1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
|
/*
* Copyright (C) 2011-2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef DFGGraph_h
#define DFGGraph_h
#if ENABLE(DFG_JIT)
#include "AssemblyHelpers.h"
#include "BytecodeLivenessAnalysisInlines.h"
#include "CodeBlock.h"
#include "DFGArgumentPosition.h"
#include "DFGBasicBlock.h"
#include "DFGFrozenValue.h"
#include "DFGLongLivedState.h"
#include "DFGNode.h"
#include "DFGNodeAllocator.h"
#include "DFGPlan.h"
#include "DFGPropertyTypeKey.h"
#include "DFGScannable.h"
#include "FullBytecodeLiveness.h"
#include "JSStack.h"
#include "MethodOfGettingAValueProfile.h"
#include <unordered_map>
#include <wtf/BitVector.h>
#include <wtf/HashMap.h>
#include <wtf/Vector.h>
#include <wtf/StdLibExtras.h>
namespace JSC {
class CodeBlock;
class ExecState;
namespace DFG {
class CFG;
class Dominators;
class NaturalLoops;
class PrePostNumbering;
#define DFG_NODE_DO_TO_CHILDREN(graph, node, thingToDo) do { \
Node* _node = (node); \
if (_node->flags() & NodeHasVarArgs) { \
for (unsigned _childIdx = _node->firstChild(); \
_childIdx < _node->firstChild() + _node->numChildren(); \
_childIdx++) { \
if (!!(graph).m_varArgChildren[_childIdx]) \
thingToDo(_node, (graph).m_varArgChildren[_childIdx]); \
} \
} else { \
if (!_node->child1()) { \
ASSERT( \
!_node->child2() \
&& !_node->child3()); \
break; \
} \
thingToDo(_node, _node->child1()); \
\
if (!_node->child2()) { \
ASSERT(!_node->child3()); \
break; \
} \
thingToDo(_node, _node->child2()); \
\
if (!_node->child3()) \
break; \
thingToDo(_node, _node->child3()); \
} \
} while (false)
#define DFG_ASSERT(graph, node, assertion) do { \
if (!!(assertion)) \
break; \
(graph).handleAssertionFailure( \
(node), __FILE__, __LINE__, WTF_PRETTY_FUNCTION, #assertion); \
} while (false)
#define DFG_CRASH(graph, node, reason) do { \
(graph).handleAssertionFailure( \
(node), __FILE__, __LINE__, WTF_PRETTY_FUNCTION, (reason)); \
} while (false)
struct InlineVariableData {
InlineCallFrame* inlineCallFrame;
unsigned argumentPositionStart;
VariableAccessData* calleeVariable;
};
enum AddSpeculationMode {
DontSpeculateInt32,
SpeculateInt32AndTruncateConstants,
SpeculateInt32
};
//
// === Graph ===
//
// The order may be significant for nodes with side-effects (property accesses, value conversions).
// Nodes that are 'dead' remain in the vector with refCount 0.
class Graph : public virtual Scannable {
public:
Graph(VM&, Plan&, LongLivedState&);
~Graph();
void changeChild(Edge& edge, Node* newNode)
{
edge.setNode(newNode);
}
void changeEdge(Edge& edge, Edge newEdge)
{
edge = newEdge;
}
void compareAndSwap(Edge& edge, Node* oldNode, Node* newNode)
{
if (edge.node() != oldNode)
return;
changeChild(edge, newNode);
}
void compareAndSwap(Edge& edge, Edge oldEdge, Edge newEdge)
{
if (edge != oldEdge)
return;
changeEdge(edge, newEdge);
}
void performSubstitution(Node* node)
{
if (node->flags() & NodeHasVarArgs) {
for (unsigned childIdx = node->firstChild(); childIdx < node->firstChild() + node->numChildren(); childIdx++)
performSubstitutionForEdge(m_varArgChildren[childIdx]);
} else {
performSubstitutionForEdge(node->child1());
performSubstitutionForEdge(node->child2());
performSubstitutionForEdge(node->child3());
}
}
void performSubstitutionForEdge(Edge& child)
{
// Check if this operand is actually unused.
if (!child)
return;
// Check if there is any replacement.
