            return false;

        if (verbose)
            dataLog("Eliminating ", *m_value, " due to ", pointerListDump(matches), "\n");
        
        m_changed = true;

        if (matches.size() == 1) {
            MemoryValue* dominatingMatch = matches[0];
            RELEASE_ASSERT(m_dominators.dominates(dominatingMatch->owner, m_block));
            
            if (verbose)
                dataLog("    Eliminating using ", *dominatingMatch, "\n");
            Vector<Value*> extraValues;
            if (Value* value = replace(dominatingMatch, extraValues)) {
                for (Value* extraValue : extraValues)
                    m_insertionSet.insertValue(m_index, extraValue);
                m_value->replaceWithIdentity(value);
            } else {
                if (dominatingMatch->isStore())
                    m_value->replaceWithIdentity(dominatingMatch->child(0));
                else
                    m_value->replaceWithIdentity(dominatingMatch);
            }
            return true;
        }

        // FIXME: It would be way better if this phase just did SSA calculation directly.
        // Right now we're relying on the fact that CSE's position in the phase order is
        // almost right before SSA fixup.

        Variable* variable = m_proc.addVariable(m_value->type());

        VariableValue* get = m_insertionSet.insert<VariableValue>(
            m_index, Get, m_value->origin(), variable);
        if (verbose)
            dataLog("    Inserting get of value: ", *get, "\n");
        m_value->replaceWithIdentity(get);
            
        for (MemoryValue* match : matches) {
            Vector<Value*>& sets = m_sets.add(match, Vector<Value*>()).iterator->value;

            Value* value = replace(match, sets);
            if (!value) {
                if (match->isStore())
                    value = match->child(0);
                else
                    value = match;
            }
                
            Value* set = m_proc.add<VariableValue>(Set, m_value->origin(), variable, value);
            sets.append(set);
        }

        return true;
    }

    template<typename Filter>
    MemoryMatches findMemoryValue(Value* ptr, HeapRange range, const Filter& filter)
    {
        if (verbose)
            dataLog(*m_value, ": looking backward for ", *ptr, "...\n");
        
        if (MemoryValue* match = m_data.memoryValuesAtTail.find(ptr, filter)) {
            if (verbose)
                dataLog("    Found ", *match, " locally.\n");
            return { match };
        }

        if (m_data.writes.overlaps(range)) {
            if (verbose)
                dataLog("    Giving up because of writes.\n");
            return { };
        }

        BlockWorklist worklist;
        worklist.pushAll(m_block->predecessors());

        MemoryMatches matches;

        while (BasicBlock* block = worklist.pop()) {
            if (verbose)
                dataLog("    Looking at ", *block, "\n");

            ImpureBlockData& data = m_impureBlockData[block];

            MemoryValue* match = data.memoryValuesAtTail.find(ptr, filter);
            if (match && match != m_value) {
                if (verbose)
                    dataLog("    Found match: ", *match, "\n");
                matches.append(match);
                continue;
            }

            if (data.writes.overlaps(range)) {
                if (verbose)
                    dataLog("    Giving up because of writes.\n");
                return { };
            }

            if (!block->numPredecessors()) {
                if (verbose)
                    dataLog("    Giving up because it's live at root.\n");
                // This essentially proves that this is live at the prologue. That means that we
                // cannot reliably optimize this case.
                return { };
            }
            
            worklist.pushAll(block->predecessors());
        }

        if (verbose)
            dataLog("    Got matches: ", pointerListDump(matches), "\n");
        return matches;
    }

    Procedure& m_proc;

    Dominators& m_dominators;
    PureCSE m_pureCSE;
    
    IndexMap<BasicBlock, ImpureBlockData> m_impureBlockData;

    ImpureBlockData m_data;

    BasicBlock* m_block;
    unsigned m_index;
    Value* m_value;

    HashMap<Value*, Vector<Value*>> m_sets;

    InsertionSet m_insertionSet;

    bool m_changed { false };
};

} // anonymous namespace

bool eliminateCommonSubexpressions(Procedure& proc)
{
    PhaseScope phaseScope(proc, "eliminateCommonSubexpressions");

    CSE cse(proc);
    return cse.run();
}

} } // namespace JSC::B3

#endif // ENABLE(B3_JIT)