1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
|
/*
* Copyright (C) 2011, 2012, 2013 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef DFGGraph_h
#define DFGGraph_h
#include <wtf/Platform.h>
#if ENABLE(DFG_JIT)
#include "CodeBlock.h"
#include "DFGArgumentPosition.h"
#include "DFGAssemblyHelpers.h"
#include "DFGBasicBlock.h"
#include "DFGDominators.h"
#include "DFGLongLivedState.h"
#include "DFGNode.h"
#include "DFGNodeAllocator.h"
#include "DFGVariadicFunction.h"
#include "JSStack.h"
#include "MethodOfGettingAValueProfile.h"
#include <wtf/BitVector.h>
#include <wtf/HashMap.h>
#include <wtf/Vector.h>
#include <wtf/StdLibExtras.h>
namespace JSC {
class CodeBlock;
class ExecState;
namespace DFG {
struct StorageAccessData {
size_t offset;
unsigned identifierNumber;
};
struct ResolveGlobalData {
unsigned identifierNumber;
ResolveOperations* resolveOperations;
PutToBaseOperation* putToBaseOperation;
unsigned resolvePropertyIndex;
};
struct ResolveOperationData {
unsigned identifierNumber;
ResolveOperations* resolveOperations;
PutToBaseOperation* putToBaseOperation;
};
struct PutToBaseOperationData {
PutToBaseOperation* putToBaseOperation;
};
enum AddSpeculationMode {
DontSpeculateInteger,
SpeculateIntegerAndTruncateConstants,
SpeculateInteger
};
//
// === Graph ===
//
// The order may be significant for nodes with side-effects (property accesses, value conversions).
// Nodes that are 'dead' remain in the vector with refCount 0.
class Graph {
public:
Graph(VM&, CodeBlock*, unsigned osrEntryBytecodeIndex, const Operands<JSValue>& mustHandleValues);
~Graph();
void changeChild(Edge& edge, Node* newNode)
{
edge.setNode(newNode);
}
void changeEdge(Edge& edge, Edge newEdge)
{
edge = newEdge;
}
void compareAndSwap(Edge& edge, Node* oldNode, Node* newNode)
{
if (edge.node() != oldNode)
return;
changeChild(edge, newNode);
}
void compareAndSwap(Edge& edge, Edge oldEdge, Edge newEdge)
{
if (edge != oldEdge)
return;
changeEdge(edge, newEdge);
}
void clearAndDerefChild(Node* node, unsigned index)
{
if (!node->children.child(index))
return;
node->children.setChild(index, Edge());
}
void clearAndDerefChild1(Node* node) { clearAndDerefChild(node, 0); }
void clearAndDerefChild2(Node* node) { clearAndDerefChild(node, 1); }
void clearAndDerefChild3(Node* node) { clearAndDerefChild(node, 2); }
void performSubstitution(Node* node)
{
if (node->flags() & NodeHasVarArgs) {
for (unsigned childIdx = node->firstChild(); childIdx < node->firstChild() + node->numChildren(); childIdx++)
performSubstitutionForEdge(m_varArgChildren[childIdx]);
} else {
performSubstitutionForEdge(node->child1());
performSubstitutionForEdge(node->child2());
performSubstitutionForEdge(node->child3());
}
}
void performSubstitutionForEdge(Edge& child)
{
// Check if this operand is actually unused.
if (!child)
return;
// Check if there is any replacement.
Node* replacement = child->replacement;
if (!replacement)
return;
child.setNode(replacement);
// There is definitely a replacement. Assert that the replacement does not
// have a replacement.
ASSERT(!child->replacement);
}
#define DFG_DEFINE_ADD_NODE(templatePre, templatePost, typeParams, valueParamsComma, valueParams, valueArgs) \
templatePre typeParams templatePost Node* addNode(SpeculatedType type valueParamsComma valueParams) \
{ \
Node* node = new (m_allocator) Node(valueArgs); \
node->predict(type); \
return node; \
}
DFG_VARIADIC_TEMPLATE_FUNCTION(DFG_DEFINE_ADD_NODE)
#undef DFG_DEFINE_ADD_NODE
void dethread();
void convertToConstant(Node* node, unsigned constantNumber)
{
if (node->op() == GetLocal)
dethread();
else
ASSERT(!node->hasVariableAccessData());
node->convertToConstant(constantNumber);
}
void convertToConstant(Node* node, JSValue value)
{
convertToConstant(node, m_codeBlock->addOrFindConstant(value));
}
// CodeBlock is optional, but may allow additional information to be dumped (e.g. Identifier names).
