summaryrefslogtreecommitdiff
path: root/Source/JavaScriptCore/b3/air/AirEmitShuffle.cpp
blob: 5faf133d8800d99ed5730135fbca95a66d86efee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
/*
 * Copyright (C) 2016 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#include "config.h"
#include "AirEmitShuffle.h"

#if ENABLE(B3_JIT)

#include "AirInstInlines.h"
#include "AirRegisterPriority.h"
#include <wtf/GraphNodeWorklist.h>
#include <wtf/ListDump.h>

namespace JSC { namespace B3 { namespace Air {

namespace {

bool verbose = false;

template<typename Functor>
Tmp findPossibleScratch(Arg::Type type, const Functor& functor) {
    for (Reg reg : regsInPriorityOrder(type)) {
        Tmp tmp(reg);
        if (functor(tmp))
            return tmp;
    }
    return Tmp();
}

Tmp findPossibleScratch(Arg::Type type, const Arg& arg1, const Arg& arg2) {
    return findPossibleScratch(
        type,
        [&] (Tmp tmp) -> bool {
            return !arg1.usesTmp(tmp) && !arg2.usesTmp(tmp);
        });
}

// Example: (a => b, b => a, a => c, b => d)
struct Rotate {
    Vector<ShufflePair> loop; // in the example, this is the loop: (a => b, b => a)
    Vector<ShufflePair> fringe; // in the example, these are the associated shifts: (a => c, b => d)
};

} // anonymous namespace

void ShufflePair::dump(PrintStream& out) const
{
    out.print(width(), ":", src(), "=>", dst());
}

Inst createShuffle(Value* origin, const Vector<ShufflePair>& pairs)
{
    Inst result(Shuffle, origin);
    for (const ShufflePair& pair : pairs)
        result.append(pair.src(), pair.dst(), Arg::widthArg(pair.width()));
    return result;
}

Vector<Inst> emitShuffle(
    Vector<ShufflePair> pairs, std::array<Arg, 2> scratches, Arg::Type type, Value* origin)
{
    if (verbose) {
        dataLog(
            "Dealing with pairs: ", listDump(pairs), " and scratches ", scratches[0], ", ",
            scratches[1], "\n");
    }
    
    pairs.removeAllMatching(
        [&] (const ShufflePair& pair) -> bool {
            return pair.src() == pair.dst();
        });
    
    // First validate that this is the kind of shuffle that we know how to deal with.
#if !ASSERT_DISABLED
    for (const ShufflePair& pair : pairs) {
        ASSERT(pair.src().isType(type));
        ASSERT(pair.dst().isType(type));
        ASSERT(pair.dst().isTmp() || pair.dst().isMemory());
    }
#endif // !ASSERT_DISABLED

    // There are two possible kinds of operations that we will do:
    //
    // - Shift. Example: (a => b, b => c). We emit this as "Move b, c; Move a, b". This only requires
    //   scratch registers if there are memory->memory moves. We want to find as many of these as
    //   possible because they are cheaper. Note that shifts can involve the same source mentioned
    //   multiple times. Example: (a => b, a => c, b => d, b => e).
    //
    // - Rotate. Example: (a => b, b => a). We want to emit this as "Swap a, b", but that instruction
    //   may not be available, in which case we may need a scratch register or a scratch memory
    //   location. A gnarlier example is (a => b, b => c, c => a). We can emit this as "Swap b, c;
    //   Swap a, b". Note that swapping has to be careful about differing widths.
    //
    // Note that a rotate can have "fringe". For example, we might have (a => b, b => a, a =>c,
    // b => d). This has a rotate loop (a => b, b => a) and some fringe (a => c, b => d). We treat
    // the whole thing as a single rotate.
    //
    // We will find multiple disjoint such operations. We can execute them in any order.