Node* replacement = child->replacement();
if (!replacement)
return;
child.setNode(replacement);
// There is definitely a replacement. Assert that the replacement does not
// have a replacement.
ASSERT(!child->replacement());
}
template<typename... Params>
Node* addNode(SpeculatedType type, Params... params)
{
Node* node = new (m_allocator) Node(params...);
node->predict(type);
return node;
}
void dethread();
FrozenValue* freeze(JSValue); // We use weak freezing by default.
FrozenValue* freezeStrong(JSValue); // Shorthand for freeze(value)->strengthenTo(StrongValue).
void convertToConstant(Node* node, FrozenValue* value);
void convertToConstant(Node* node, JSValue value);
void convertToStrongConstant(Node* node, JSValue value);
StructureRegistrationResult registerStructure(Structure* structure);
void assertIsRegistered(Structure* structure);
// CodeBlock is optional, but may allow additional information to be dumped (e.g. Identifier names).
void dump(PrintStream& = WTF::dataFile(), DumpContext* = 0);
bool terminalsAreValid();
enum PhiNodeDumpMode { DumpLivePhisOnly, DumpAllPhis };
void dumpBlockHeader(PrintStream&, const char* prefix, BasicBlock*, PhiNodeDumpMode, DumpContext*);
void dump(PrintStream&, Edge);
void dump(PrintStream&, const char* prefix, Node*, DumpContext* = 0);
static int amountOfNodeWhiteSpace(Node*);
static void printNodeWhiteSpace(PrintStream&, Node*);
// Dump the code origin of the given node as a diff from the code origin of the
// preceding node. Returns true if anything was printed.
bool dumpCodeOrigin(PrintStream&, const char* prefix, Node*& previousNode, Node* currentNode, DumpContext*);
AddSpeculationMode addSpeculationMode(Node* add, bool leftShouldSpeculateInt32, bool rightShouldSpeculateInt32, PredictionPass pass)
{
ASSERT(add->op() == ValueAdd || add->op() == ArithAdd || add->op() == ArithSub);
RareCaseProfilingSource source = add->sourceFor(pass);
Node* left = add->child1().node();
Node* right = add->child2().node();
if (left->hasConstant())
return addImmediateShouldSpeculateInt32(add, rightShouldSpeculateInt32, right, left, source);
if (right->hasConstant())
return addImmediateShouldSpeculateInt32(add, leftShouldSpeculateInt32, left, right, source);
return (leftShouldSpeculateInt32 && rightShouldSpeculateInt32 && add->canSpeculateInt32(source)) ? SpeculateInt32 : DontSpeculateInt32;
}
AddSpeculationMode valueAddSpeculationMode(Node* add, PredictionPass pass)
{
return addSpeculationMode(
add,
add->child1()->shouldSpeculateInt32OrBooleanExpectingDefined(),
add->child2()->shouldSpeculateInt32OrBooleanExpectingDefined(),
pass);
}
AddSpeculationMode arithAddSpeculationMode(Node* add, PredictionPass pass)
{
return addSpeculationMode(
add,
add->child1()->shouldSpeculateInt32OrBooleanForArithmetic(),
add->child2()->shouldSpeculateInt32OrBooleanForArithmetic(),
pass);
}
AddSpeculationMode addSpeculationMode(Node* add, PredictionPass pass)
{
if (add->op() == ValueAdd)
return valueAddSpeculationMode(add, pass);
return arithAddSpeculationMode(add, pass);
}
bool addShouldSpeculateInt32(Node* add, PredictionPass pass)
{
return addSpeculationMode(add, pass) != DontSpeculateInt32;
}
bool addShouldSpeculateMachineInt(Node* add)
{
if (!enableInt52())
return false;
Node* left = add->child1().node();
Node* right = add->child2().node();
