1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
/*
* Copyright (C) 2011-2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef DFGAbstractValue_h
#define DFGAbstractValue_h
#if ENABLE(DFG_JIT)
#include "ArrayProfile.h"
#include "DFGFiltrationResult.h"
#include "DFGFrozenValue.h"
#include "DFGNodeFlags.h"
#include "DFGStructureAbstractValue.h"
#include "DFGStructureClobberState.h"
#include "InferredType.h"
#include "JSCell.h"
#include "ResultType.h"
#include "SpeculatedType.h"
#include "DumpContext.h"
#include "StructureSet.h"
namespace JSC {
class TrackedReferences;
namespace DFG {
class Graph;
struct Node;
struct AbstractValue {
AbstractValue()
: m_type(SpecNone)
, m_arrayModes(0)
{
}
void clear()
{
m_type = SpecNone;
m_arrayModes = 0;
m_structure.clear();
m_value = JSValue();
checkConsistency();
}
bool isClear() const { return m_type == SpecNone; }
bool operator!() const { return isClear(); }
void makeHeapTop()
{
makeTop(SpecHeapTop);
}
void makeBytecodeTop()
{
makeTop(SpecBytecodeTop);
}
void makeFullTop()
{
makeTop(SpecFullTop);
}
void clobberStructures()
{
if (m_type & SpecCell) {
m_structure.clobber();
clobberArrayModes();
} else {
ASSERT(m_structure.isClear());
ASSERT(!m_arrayModes);
}
checkConsistency();
}
static void clobberStructuresFor(AbstractValue& value)
{
value.clobberStructures();
}
void observeInvalidationPoint()
{
m_structure.observeInvalidationPoint();
checkConsistency();
}
static void observeInvalidationPointFor(AbstractValue& value)
{
value.observeInvalidationPoint();
}
void observeTransition(Structure* from, Structure* to)
{
if (m_type & SpecCell) {
m_structure.observeTransition(from, to);
observeIndexingTypeTransition(from->indexingType(), to->indexingType());
}
checkConsistency();
}
void observeTransitions(const TransitionVector& vector);
class TransitionObserver {
public:
TransitionObserver(Structure* from, Structure* to)
: m_from(from)
, m_to(to)
{
}
void operator()(AbstractValue& value)
{
value.observeTransition(m_from, m_to);
}
private:
Structure* m_from;
Structure* m_to;
};
class TransitionsObserver {
public:
TransitionsObserver(const TransitionVector& vector)
: m_vector(vector)
{
}
void operator()(AbstractValue& value)
{
value.observeTransitions(m_vector);
}
private:
const TransitionVector& m_vector;
};
void clobberValue()
{
m_value = JSValue();
}
bool isHeapTop() const
{
return (m_type | SpecHeapTop) == m_type
&& m_structure.isTop()
&& m_arrayModes == ALL_ARRAY_MODES
&& !m_value;
}
bool valueIsTop() const
{
return !m_value && m_type;
}
JSValue value() const
{
return m_value;
}
static AbstractValue heapTop()
{
AbstractValue result;
result.makeHeapTop();
return result;
}
static AbstractValue bytecodeTop()
{
AbstractValue result;
result.makeBytecodeTop();
return result;
}
static AbstractValue fullTop()
{
AbstractValue result;
result.makeFullTop();
return result;
}
void set(Graph&, const FrozenValue&, StructureClobberState);
void set(Graph&, Structure*);
void set(Graph&, const StructureSet&);
// Set this value to represent the given set of types as precisely as possible.
void setType(Graph&, SpeculatedType);
// As above, but only valid for non-cell types.
void setType(SpeculatedType type)
{
RELEASE_ASSERT(!(type & SpecCell));
m_structure.clear();
m_arrayModes = 0;
m_type = type;
m_value = JSValue();
checkConsistency();
}
void set(Graph&, const InferredType::Descriptor&);
void set(Graph&, const InferredType::Descriptor&, StructureClobberState);
void fixTypeForRepresentation(Graph&, NodeFlags representation, Node* = nullptr);
void fixTypeForRepresentation(Graph&, Node*);
bool operator==(const AbstractValue& other) const
{
return m_type == other.m_type
&& m_arrayModes == other.m_arrayModes
&& m_structure == other.m_structure
&& m_value == other.m_value;
}
bool operator!=(const AbstractValue& other) const
{
return !(*this == other);
}
bool merge(const AbstractValue& other)
{
if (other.isClear())
return false;
#if !ASSERT_DISABLED
AbstractValue oldMe = *this;
#endif
bool result = false;
if (isClear()) {
*this = other;
result = !other.isClear();
} else {
result |= mergeSpeculation(m_type, other.m_type);
result |= mergeArrayModes(m_arrayModes, other.m_arrayModes);
result |= m_structure.merge(other.m_structure);
if (m_value != other.m_value) {
result |= !!m_value;
m_value = JSValue();
}
}
checkConsistency();
ASSERT(result == (*this != oldMe));
return result;
}
bool mergeOSREntryValue(Graph&, JSValue);
void merge(SpeculatedType type)
{
mergeSpeculation(m_type, type);
if (type & SpecCell) {
m_structure.makeTop();
m_arrayModes = ALL_ARRAY_MODES;
}
m_value = JSValue();
checkConsistency();
}
bool couldBeType(SpeculatedType desiredType) const
{
return !!(m_type & desiredType);
}
bool isType(SpeculatedType desiredType) const
{
return !(m_type & ~desiredType);
}
bool isType(Graph&, const InferredType::Descriptor&) const;
// Filters the value using the given structure set. If the admittedTypes argument is not passed, this
// implicitly filters by the types implied by the structure set, which are usually a subset of
// SpecCell. Hence, after this call, the value will no longer have any non-cell members. But, you can
// use admittedTypes to preserve some non-cell types. Note that it's wrong for admittedTypes to overlap
// with SpecCell.