void dump(PrintStream& = WTF::dataFile());
enum PhiNodeDumpMode { DumpLivePhisOnly, DumpAllPhis };
void dumpBlockHeader(PrintStream&, const char* prefix, BlockIndex, PhiNodeDumpMode);
void dump(PrintStream&, Edge);
void dump(PrintStream&, const char* prefix, Node*);
static int amountOfNodeWhiteSpace(Node*);
static void printNodeWhiteSpace(PrintStream&, Node*);
// Dump the code origin of the given node as a diff from the code origin of the
// preceding node. Returns true if anything was printed.
bool dumpCodeOrigin(PrintStream&, const char* prefix, Node* previousNode, Node* currentNode);
BlockIndex blockIndexForBytecodeOffset(Vector<BlockIndex>& blocks, unsigned bytecodeBegin);
SpeculatedType getJSConstantSpeculation(Node* node)
{
return speculationFromValue(node->valueOfJSConstant(m_codeBlock));
}
AddSpeculationMode addSpeculationMode(Node* add, bool leftShouldSpeculateInteger, bool rightShouldSpeculateInteger)
{
ASSERT(add->op() == ValueAdd || add->op() == ArithAdd || add->op() == ArithSub);
Node* left = add->child1().node();
Node* right = add->child2().node();
if (left->hasConstant())
return addImmediateShouldSpeculateInteger(add, rightShouldSpeculateInteger, left);
if (right->hasConstant())
return addImmediateShouldSpeculateInteger(add, leftShouldSpeculateInteger, right);
return (leftShouldSpeculateInteger && rightShouldSpeculateInteger && add->canSpeculateInteger()) ? SpeculateInteger : DontSpeculateInteger;
}
AddSpeculationMode valueAddSpeculationMode(Node* add)
{
return addSpeculationMode(add, add->child1()->shouldSpeculateIntegerExpectingDefined(), add->child2()->shouldSpeculateIntegerExpectingDefined());
}
AddSpeculationMode arithAddSpeculationMode(Node* add)
{
return addSpeculationMode(add, add->child1()->shouldSpeculateIntegerForArithmetic(), add->child2()->shouldSpeculateIntegerForArithmetic());
}
AddSpeculationMode addSpeculationMode(Node* add)
{
if (add->op() == ValueAdd)
return valueAddSpeculationMode(add);
return arithAddSpeculationMode(add);
}
bool addShouldSpeculateInteger(Node* add)
{
return addSpeculationMode(add) != DontSpeculateInteger;
}
bool mulShouldSpeculateInteger(Node* mul)
{
ASSERT(mul->op() == ArithMul);
Node* left = mul->child1().node();
Node* right = mul->child2().node();
return Node::shouldSpeculateIntegerForArithmetic(left, right) && mul->canSpeculateInteger();
}
bool negateShouldSpeculateInteger(Node* negate)
{
ASSERT(negate->op() == ArithNegate);
return negate->child1()->shouldSpeculateIntegerForArithmetic() && negate->canSpeculateInteger();
}
// Helper methods to check nodes for constants.
bool isConstant(Node* node)
{
return node->hasConstant();
}
bool isJSConstant(Node* node)
{
return node->hasConstant();
}
bool isInt32Constant(Node* node)
{
return node->isInt32Constant(m_codeBlock);
}
bool isDoubleConstant(Node* node)
{
return node->isDoubleConstant(m_codeBlock);
}
bool isNumberConstant(Node* node)
{
return node->isNumberConstant(m_codeBlock);
}
bool isBooleanConstant(Node* node)
{
return node->isBooleanConstant(m_codeBlock);
}
bool isCellConstant(Node* node)
{
if (!isJSConstant(node))
return false;
JSValue value = valueOfJSConstant(node);
return value.isCell() && !!value;
}
bool isFunctionConstant(Node* node)
{
if (!isJSConstant(node))
return false;
if (!getJSFunction(valueOfJSConstant(node)))
return false;
return true;
}
bool isInternalFunctionConstant(Node* node)
{
if (!isJSConstant(node))
return false;
JSValue value = valueOfJSConstant(node);
if (!value.isCell() || !value)
return false;
JSCell* cell = value.asCell();
if (!cell->inherits(&InternalFunction::s_info))
return false;
return true;
}
// Helper methods get constant values from nodes.