bool speculation = Node::shouldSpeculateMachineInt(left, right);
return speculation && !hasExitSite(add, Int52Overflow);
}
bool binaryArithShouldSpeculateInt32(Node* node, PredictionPass pass)
{
Node* left = node->child1().node();
Node* right = node->child2().node();
return Node::shouldSpeculateInt32OrBooleanForArithmetic(left, right)
&& node->canSpeculateInt32(node->sourceFor(pass));
}
bool binaryArithShouldSpeculateMachineInt(Node* node, PredictionPass pass)
{
if (!enableInt52())
return false;
Node* left = node->child1().node();
Node* right = node->child2().node();
return Node::shouldSpeculateMachineInt(left, right)
&& node->canSpeculateInt52(pass)
&& !hasExitSite(node, Int52Overflow);
}
bool unaryArithShouldSpeculateInt32(Node* node, PredictionPass pass)
{
return node->child1()->shouldSpeculateInt32OrBooleanForArithmetic()
&& node->canSpeculateInt32(pass);
}
bool unaryArithShouldSpeculateMachineInt(Node* node, PredictionPass pass)
{
if (!enableInt52())
return false;
return node->child1()->shouldSpeculateMachineInt()
&& node->canSpeculateInt52(pass)
&& !hasExitSite(node, Int52Overflow);
}
bool canOptimizeStringObjectAccess(const CodeOrigin&);
bool roundShouldSpeculateInt32(Node* arithRound, PredictionPass pass)
{
ASSERT(arithRound->op() == ArithRound || arithRound->op() == ArithFloor || arithRound->op() == ArithCeil);
return arithRound->canSpeculateInt32(pass) && !hasExitSite(arithRound->origin.semantic, Overflow) && !hasExitSite(arithRound->origin.semantic, NegativeZero);
}
static const char *opName(NodeType);
StructureSet* addStructureSet(const StructureSet& structureSet)
{
for (Structure* structure : structureSet)
registerStructure(structure);
m_structureSet.append(structureSet);
return &m_structureSet.last();
}
JSGlobalObject* globalObjectFor(CodeOrigin codeOrigin)
{
return m_codeBlock->globalObjectFor(codeOrigin);
}
JSObject* globalThisObjectFor(CodeOrigin codeOrigin)
{
JSGlobalObject* object = globalObjectFor(codeOrigin);
return jsCast<JSObject*>(object->methodTable()->toThis(object, object->globalExec(), NotStrictMode));
}
ScriptExecutable* executableFor(InlineCallFrame* inlineCallFrame)
{
if (!inlineCallFrame)
return m_codeBlock->ownerScriptExecutable();
return inlineCallFrame->baselineCodeBlock->ownerScriptExecutable();
}
ScriptExecutable* executableFor(const CodeOrigin& codeOrigin)
{
return executableFor(codeOrigin.inlineCallFrame);
}
CodeBlock* baselineCodeBlockFor(InlineCallFrame* inlineCallFrame)
{
if (!inlineCallFrame)
return m_profiledBlock;
return baselineCodeBlockForInlineCallFrame(inlineCallFrame);
}
CodeBlock* baselineCodeBlockFor(const CodeOrigin& codeOrigin)
{
return baselineCodeBlockForOriginAndBaselineCodeBlock(codeOrigin, m_profiledBlock);
}
bool isStrictModeFor(CodeOrigin codeOrigin)
{
if (!codeOrigin.inlineCallFrame)
return m_codeBlock->isStrictMode();
return codeOrigin.inlineCallFrame->isStrictMode();
}
ECMAMode ecmaModeFor(CodeOrigin codeOrigin)
{
return isStrictModeFor(codeOrigin) ? StrictMode : NotStrictMode;
}
bool masqueradesAsUndefinedWatchpointIsStillValid(const CodeOrigin& codeOrigin)
{
return globalObjectFor(codeOrigin)->masqueradesAsUndefinedWatchpoint()->isStillValid();
}
bool hasGlobalExitSite(const CodeOrigin& codeOrigin, ExitKind exitKind)
{
return baselineCodeBlockFor(codeOrigin)->hasExitSite(FrequentExitSite(exitKind));
}
bool hasExitSite(const CodeOrigin& codeOrigin, ExitKind exitKind)