    // We interpret these as Moves that should be executed backwards. All shifts are keyed by their
    // starting source.
    HashMap<Arg, Vector<ShufflePair>> shifts;

    // We interpret these as Swaps over src()'s that should be executed backwards, i.e. for a list
    // of size 3 we would do "Swap list[1].src(), list[2].src(); Swap list[0].src(), list[1].src()".
    // Note that we actually can't do that if the widths don't match or other bad things happen.
    // But, prior to executing all of that, we need to execute the fringe: the shifts comming off the
    // rotate.
    Vector<Rotate> rotates;

    {
        HashMap<Arg, Vector<ShufflePair>> mapping;
        for (const ShufflePair& pair : pairs)
            mapping.add(pair.src(), Vector<ShufflePair>()).iterator->value.append(pair);

        Vector<ShufflePair> currentPairs;

        while (!mapping.isEmpty()) {
            ASSERT(currentPairs.isEmpty());
            Arg originalSrc = mapping.begin()->key;
            ASSERT(!shifts.contains(originalSrc));
            if (verbose)
                dataLog("Processing from ", originalSrc, "\n");
            
            GraphNodeWorklist<Arg> worklist;
            worklist.push(originalSrc);
            while (Arg src = worklist.pop()) {
                HashMap<Arg, Vector<ShufflePair>>::iterator iter = mapping.find(src);
                if (iter == mapping.end()) {
                    // With a shift it's possible that we previously built the tail of this shift.
                    // See if that's the case now.
                    if (verbose)
                        dataLog("Trying to append shift at ", src, "\n");
                    currentPairs.appendVector(shifts.take(src));
                    continue;
                }
                Vector<ShufflePair> pairs = WTFMove(iter->value);
                mapping.remove(iter);

                for (const ShufflePair& pair : pairs) {
                    currentPairs.append(pair);
                    ASSERT(pair.src() == src);
                    worklist.push(pair.dst());
                }
            }

            ASSERT(currentPairs.size());
            ASSERT(currentPairs[0].src() == originalSrc);

            if (verbose)
                dataLog("currentPairs = ", listDump(currentPairs), "\n");

            bool isRotate = false;
            for (const ShufflePair& pair : currentPairs) {
                if (pair.dst() == originalSrc) {
                    isRotate = true;
                    break;
                }
            }

            if (isRotate) {
                if (verbose)
                    dataLog("It's a rotate.\n");
                Rotate rotate;

                // The common case is that the rotate does not have fringe. The only way to
                // check for this is to examine the whole rotate.
                bool ok;
                if (currentPairs.last().dst() == originalSrc) {
                    ok = true;
                    for (unsigned i = currentPairs.size() - 1; i--;)
                        ok &= currentPairs[i].dst() == currentPairs[i + 1].src();
                } else
                    ok = false;
                
                if (ok)
                    rotate.loop = WTFMove(currentPairs);
                else {
                    // This is the slow path. The rotate has fringe.
                    
                    HashMap<Arg, ShufflePair> dstMapping;
                    for (const ShufflePair& pair : currentPairs)
                        dstMapping.add(pair.dst(), pair);

                    ShufflePair pair = dstMapping.take(originalSrc);
                    for (;;) {
                        rotate.loop.append(pair);

                        auto iter = dstMapping.find(pair.src());
                        if (iter == dstMapping.end())
                            break;
                        pair = iter->value;
                        dstMapping.remove(iter);
                    }

                    rotate.loop.reverse();

                    // Make sure that the fringe appears in the same order as how it appeared in the
                    // currentPairs, since that's the DFS order.
                    for (const ShufflePair& pair : currentPairs) {
                        // But of course we only include it if it's not in the loop.
                        if (dstMapping.contains(pair.dst()))
                            rotate.fringe.append(pair);
                    }
                }
                