JSValue valueOfJSConstant(Node* node)
{
return node->valueOfJSConstant(m_codeBlock);
}
int32_t valueOfInt32Constant(Node* node)
{
return valueOfJSConstant(node).asInt32();
}
double valueOfNumberConstant(Node* node)
{
return valueOfJSConstant(node).asNumber();
}
bool valueOfBooleanConstant(Node* node)
{
return valueOfJSConstant(node).asBoolean();
}
JSFunction* valueOfFunctionConstant(Node* node)
{
JSCell* function = getJSFunction(valueOfJSConstant(node));
ASSERT(function);
return jsCast<JSFunction*>(function);
}
static const char *opName(NodeType);
StructureSet* addStructureSet(const StructureSet& structureSet)
{
ASSERT(structureSet.size());
m_structureSet.append(structureSet);
return &m_structureSet.last();
}
StructureTransitionData* addStructureTransitionData(const StructureTransitionData& structureTransitionData)
{
m_structureTransitionData.append(structureTransitionData);
return &m_structureTransitionData.last();
}
JSGlobalObject* globalObjectFor(CodeOrigin codeOrigin)
{
return m_codeBlock->globalObjectFor(codeOrigin);
}
JSObject* globalThisObjectFor(CodeOrigin codeOrigin)
{
JSGlobalObject* object = globalObjectFor(codeOrigin);
return object->methodTable()->toThisObject(object, 0);
}
ExecutableBase* executableFor(InlineCallFrame* inlineCallFrame)
{
if (!inlineCallFrame)
return m_codeBlock->ownerExecutable();
return inlineCallFrame->executable.get();
}
ExecutableBase* executableFor(const CodeOrigin& codeOrigin)
{
return executableFor(codeOrigin.inlineCallFrame);
}
CodeBlock* baselineCodeBlockFor(const CodeOrigin& codeOrigin)
{
return baselineCodeBlockForOriginAndBaselineCodeBlock(codeOrigin, m_profiledBlock);
}
bool hasGlobalExitSite(const CodeOrigin& codeOrigin, ExitKind exitKind)
{
return baselineCodeBlockFor(codeOrigin)->hasExitSite(FrequentExitSite(exitKind));
}
bool hasExitSite(const CodeOrigin& codeOrigin, ExitKind exitKind)
{
return baselineCodeBlockFor(codeOrigin)->hasExitSite(FrequentExitSite(codeOrigin.bytecodeIndex, exitKind));
}
int argumentsRegisterFor(const CodeOrigin& codeOrigin)
{
if (!codeOrigin.inlineCallFrame)
return m_codeBlock->argumentsRegister();
return baselineCodeBlockForInlineCallFrame(
codeOrigin.inlineCallFrame)->argumentsRegister() +
codeOrigin.inlineCallFrame->stackOffset;
}
int uncheckedArgumentsRegisterFor(const CodeOrigin& codeOrigin)
{
if (!codeOrigin.inlineCallFrame)
return m_codeBlock->uncheckedArgumentsRegister();
CodeBlock* codeBlock = baselineCodeBlockForInlineCallFrame(
codeOrigin.inlineCallFrame);
if (!codeBlock->usesArguments())
return InvalidVirtualRegister;
return codeBlock->argumentsRegister() +
codeOrigin.inlineCallFrame->stackOffset;
}
int uncheckedActivationRegisterFor(const CodeOrigin&)
{
// This will ignore CodeOrigin because we don't inline code that uses activations.