{
return baselineCodeBlockFor(codeOrigin)->hasExitSite(FrequentExitSite(codeOrigin.bytecodeIndex, exitKind));
}
bool hasExitSite(Node* node, ExitKind exitKind)
{
return hasExitSite(node->origin.semantic, exitKind);
}
ValueProfile* valueProfileFor(Node*);
MethodOfGettingAValueProfile methodOfGettingAValueProfileFor(Node*);
BlockIndex numBlocks() const { return m_blocks.size(); }
BasicBlock* block(BlockIndex blockIndex) const { return m_blocks[blockIndex].get(); }
BasicBlock* lastBlock() const { return block(numBlocks() - 1); }
void appendBlock(PassRefPtr<BasicBlock> basicBlock)
{
basicBlock->index = m_blocks.size();
m_blocks.append(basicBlock);
}
void killBlock(BlockIndex blockIndex)
{
m_blocks[blockIndex] = nullptr;
}
void killBlock(BasicBlock* basicBlock)
{
killBlock(basicBlock->index);
}
void killBlockAndItsContents(BasicBlock*);
void killUnreachableBlocks();
void determineReachability();
void resetReachability();
void computeRefCounts();
unsigned varArgNumChildren(Node* node)
{
ASSERT(node->flags() & NodeHasVarArgs);
return node->numChildren();
}
unsigned numChildren(Node* node)
{
if (node->flags() & NodeHasVarArgs)
return varArgNumChildren(node);
return AdjacencyList::Size;
}
Edge& varArgChild(Node* node, unsigned index)
{
ASSERT(node->flags() & NodeHasVarArgs);
return m_varArgChildren[node->firstChild() + index];
}
Edge& child(Node* node, unsigned index)
{
if (node->flags() & NodeHasVarArgs)
return varArgChild(node, index);
return node->children.child(index);
}
void voteNode(Node* node, unsigned ballot, float weight = 1)
{
switch (node->op()) {
case ValueToInt32:
case UInt32ToNumber:
node = node->child1().node();
break;
default:
break;
}
if (node->op() == GetLocal)
node->variableAccessData()->vote(ballot, weight);
}
void voteNode(Edge edge, unsigned ballot, float weight = 1)
{
voteNode(edge.node(), ballot, weight);
}
void voteChildren(Node* node, unsigned ballot, float weight = 1)
{
if (node->flags() & NodeHasVarArgs) {
for (unsigned childIdx = node->firstChild();
childIdx < node->firstChild() + node->numChildren();
childIdx++) {
if (!!m_varArgChildren[childIdx])
voteNode(m_varArgChildren[childIdx], ballot, weight);
}
return;
}
if (!node->child1())
return;
voteNode(node->child1(), ballot, weight);
if (!node->child2())
return;
voteNode(node->child2(), ballot, weight);
if (!node->child3())
return;
voteNode(node->child3(), ballot, weight);
}
template<typename T> // T = Node* or Edge
void substitute(BasicBlock& block, unsigned startIndexInBlock, T oldThing, T newThing)
{
for (unsigned indexInBlock = startIndexInBlock; indexInBlock < block.size(); ++indexInBlock) {
Node* node = block[indexInBlock];
if (node->flags() & NodeHasVarArgs) {
for (unsigned childIdx = node->firstChild(); childIdx < node->firstChild() + node->numChildren(); ++childIdx) {
if (!!m_varArgChildren[childIdx])
compareAndSwap(m_varArgChildren[childIdx], oldThing, newThing);
}
continue;
}
if (!node->child1())
continue;
compareAndSwap(node->children.child1(), oldThing, newThing);
if (!node->child2())
continue;
compareAndSwap(node->children.child2(), oldThing, newThing);
if (!node->child3())
continue;
compareAndSwap(node->children.child3(), oldThing, newThing);
}
}
// Use this if you introduce a new GetLocal and you know that you introduced it *before*
// any GetLocals in the basic block.