FiltrationResult filter(Graph&, const StructureSet&, SpeculatedType admittedTypes = SpecNone);
FiltrationResult filterArrayModes(ArrayModes);
FiltrationResult filter(SpeculatedType);
FiltrationResult filterByValue(const FrozenValue& value);
FiltrationResult filter(const AbstractValue&);
FiltrationResult filter(Graph&, const InferredType::Descriptor&);
FiltrationResult changeStructure(Graph&, const StructureSet&);
bool contains(Structure*) const;
bool validate(JSValue value) const
{
if (isHeapTop())
return true;
if (!!m_value && m_value != value)
return false;
if (mergeSpeculations(m_type, speculationFromValue(value)) != m_type)
return false;
if (value.isEmpty()) {
ASSERT(m_type & SpecEmpty);
return true;
}
if (!!value && value.isCell()) {
ASSERT(m_type & SpecCell);
Structure* structure = value.asCell()->structure();
return m_structure.contains(structure)
&& (m_arrayModes & asArrayModes(structure->indexingType()));
}
return true;
}
bool hasClobberableState() const
{
return m_structure.isNeitherClearNorTop()
|| !arrayModesAreClearOrTop(m_arrayModes);
}
#if ASSERT_DISABLED
void checkConsistency() const { }
void assertIsRegistered(Graph&) const { }
#else
void checkConsistency() const;
void assertIsRegistered(Graph&) const;
#endif
ResultType resultType() const;
void dumpInContext(PrintStream&, DumpContext*) const;
void dump(PrintStream&) const;
void validateReferences(const TrackedReferences&);
// This is a proven constraint on the structures that this value can have right
// now. The structure of the current value must belong to this set. The set may
// be TOP, indicating that it is the set of all possible structures, in which
// case the current value can have any structure. The set may be BOTTOM (empty)
// in which case this value cannot be a cell. This is all subject to change
// anytime a new value is assigned to this one, anytime there is a control flow
// merge, or most crucially, anytime a side-effect or structure check happens.
// In case of a side-effect, we must assume that any value with a structure that
// isn't being watched may have had its structure changed, hence contravening
// our proof. In such a case we make the proof valid again by switching this to
// TOP (i.e. claiming that we have proved that this value may have any
// structure).
StructureAbstractValue m_structure;
// This is a proven constraint on the possible types that this value can have
// now or any time in the future, unless it is reassigned. This field is
// impervious to side-effects. The relationship between this field, and the
// structure fields above, is as follows. The fields above constraint the
// structures that a cell may have, but they say nothing about whether or not
// the value is known to be a cell. More formally, the m_structure is itself an
// abstract value that consists of the union of the set of all non-cell values
// and the set of cell values that have the given structure. This abstract
// value is then the intersection of the m_structure and the set of values
// whose type is m_type. So, for example if m_type is SpecFinal|SpecInt32 and
// m_structure is [0x12345] then this abstract value corresponds to the set of
// all integers unified with the set of all objects with structure 0x12345.
SpeculatedType m_type;
// This is a proven constraint on the possible indexing types that this value
// can have right now. It also implicitly constraints the set of structures
// that the value may have right now, since a structure has an immutable
// indexing type. This is subject to change upon reassignment, or any side
// effect that makes non-obvious changes to the heap.
ArrayModes m_arrayModes;
// This is a proven constraint on the possible values that this value can
// have now or any time in the future, unless it is reassigned. Note that this
// implies nothing about the structure. Oddly, JSValue() (i.e. the empty value)
// means either BOTTOM or TOP depending on the state of m_type: if m_type is
// BOTTOM then JSValue() means BOTTOM; if m_type is not BOTTOM then JSValue()
// means TOP. Also note that this value isn't necessarily known to the GC
// (strongly or even weakly - it may be an "fragile" value, see
// DFGValueStrength.h). If you perform any optimization based on a cell m_value
// that requires that the value be kept alive, you must call freeze() on that
// value, which will turn it into a weak value.
JSValue m_value;
private:
void clobberArrayModes()
{
// FIXME: We could make this try to predict the set of array modes that this object
// could have in the future. For now, just do the simple thing.
m_arrayModes = ALL_ARRAY_MODES;
}
void observeIndexingTypeTransition(IndexingType from, IndexingType to)
{
if (m_arrayModes & asArrayModes(from))
m_arrayModes |= asArrayModes(to);
}
bool validateType(JSValue value) const
{
if (isHeapTop())
return true;
// Constant folding always represents Int52's in a double (i.e. Int52AsDouble).
// So speculationFromValue(value) for an Int52 value will return Int52AsDouble,
// and that's fine - the type validates just fine.
SpeculatedType type = m_type;
if (type & SpecInt52)
type |= SpecInt52AsDouble;
if (mergeSpeculations(type, speculationFromValue(value)) != type)
return false;
if (value.isEmpty()) {
ASSERT(m_type & SpecEmpty);
return true;
}
return true;
}
void makeTop(SpeculatedType top)
{
m_type |= top;
m_arrayModes = ALL_ARRAY_MODES;
m_structure.makeTop();
m_value = JSValue();
checkConsistency();
}
void filterValueByType();
void filterArrayModesByType();
bool shouldBeClear() const;
FiltrationResult normalizeClarity();
FiltrationResult normalizeClarity(Graph&);
};
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
#endif // DFGAbstractValue_h
|