// Hence for inlined call frames it will return the outermost code block's
// activation register. This method is only used to compare the result to a local
// to see if we're mucking with the activation register. Hence if we return the
// "wrong" activation register for the frame then it will compare false, which is
// what we wanted.
return m_codeBlock->uncheckedActivationRegister();
}
ValueProfile* valueProfileFor(Node* node)
{
if (!node)
return 0;
CodeBlock* profiledBlock = baselineCodeBlockFor(node->codeOrigin);
if (node->hasLocal()) {
if (!operandIsArgument(node->local()))
return 0;
int argument = operandToArgument(node->local());
if (node->variableAccessData() != m_arguments[argument]->variableAccessData())
return 0;
return profiledBlock->valueProfileForArgument(argument);
}
if (node->hasHeapPrediction())
return profiledBlock->valueProfileForBytecodeOffset(node->codeOrigin.bytecodeIndexForValueProfile());
return 0;
}
MethodOfGettingAValueProfile methodOfGettingAValueProfileFor(Node* node)
{
if (!node)
return MethodOfGettingAValueProfile();
CodeBlock* profiledBlock = baselineCodeBlockFor(node->codeOrigin);
if (node->op() == GetLocal) {
return MethodOfGettingAValueProfile::fromLazyOperand(
profiledBlock,
LazyOperandValueProfileKey(
node->codeOrigin.bytecodeIndex, node->local()));
}
return MethodOfGettingAValueProfile(valueProfileFor(node));
}
bool needsActivation() const
{
return m_codeBlock->needsFullScopeChain() && m_codeBlock->codeType() != GlobalCode;
}
bool usesArguments() const
{
return m_codeBlock->usesArguments();
}
unsigned numSuccessors(BasicBlock* block)
{
return block->last()->numSuccessors();
}
BlockIndex successor(BasicBlock* block, unsigned index)
{
return block->last()->successor(index);
}
BlockIndex successorForCondition(BasicBlock* block, bool condition)
{
return block->last()->successorForCondition(condition);
}
bool isPredictedNumerical(Node* node)
{
return isNumerical(node->child1().useKind()) && isNumerical(node->child2().useKind());
}
// Note that a 'true' return does not actually mean that the ByVal access clobbers nothing.
// It really means that it will not clobber the entire world. It's still up to you to
// carefully consider things like:
// - PutByVal definitely changes the array it stores to, and may even change its length.
// - PutByOffset definitely changes the object it stores to.
// - and so on.
bool byValIsPure(Node* node)
{
switch (node->arrayMode().type()) {
case Array::Generic:
return false;
case Array::Int32:
case Array::Double:
case Array::Contiguous:
case Array::ArrayStorage:
return !node->arrayMode().isOutOfBounds();
case Array::SlowPutArrayStorage:
return !node->arrayMode().mayStoreToHole();
case Array::String:
return node->op() == GetByVal;
#if USE(JSVALUE32_64)
case Array::Arguments:
if (node->op() == GetByVal)
return true;
return false;
#endif // USE(JSVALUE32_64)
default:
return true;
}
}
bool clobbersWorld(Node* node)
{
if (node->flags() & NodeClobbersWorld)
return true;
if (!(node->flags() & NodeMightClobber))
return false;
switch (node->op()) {
case ValueAdd:
case CompareLess:
case CompareLessEq:
case CompareGreater:
case CompareGreaterEq:
case CompareEq:
return !isPredictedNumerical(node);
case GetByVal:
case PutByVal:
case PutByValAlias:
return !byValIsPure(node);
case ToString:
switch (node->child1().useKind()) {
case StringObjectUse:
case StringOrStringObjectUse:
return false;
case CellUse:
case UntypedUse:
return true;
default:
RELEASE_ASSERT_NOT_REACHED();
return true;
}
default:
RELEASE_ASSERT_NOT_REACHED();
return true; // If by some oddity we hit this case in release build it's safer to have CSE assume the worst.