                // If the graph search terminates because we returned to the first source, then the
                // pair list has to have a very particular shape.
                for (unsigned i = rotate.loop.size() - 1; i--;)
                    ASSERT(rotate.loop[i].dst() == rotate.loop[i + 1].src());
                rotates.append(WTFMove(rotate));
                currentPairs.resize(0);
            } else {
                if (verbose)
                    dataLog("It's a shift.\n");
                shifts.add(originalSrc, WTFMove(currentPairs));
            }
        }
    }

    if (verbose) {
        dataLog("Shifts:\n");
        for (auto& entry : shifts)
            dataLog("    ", entry.key, ": ", listDump(entry.value), "\n");
        dataLog("Rotates:\n");
        for (auto& rotate : rotates)
            dataLog("    loop = ", listDump(rotate.loop), ", fringe = ", listDump(rotate.fringe), "\n");
    }

    // In the worst case, we need two scratch registers. The way we do this is that the client passes
    // us what scratch registers he happens to have laying around. We will need scratch registers in
    // the following cases:
    //
    // - Shuffle pairs where both src and dst refer to memory.
    // - Rotate when no Swap instruction is available.
    //
    // Lucky for us, we are guaranteed to have extra scratch registers anytime we have a Shift that
    // ends with a register. We search for such a register right now.

    auto moveForWidth = [&] (Arg::Width width) -> Opcode {
        switch (width) {
        case Arg::Width32:
            return type == Arg::GP ? Move32 : MoveFloat;
        case Arg::Width64:
            return type == Arg::GP ? Move : MoveDouble;
        default:
            RELEASE_ASSERT_NOT_REACHED();
        }
    };

    Opcode conservativeMove = moveForWidth(Arg::conservativeWidth(type));

    // We will emit things in reverse. We maintain a list of packs of instructions, and then we emit
    // append them together in reverse (for example the thing at the end of resultPacks is placed
    // first). This is useful because the last thing we emit frees up its destination registers, so
    // it affects how we emit things before it.
    Vector<Vector<Inst>> resultPacks;
    Vector<Inst> result;

    auto commitResult = [&] () {
        resultPacks.append(WTFMove(result));
    };

    auto getScratch = [&] (unsigned index, Tmp possibleScratch) -> Tmp {
        if (scratches[index].isTmp())
            return scratches[index].tmp();

        if (!possibleScratch)
            return Tmp();
        result.append(Inst(conservativeMove, origin, possibleScratch, scratches[index]));
        return possibleScratch;
    };

    auto returnScratch = [&] (unsigned index, Tmp tmp) {
        if (Arg(tmp) != scratches[index])
            result.append(Inst(conservativeMove, origin, scratches[index], tmp));
    };

    auto handleShiftPair = [&] (const ShufflePair& pair, unsigned scratchIndex) {
        Opcode move = moveForWidth(pair.width());
        
        if (!isValidForm(move, pair.src().kind(), pair.dst().kind())) {
            Tmp scratch =
                getScratch(scratchIndex, findPossibleScratch(type, pair.src(), pair.dst()));
            RELEASE_ASSERT(scratch);
            if (isValidForm(move, pair.src().kind(), Arg::Tmp))
                result.append(Inst(moveForWidth(pair.width()), origin, pair.src(), scratch));
            else {
                ASSERT(pair.src().isSomeImm());
                ASSERT(move == Move32);
                result.append(Inst(Move, origin, Arg::bigImm(pair.src().value()), scratch));
            }
            result.append(Inst(moveForWidth(pair.width()), origin, scratch, pair.dst()));
            returnScratch(scratchIndex, scratch);
            return;
        }
        
        result.append(Inst(move, origin, pair.src(), pair.dst()));
    };

    auto handleShift = [&] (Vector<ShufflePair>& shift) {
        // FIXME: We could optimize the spill behavior of the shifter by checking if any of the
        // shifts need spills. If they do, then we could try to get a register out here. Note that
        // this may fail where the current strategy succeeds: out here we need a register that does
        // not interfere with any of the shifts, while the current strategy only needs to find a
        // scratch register that does not interfer with a particular shift. So, this optimization
        // will be opportunistic: if it succeeds, then the individual shifts can use that scratch,
        // otherwise they will do what they do now.
        