// FIXME: it may be appropriate, in the future, to generalize this to handle GetLocals
// introduced anywhere in the basic block.
void substituteGetLocal(BasicBlock& block, unsigned startIndexInBlock, VariableAccessData* variableAccessData, Node* newGetLocal);
void invalidateCFG();
void clearFlagsOnAllNodes(NodeFlags);
void clearReplacements();
void clearEpochs();
void initializeNodeOwners();
BlockList blocksInPreOrder();
BlockList blocksInPostOrder();
class NaturalBlockIterable {
public:
NaturalBlockIterable()
: m_graph(nullptr)
{
}
NaturalBlockIterable(Graph& graph)
: m_graph(&graph)
{
}
class iterator {
public:
iterator()
: m_graph(nullptr)
, m_index(0)
{
}
iterator(Graph& graph, BlockIndex index)
: m_graph(&graph)
, m_index(findNext(index))
{
}
BasicBlock *operator*()
{
return m_graph->block(m_index);
}
iterator& operator++()
{
m_index = findNext(m_index + 1);
return *this;
}
bool operator==(const iterator& other) const
{
return m_index == other.m_index;
}
bool operator!=(const iterator& other) const
{
return !(*this == other);
}
private:
BlockIndex findNext(BlockIndex index)
{
while (index < m_graph->numBlocks() && !m_graph->block(index))
index++;
return index;
}
Graph* m_graph;
BlockIndex m_index;
};
iterator begin()
{
return iterator(*m_graph, 0);
}
iterator end()
{
return iterator(*m_graph, m_graph->numBlocks());
}
private:
Graph* m_graph;
};
NaturalBlockIterable blocksInNaturalOrder()
{
return NaturalBlockIterable(*this);
}
template<typename ChildFunctor>
void doToChildrenWithNode(Node* node, const ChildFunctor& functor)
{
DFG_NODE_DO_TO_CHILDREN(*this, node, functor);
}
template<typename ChildFunctor>
void doToChildren(Node* node, const ChildFunctor& functor)
{
doToChildrenWithNode(
node,
[&functor] (Node*, Edge& edge) {
functor(edge);
});
}
bool uses(Node* node, Node* child)
{
bool result = false;
doToChildren(node, [&] (Edge edge) { result |= edge == child; });
return result;
}
Profiler::Compilation* compilation() { return m_plan.compilation.get(); }
DesiredIdentifiers& identifiers() { return m_plan.identifiers; }
DesiredWatchpoints& watchpoints() { return m_plan.watchpoints; }
// Returns false if the key is already invalid or unwatchable. If this is a Presence condition,
// this also makes it cheap to query if the condition holds. Also makes sure that the GC knows
// what's going on.
bool watchCondition(const ObjectPropertyCondition&);
// Checks if it's known that loading from the given object at the given offset is fine. This is
// computed by tracking which conditions we track with watchCondition().
bool isSafeToLoad(JSObject* base, PropertyOffset);
void registerInferredType(const InferredType::Descriptor& type)
{
if (type.structure())
registerStructure(type.structure());
}
// Tells us what inferred type we are able to prove the property to have now and in the future.
InferredType::Descriptor inferredTypeFor(const PropertyTypeKey&);
InferredType::Descriptor inferredTypeForProperty(Structure* structure, UniquedStringImpl* uid)
{
return inferredTypeFor(PropertyTypeKey(structure, uid));
}
AbstractValue inferredValueForProperty(
const StructureSet& base, UniquedStringImpl* uid, StructureClobberState = StructuresAreWatched);
// This uses either constant property inference or property type inference to derive a good abstract
// value for some property accessed with the given abstract value base.