}
}
void determineReachability();
void resetReachability();
void resetExitStates();
unsigned varArgNumChildren(Node* node)
{
ASSERT(node->flags() & NodeHasVarArgs);
return node->numChildren();
}
unsigned numChildren(Node* node)
{
if (node->flags() & NodeHasVarArgs)
return varArgNumChildren(node);
return AdjacencyList::Size;
}
Edge& varArgChild(Node* node, unsigned index)
{
ASSERT(node->flags() & NodeHasVarArgs);
return m_varArgChildren[node->firstChild() + index];
}
Edge& child(Node* node, unsigned index)
{
if (node->flags() & NodeHasVarArgs)
return varArgChild(node, index);
return node->children.child(index);
}
void voteNode(Node* node, unsigned ballot)
{
switch (node->op()) {
case ValueToInt32:
case UInt32ToNumber:
node = node->child1().node();
break;
default:
break;
}
if (node->op() == GetLocal)
node->variableAccessData()->vote(ballot);
}
void voteNode(Edge edge, unsigned ballot)
{
voteNode(edge.node(), ballot);
}
void voteChildren(Node* node, unsigned ballot)
{
if (node->flags() & NodeHasVarArgs) {
for (unsigned childIdx = node->firstChild();
childIdx < node->firstChild() + node->numChildren();
childIdx++) {
if (!!m_varArgChildren[childIdx])
voteNode(m_varArgChildren[childIdx], ballot);
}
return;
}
if (!node->child1())
return;
voteNode(node->child1(), ballot);
if (!node->child2())
return;
voteNode(node->child2(), ballot);
if (!node->child3())
return;
voteNode(node->child3(), ballot);
}
template<typename T> // T = Node* or Edge
void substitute(BasicBlock& block, unsigned startIndexInBlock, T oldThing, T newThing)
{
for (unsigned indexInBlock = startIndexInBlock; indexInBlock < block.size(); ++indexInBlock) {
Node* node = block[indexInBlock];
if (node->flags() & NodeHasVarArgs) {
for (unsigned childIdx = node->firstChild(); childIdx < node->firstChild() + node->numChildren(); ++childIdx) {
if (!!m_varArgChildren[childIdx])
compareAndSwap(m_varArgChildren[childIdx], oldThing, newThing);
}
continue;
}
if (!node->child1())
continue;
compareAndSwap(node->children.child1(), oldThing, newThing);
if (!node->child2())
continue;
compareAndSwap(node->children.child2(), oldThing, newThing);
if (!node->child3())
continue;
compareAndSwap(node->children.child3(), oldThing, newThing);
}
}
// Use this if you introduce a new GetLocal and you know that you introduced it *before*
// any GetLocals in the basic block.
// FIXME: it may be appropriate, in the future, to generalize this to handle GetLocals
// introduced anywhere in the basic block.
void substituteGetLocal(BasicBlock& block, unsigned startIndexInBlock, VariableAccessData* variableAccessData, Node* newGetLocal)
{
if (variableAccessData->isCaptured()) {
// Let CSE worry about this one.
return;
}
for (unsigned indexInBlock = startIndexInBlock; indexInBlock < block.size(); ++indexInBlock) {
Node* node = block[indexInBlock];
bool shouldContinue = true;
switch (node->op()) {
case SetLocal: {
if (node->local() == variableAccessData->local())
shouldContinue = false;
break;
}
case GetLocal: {
if (node->variableAccessData() != variableAccessData)
continue;
substitute(block, indexInBlock, node, newGetLocal);
Node* oldTailNode = block.variablesAtTail.operand(variableAccessData->local());
if (oldTailNode == node)
block.variablesAtTail.operand(variableAccessData->local()) = newGetLocal;
shouldContinue = false;
break;
}
default:
break;
}
if (!shouldContinue)
break;
}
}
VM& m_vm;
CodeBlock* m_codeBlock;
RefPtr<Profiler::Compilation> m_compilation;
CodeBlock* m_profiledBlock;
NodeAllocator& m_allocator;
Vector< OwnPtr<BasicBlock> , 8> m_blocks;
Vector<Edge, 16> m_varArgChildren;
Vector<StorageAccessData> m_storageAccessData;
Vector<ResolveGlobalData> m_resolveGlobalData;
Vector<ResolveOperationData> m_resolveOperationsData;
Vector<PutToBaseOperationData> m_putToBaseOperationData;