        for (unsigned i = shift.size(); i--;)
            handleShiftPair(shift[i], 0);

        Arg lastDst = shift.last().dst();
        if (lastDst.isTmp()) {
            for (Arg& scratch : scratches) {
                ASSERT(scratch != lastDst);
                if (!scratch.isTmp()) {
                    scratch = lastDst;
                    break;
                }
            }
        }
    };

    // First handle shifts whose last destination is a tmp because these free up scratch registers.
    // These end up last in the final sequence, so the final destination of these shifts will be
    // available as a scratch location for anything emitted prior (so, after, since we're emitting in
    // reverse).
    for (auto& entry : shifts) {
        Vector<ShufflePair>& shift = entry.value;
        if (shift.last().dst().isTmp())
            handleShift(shift);
        commitResult();
    }

    // Now handle the rest of the shifts.
    for (auto& entry : shifts) {
        Vector<ShufflePair>& shift = entry.value;
        if (!shift.last().dst().isTmp())
            handleShift(shift);
        commitResult();
    }

    for (Rotate& rotate : rotates) {
        if (!rotate.fringe.isEmpty()) {
            // Make sure we do the fringe first! This won't clobber any of the registers that are
            // part of the rotation.
            handleShift(rotate.fringe);
        }
        
        bool canSwap = false;
        Opcode swap = Oops;
        Arg::Width swapWidth = Arg::Width8; // bogus value

        // Currently, the swap instruction is not available for floating point on any architecture we
        // support.
        if (type == Arg::GP) {
            // Figure out whether we will be doing 64-bit swaps or 32-bit swaps. If we have a mix of
            // widths we handle that by fixing up the relevant register with zero-extends.
            swap = Swap32;
            swapWidth = Arg::Width32;
            bool hasMemory = false;
            bool hasIndex = false;
            for (ShufflePair& pair : rotate.loop) {
                switch (pair.width()) {
                case Arg::Width32:
                    break;
                case Arg::Width64:
                    swap = Swap64;
                    swapWidth = Arg::Width64;
                    break;
                default:
                    RELEASE_ASSERT_NOT_REACHED();
                    break;
                }

                hasMemory |= pair.src().isMemory() || pair.dst().isMemory();
                hasIndex |= pair.src().isIndex() || pair.dst().isIndex();
            }
            
            canSwap = isValidForm(swap, Arg::Tmp, Arg::Tmp);

            // We can totally use swaps even if there are shuffles involving memory. But, we play it
            // safe in that case. There are corner cases we don't handle, and our ability to do it is
            // contingent upon swap form availability.
            
            if (hasMemory) {
                canSwap &= isValidForm(swap, Arg::Tmp, Arg::Addr);
                
                // We don't take the swapping path if there is a mix of widths and some of the
                // shuffles involve memory. That gets too confusing. We might be able to relax this
                // to only bail if there are subwidth pairs involving memory, but I haven't thought
                // about it very hard. Anyway, this case is not common: rotates involving memory
                // don't arise for function calls, and they will only happen for rotates in user code
                // if some of the variables get spilled. It's hard to imagine a program that rotates
                // data around in variables while also doing a combination of uint32->uint64 and
                // int64->int32 casts.
                for (ShufflePair& pair : rotate.loop)
                    canSwap &= pair.width() == swapWidth;
            }

            if (hasIndex)
                canSwap &= isValidForm(swap, Arg::Tmp, Arg::Index);
        }

        if (canSwap) {
            for (unsigned i = rotate.loop.size() - 1; i--;) {
                Arg left = rotate.loop[i].src();
                Arg right = rotate.loop[i + 1].src();

                if (left.isMemory() && right.isMemory()) {
                    // Note that this is a super rare outcome. Rotates are rare. Spills are rare.
                    // Moving data between two spills is rare. To get here a lot of rare stuff has to
                    // all happen at once.
                    