AbstractValue inferredValueForProperty(
const AbstractValue& base, UniquedStringImpl* uid, PropertyOffset, StructureClobberState);
FullBytecodeLiveness& livenessFor(CodeBlock*);
FullBytecodeLiveness& livenessFor(InlineCallFrame*);
// Quickly query if a single local is live at the given point. This is faster than calling
// forAllLiveInBytecode() if you will only query one local. But, if you want to know all of the
// locals live, then calling this for each local is much slower than forAllLiveInBytecode().
bool isLiveInBytecode(VirtualRegister, CodeOrigin);
// Quickly get all of the non-argument locals live at the given point. This doesn't give you
// any arguments because those are all presumed live. You can call forAllLiveInBytecode() to
// also get the arguments. This is much faster than calling isLiveInBytecode() for each local.
template<typename Functor>
void forAllLocalsLiveInBytecode(CodeOrigin codeOrigin, const Functor& functor)
{
// Support for not redundantly reporting arguments. Necessary because in case of a varargs
// call, only the callee knows that arguments are live while in the case of a non-varargs
// call, both callee and caller will see the variables live.
VirtualRegister exclusionStart;
VirtualRegister exclusionEnd;
CodeOrigin* codeOriginPtr = &codeOrigin;
for (;;) {
InlineCallFrame* inlineCallFrame = codeOriginPtr->inlineCallFrame;
VirtualRegister stackOffset(inlineCallFrame ? inlineCallFrame->stackOffset : 0);
if (inlineCallFrame) {
if (inlineCallFrame->isClosureCall)
functor(stackOffset + JSStack::Callee);
if (inlineCallFrame->isVarargs())
functor(stackOffset + JSStack::ArgumentCount);
}
CodeBlock* codeBlock = baselineCodeBlockFor(inlineCallFrame);
FullBytecodeLiveness& fullLiveness = livenessFor(codeBlock);
const FastBitVector& liveness = fullLiveness.getLiveness(codeOriginPtr->bytecodeIndex);
for (unsigned relativeLocal = codeBlock->m_numCalleeLocals; relativeLocal--;) {
VirtualRegister reg = stackOffset + virtualRegisterForLocal(relativeLocal);
// Don't report if our callee already reported.
if (reg >= exclusionStart && reg < exclusionEnd)
continue;
if (liveness.get(relativeLocal))
functor(reg);
}
if (!inlineCallFrame)
break;
// Arguments are always live. This would be redundant if it wasn't for our
// op_call_varargs inlining. See the comment above.
exclusionStart = stackOffset + CallFrame::argumentOffsetIncludingThis(0);
exclusionEnd = stackOffset + CallFrame::argumentOffsetIncludingThis(inlineCallFrame->arguments.size());
// We will always have a "this" argument and exclusionStart should be a smaller stack
// offset than exclusionEnd.
ASSERT(exclusionStart < exclusionEnd);
for (VirtualRegister reg = exclusionStart; reg < exclusionEnd; reg += 1)
functor(reg);
codeOriginPtr = inlineCallFrame->getCallerSkippingTailCalls();
// The first inline call frame could be an inline tail call
if (!codeOriginPtr)
break;
}
}
// Get a BitVector of all of the non-argument locals live right now. This is mostly useful if
// you want to compare two sets of live locals from two different CodeOrigins.