Vector<Node*, 8> m_arguments;
SegmentedVector<VariableAccessData, 16> m_variableAccessData;
SegmentedVector<ArgumentPosition, 8> m_argumentPositions;
SegmentedVector<StructureSet, 16> m_structureSet;
SegmentedVector<StructureTransitionData, 8> m_structureTransitionData;
SegmentedVector<NewArrayBufferData, 4> m_newArrayBufferData;
bool m_hasArguments;
HashSet<ExecutableBase*> m_executablesWhoseArgumentsEscaped;
BitVector m_preservedVars;
Dominators m_dominators;
unsigned m_localVars;
unsigned m_parameterSlots;
unsigned m_osrEntryBytecodeIndex;
Operands<JSValue> m_mustHandleValues;
OptimizationFixpointState m_fixpointState;
GraphForm m_form;
UnificationState m_unificationState;
RefCountState m_refCountState;
private:
void handleSuccessor(Vector<BlockIndex, 16>& worklist, BlockIndex blockIndex, BlockIndex successorIndex);
AddSpeculationMode addImmediateShouldSpeculateInteger(Node* add, bool variableShouldSpeculateInteger, Node* immediate)
{
ASSERT(immediate->hasConstant());
JSValue immediateValue = immediate->valueOfJSConstant(m_codeBlock);
if (!immediateValue.isNumber())
return DontSpeculateInteger;
if (!variableShouldSpeculateInteger)
return DontSpeculateInteger;
if (immediateValue.isInt32())
return add->canSpeculateInteger() ? SpeculateInteger : DontSpeculateInteger;
double doubleImmediate = immediateValue.asDouble();
const double twoToThe48 = 281474976710656.0;
if (doubleImmediate < -twoToThe48 || doubleImmediate > twoToThe48)
return DontSpeculateInteger;
return nodeCanTruncateInteger(add->arithNodeFlags()) ? SpeculateIntegerAndTruncateConstants : DontSpeculateInteger;
}
bool mulImmediateShouldSpeculateInteger(Node* mul, Node* variable, Node* immediate)
{
ASSERT(immediate->hasConstant());
JSValue immediateValue = immediate->valueOfJSConstant(m_codeBlock);
if (!immediateValue.isInt32())
return false;
if (!variable->shouldSpeculateIntegerForArithmetic())
return false;
int32_t intImmediate = immediateValue.asInt32();
// Doubles have a 53 bit mantissa so we expect a multiplication of 2^31 (the highest
// magnitude possible int32 value) and any value less than 2^22 to not result in any
// rounding in a double multiplication - hence it will be equivalent to an integer
// multiplication, if we are doing int32 truncation afterwards (which is what
// canSpeculateInteger() implies).
const int32_t twoToThe22 = 1 << 22;
if (intImmediate <= -twoToThe22 || intImmediate >= twoToThe22)
return mul->canSpeculateInteger() && !nodeMayOverflow(mul->arithNodeFlags());
return mul->canSpeculateInteger();
}
};
class GetBytecodeBeginForBlock {
public:
GetBytecodeBeginForBlock(Graph& graph)
: m_graph(graph)
{
}
unsigned operator()(BlockIndex* blockIndex) const
{
return m_graph.m_blocks[*blockIndex]->bytecodeBegin;
}
private:
Graph& m_graph;
};
inline BlockIndex Graph::blockIndexForBytecodeOffset(Vector<BlockIndex>& linkingTargets, unsigned bytecodeBegin)
{
return *binarySearch<BlockIndex, unsigned>(linkingTargets, linkingTargets.size(), bytecodeBegin, GetBytecodeBeginForBlock(*this));
}
#define DFG_NODE_DO_TO_CHILDREN(graph, node, thingToDo) do { \
Node* _node = (node); \
if (_node->flags() & NodeHasVarArgs) { \
for (unsigned _childIdx = _node->firstChild(); \
_childIdx < _node->firstChild() + _node->numChildren(); \
_childIdx++) { \
if (!!(graph).m_varArgChildren[_childIdx]) \
thingToDo(_node, (graph).m_varArgChildren[_childIdx]); \
} \
} else { \
if (!_node->child1()) { \
ASSERT( \
!_node->child2() \
&& !_node->child3()); \
break; \
} \
thingToDo(_node, _node->child1()); \
\
if (!_node->child2()) { \
ASSERT(!_node->child3()); \
break; \
} \
thingToDo(_node, _node->child2()); \
\
if (!_node->child3()) \
break; \
thingToDo(_node, _node->child3()); \
} \
} while (false)
} } // namespace JSC::DFG
#endif
#endif
|