                    Tmp scratch = getScratch(0, findPossibleScratch(type, left, right));
                    RELEASE_ASSERT(scratch);
                    result.append(Inst(moveForWidth(swapWidth), origin, left, scratch));
                    result.append(Inst(swap, origin, scratch, right));
                    result.append(Inst(moveForWidth(swapWidth), origin, scratch, left));
                    returnScratch(0, scratch);
                    continue;
                }

                if (left.isMemory())
                    std::swap(left, right);
                
                result.append(Inst(swap, origin, left, right));
            }

            for (ShufflePair pair : rotate.loop) {
                if (pair.width() == swapWidth)
                    continue;

                RELEASE_ASSERT(pair.width() == Arg::Width32);
                RELEASE_ASSERT(swapWidth == Arg::Width64);
                RELEASE_ASSERT(pair.dst().isTmp());

                // Need to do an extra zero extension.
                result.append(Inst(Move32, origin, pair.dst(), pair.dst()));
            }
        } else {
            // We can treat this as a shift so long as we take the last destination (i.e. first
            // source) and save it first. Then we handle the first entry in the pair in the rotate
            // specially, after we restore the last destination. This requires some special care to
            // find a scratch register. It's possible that we have a rotate that uses the entire
            // available register file.

            Tmp scratch = findPossibleScratch(
                type,
                [&] (Tmp tmp) -> bool {
                    for (ShufflePair pair : rotate.loop) {
                        if (pair.src().usesTmp(tmp))
                            return false;
                        if (pair.dst().usesTmp(tmp))
                            return false;
                    }
                    return true;
                });

            // NOTE: This is the most likely use of scratch registers.
            scratch = getScratch(0, scratch);

            // We may not have found a scratch register. When this happens, we can just use the spill
            // slot directly.
            Arg rotateSave = scratch ? Arg(scratch) : scratches[0];
            
            handleShiftPair(
                ShufflePair(rotate.loop.last().dst(), rotateSave, rotate.loop[0].width()), 1);

            for (unsigned i = rotate.loop.size(); i-- > 1;)
                handleShiftPair(rotate.loop[i], 1);

            handleShiftPair(
                ShufflePair(rotateSave, rotate.loop[0].dst(), rotate.loop[0].width()), 1);

            if (scratch)
                returnScratch(0, scratch);
        }

        commitResult();
    }

    ASSERT(result.isEmpty());

    for (unsigned i = resultPacks.size(); i--;)
        result.appendVector(resultPacks[i]);

    return result;
}

Vector<Inst> emitShuffle(
    const Vector<ShufflePair>& pairs,
    const std::array<Arg, 2>& gpScratch, const std::array<Arg, 2>& fpScratch,
    Value* origin)
{
    Vector<ShufflePair> gpPairs;
    Vector<ShufflePair> fpPairs;
    for (const ShufflePair& pair : pairs) {
        if (pair.src().isMemory() && pair.dst().isMemory() && pair.width() > Arg::pointerWidth()) {
            // 8-byte memory-to-memory moves on a 32-bit platform are best handled as float moves.
            fpPairs.append(pair);
        } else if (pair.src().isGP() && pair.dst().isGP()) {
            // This means that gpPairs gets memory-to-memory shuffles. The assumption is that we
            // can do that more efficiently using GPRs, except in the special case above.
            gpPairs.append(pair);
        } else
            fpPairs.append(pair);
    }

    Vector<Inst> result;
    result.appendVector(emitShuffle(gpPairs, gpScratch, Arg::GP, origin));
    result.appendVector(emitShuffle(fpPairs, fpScratch, Arg::FP, origin));
    return result;
}

} } } // namespace JSC::B3::Air

#endif // ENABLE(B3_JIT)