BitVector localsLiveInBytecode(CodeOrigin);
// Tells you all of the arguments and locals live at the given CodeOrigin. This is a small
// extension to forAllLocalsLiveInBytecode(), since all arguments are always presumed live.
template<typename Functor>
void forAllLiveInBytecode(CodeOrigin codeOrigin, const Functor& functor)
{
forAllLocalsLiveInBytecode(codeOrigin, functor);
// Report all arguments as being live.
for (unsigned argument = block(0)->variablesAtHead.numberOfArguments(); argument--;)
functor(virtualRegisterForArgument(argument));
}
BytecodeKills& killsFor(CodeBlock*);
BytecodeKills& killsFor(InlineCallFrame*);
unsigned frameRegisterCount();
unsigned stackPointerOffset();
unsigned requiredRegisterCountForExit();
unsigned requiredRegisterCountForExecutionAndExit();
JSValue tryGetConstantProperty(JSValue base, const StructureSet&, PropertyOffset);
JSValue tryGetConstantProperty(JSValue base, Structure*, PropertyOffset);
JSValue tryGetConstantProperty(JSValue base, const StructureAbstractValue&, PropertyOffset);
JSValue tryGetConstantProperty(const AbstractValue&, PropertyOffset);
JSValue tryGetConstantClosureVar(JSValue base, ScopeOffset);
JSValue tryGetConstantClosureVar(const AbstractValue&, ScopeOffset);
JSValue tryGetConstantClosureVar(Node*, ScopeOffset);
JSArrayBufferView* tryGetFoldableView(JSValue);
JSArrayBufferView* tryGetFoldableView(JSValue, ArrayMode arrayMode);
void registerFrozenValues();
virtual void visitChildren(SlotVisitor&) override;
NO_RETURN_DUE_TO_CRASH void handleAssertionFailure(
std::nullptr_t, const char* file, int line, const char* function,
const char* assertion);
NO_RETURN_DUE_TO_CRASH void handleAssertionFailure(
Node*, const char* file, int line, const char* function,
const char* assertion);
NO_RETURN_DUE_TO_CRASH void handleAssertionFailure(
BasicBlock*, const char* file, int line, const char* function,
const char* assertion);
bool hasDebuggerEnabled() const { return m_hasDebuggerEnabled; }
void ensureDominators();
void ensurePrePostNumbering();
void ensureNaturalLoops();
// This function only makes sense to call after bytecode parsing
// because it queries the m_hasExceptionHandlers boolean whose value
// is only fully determined after bytcode parsing.
bool willCatchExceptionInMachineFrame(CodeOrigin, CodeOrigin& opCatchOriginOut, HandlerInfo*& catchHandlerOut);
VM& m_vm;
Plan& m_plan;
CodeBlock* m_codeBlock;
CodeBlock* m_profiledBlock;
NodeAllocator& m_allocator;
Vector< RefPtr<BasicBlock> , 8> m_blocks;
Vector<Edge, 16> m_varArgChildren;
HashMap<EncodedJSValue, FrozenValue*, EncodedJSValueHash, EncodedJSValueHashTraits> m_frozenValueMap;
Bag<FrozenValue> m_frozenValues;
Vector<uint32_t> m_uint32ValuesInUse;
Bag<StorageAccessData> m_storageAccessData;
// In CPS, this is all of the SetArgument nodes for the arguments in the machine code block
// that survived DCE. All of them except maybe "this" will survive DCE, because of the Flush
// nodes.
//
// In SSA, this is all of the GetStack nodes for the arguments in the machine code block that
// may have some speculation in the prologue and survived DCE. Note that to get the speculation
// for an argument in SSA, you must use m_argumentFormats, since we still have to speculate
// even if the argument got killed. For example:
//
// function foo(x) {
// var tmp = x + 1;
// }
//
// Assume that x is always int during profiling. The ArithAdd for "x + 1" will be dead and will
// have a proven check for the edge to "x". So, we will not insert a Check node and we will
// kill the GetStack for "x". But, we must do the int check in the progolue, because that's the
// thing we used to allow DCE of ArithAdd. Otherwise the add could be impure:
//
// var o = {
// valueOf: function() { do side effects; }
// };
// foo(o);
//
// If we DCE the ArithAdd and we remove the int check on x, then this won't do the side
// effects.
Vector<Node*, 8> m_arguments;
// In CPS, this is meaningless. In SSA, this is the argument speculation that we've locked in.
Vector<FlushFormat> m_argumentFormats;
SegmentedVector<VariableAccessData, 16> m_variableAccessData;
SegmentedVector<ArgumentPosition, 8> m_argumentPositions;
SegmentedVector<StructureSet, 16> m_structureSet;
Bag<Transition> m_transitions;
SegmentedVector<NewArrayBufferData, 4> m_newArrayBufferData;
Bag<BranchData> m_branchData;
Bag<SwitchData> m_switchData;
Bag<MultiGetByOffsetData> m_multiGetByOffsetData;
Bag<MultiPutByOffsetData> m_multiPutByOffsetData;
Bag<ObjectMaterializationData> m_objectMaterializationData;
Bag<CallVarargsData> m_callVarargsData;
Bag<LoadVarargsData> m_loadVarargsData;
Bag<StackAccessData> m_stackAccessData;
Vector<InlineVariableData, 4> m_inlineVariableData;
HashMap<CodeBlock*, std::unique_ptr<FullBytecodeLiveness>> m_bytecodeLiveness;
HashMap<CodeBlock*, std::unique_ptr<BytecodeKills>> m_bytecodeKills;
HashSet<std::pair<JSObject*, PropertyOffset>> m_safeToLoad;
HashMap<PropertyTypeKey, InferredType::Descriptor> m_inferredTypes;
std::unique_ptr<Dominators> m_dominators;
std::unique_ptr<PrePostNumbering> m_prePostNumbering;
std::unique_ptr<NaturalLoops> m_naturalLoops;
std::unique_ptr<CFG> m_cfg;
unsigned m_localVars;
unsigned m_nextMachineLocal;
unsigned m_parameterSlots;
#if USE(JSVALUE32_64)
std::unordered_map<int64_t, double*> m_doubleConstantsMap;
std::unique_ptr<Bag<double>> m_doubleConstants;
#endif
OptimizationFixpointState m_fixpointState;
StructureRegistrationState m_structureRegistrationState;
GraphForm m_form;
UnificationState m_unificationState;
PlanStage m_planStage { PlanStage::Initial };
RefCountState m_refCountState;
bool m_hasDebuggerEnabled;
bool m_hasExceptionHandlers { false };
private:
bool isStringPrototypeMethodSane(JSObject* stringPrototype, Structure* stringPrototypeStructure, UniquedStringImpl*);
void handleSuccessor(Vector<BasicBlock*, 16>& worklist, BasicBlock*, BasicBlock* successor);
AddSpeculationMode addImmediateShouldSpeculateInt32(Node* add, bool variableShouldSpeculateInt32, Node* operand, Node*immediate, RareCaseProfilingSource source)
{
ASSERT(immediate->hasConstant());
JSValue immediateValue = immediate->asJSValue();
if (!immediateValue.isNumber() && !immediateValue.isBoolean())
return DontSpeculateInt32;
if (!variableShouldSpeculateInt32)
return DontSpeculateInt32;
// Integer constants can be typed Double if they are written like a double in the source code (e.g. 42.0).
// In that case, we stay conservative unless the other operand was explicitly typed as integer.
NodeFlags operandResultType = operand->result();
if (operandResultType != NodeResultInt32 && immediateValue.isDouble())
return DontSpeculateInt32;
if (immediateValue.isBoolean() || jsNumber(immediateValue.asNumber()).isInt32())
return add->canSpeculateInt32(source) ? SpeculateInt32 : DontSpeculateInt32;
double doubleImmediate = immediateValue.asDouble();
const double twoToThe48 = 281474976710656.0;
if (doubleImmediate < -twoToThe48 || doubleImmediate > twoToThe48)
return DontSpeculateInt32;
return bytecodeCanTruncateInteger(add->arithNodeFlags()) ? SpeculateInt32AndTruncateConstants : DontSpeculateInt32;
}
};
} } // namespace JSC::DFG
#endif
#endif
|