1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
|
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef DFGGraph_h
#define DFGGraph_h
#if ENABLE(DFG_JIT)
#include "CodeBlock.h"
#include "DFGBasicBlock.h"
#include "DFGNode.h"
#include "PredictionTracker.h"
#include "RegisterFile.h"
#include <wtf/BitVector.h>
#include <wtf/HashMap.h>
#include <wtf/Vector.h>
#include <wtf/StdLibExtras.h>
namespace JSC {
class CodeBlock;
class ExecState;
namespace DFG {
struct StorageAccessData {
size_t offset;
unsigned identifierNumber;
// NOTE: the offset and identifierNumber do not by themselves
// uniquely identify a property. The identifierNumber and a
// Structure* do. If those two match, then the offset should
// be the same, as well. For any Node that has a StorageAccessData,
// it is possible to retrieve the Structure* by looking at the
// first child. It should be a CheckStructure, which has the
// Structure*.
};
struct ResolveGlobalData {
unsigned identifierNumber;
unsigned resolveInfoIndex;
};
//
// === Graph ===
//
// The dataflow graph is an ordered vector of nodes.
// The order may be significant for nodes with side-effects (property accesses, value conversions).
// Nodes that are 'dead' remain in the vector with refCount 0.
class Graph : public Vector<Node, 64> {
public:
using Vector<Node, 64>::operator[];
using Vector<Node, 64>::at;
Node& operator[](NodeUse nodeUse) { return at(nodeUse.index()); }
const Node& operator[](NodeUse nodeUse) const { return at(nodeUse.index()); }
Node& at(NodeUse nodeUse) { return at(nodeUse.index()); }
const Node& at(NodeUse nodeUse) const { return at(nodeUse.index()); }
// Mark a node as being referenced.
void ref(NodeIndex nodeIndex)
{
Node& node = at(nodeIndex);
// If the value (before incrementing) was at refCount zero then we need to ref its children.
if (node.ref())
refChildren(nodeIndex);
}
void ref(NodeUse nodeUse)
{
ref(nodeUse.index());
}
void deref(NodeIndex nodeIndex)
{
if (at(nodeIndex).deref())
derefChildren(nodeIndex);
}
void deref(NodeUse nodeUse)
{
deref(nodeUse.index());
}
void clearAndDerefChild1(Node& node)
{
if (!node.child1())
return;
deref(node.child1());
node.children.child1() = NodeUse();
}
void clearAndDerefChild2(Node& node)
{
if (!node.child2())
return;
deref(node.child2());
node.children.child2() = NodeUse();
}
void clearAndDerefChild3(Node& node)
{
if (!node.child3())
return;
deref(node.child3());
node.children.child3() = NodeUse();
}
// CodeBlock is optional, but may allow additional information to be dumped (e.g. Identifier names).
void dump(CodeBlock* = 0);
void dump(NodeIndex, CodeBlock* = 0);
// Dump the code origin of the given node as a diff from the code origin of the
// preceding node.
void dumpCodeOrigin(NodeIndex);
BlockIndex blockIndexForBytecodeOffset(Vector<BlockIndex>& blocks, unsigned bytecodeBegin);
bool predictGlobalVar(unsigned varNumber, PredictedType prediction)
{
return m_predictions.predictGlobalVar(varNumber, prediction);
}
PredictedType getGlobalVarPrediction(unsigned varNumber)
{
return m_predictions.getGlobalVarPrediction(varNumber);
}
PredictedType getJSConstantPrediction(Node& node, CodeBlock* codeBlock)
{
return predictionFromValue(node.valueOfJSConstant(codeBlock));
}
bool addShouldSpeculateInteger(Node& add, CodeBlock* codeBlock)
{
ASSERT(add.op == ValueAdd || add.op == ArithAdd || add.op == ArithSub);
Node& left = at(add.child1());
Node& right = at(add.child2());
if (left.hasConstant())
return addImmediateShouldSpeculateInteger(codeBlock, add, right, left);
if (right.hasConstant())
return addImmediateShouldSpeculateInteger(codeBlock, add, left, right);
return Node::shouldSpeculateInteger(left, right) && add.canSpeculateInteger();
}
bool addShouldSpeculateInteger(NodeIndex nodeIndex, CodeBlock* codeBlock)
{
return addShouldSpeculateInteger(at(nodeIndex), codeBlock);
}
// Helper methods to check nodes for constants.
bool isConstant(NodeIndex nodeIndex)
{
return at(nodeIndex).hasConstant();
}
bool isJSConstant(NodeIndex nodeIndex)
{
return at(nodeIndex).hasConstant();
}
bool isInt32Constant(CodeBlock* codeBlock, NodeIndex nodeIndex)
{
return at(nodeIndex).isInt32Constant(codeBlock);
}
bool isDoubleConstant(CodeBlock* codeBlock, NodeIndex nodeIndex)
{
return at(nodeIndex).isDoubleConstant(codeBlock);
}
bool isNumberConstant(CodeBlock* codeBlock, NodeIndex nodeIndex)
{
return at(nodeIndex).isNumberConstant(codeBlock);
}
bool isBooleanConstant(CodeBlock* codeBlock, NodeIndex nodeIndex)
{
return at(nodeIndex).isBooleanConstant(codeBlock);
}
bool isFunctionConstant(CodeBlock* codeBlock, NodeIndex nodeIndex)
{
if (!isJSConstant(nodeIndex))
return false;
if (!getJSFunction(valueOfJSConstant(codeBlock, nodeIndex)))
return false;
return true;
}
// Helper methods get constant values from nodes.
JSValue valueOfJSConstant(CodeBlock* codeBlock, NodeIndex nodeIndex)
{
return at(nodeIndex).valueOfJSConstant(codeBlock);
}
int32_t valueOfInt32Constant(CodeBlock* codeBlock, NodeIndex nodeIndex)
{
return valueOfJSConstant(codeBlock, nodeIndex).asInt32();
}
double valueOfNumberConstant(CodeBlock* codeBlock, NodeIndex nodeIndex)
{
return valueOfJSConstant(codeBlock, nodeIndex).asNumber();
}
bool valueOfBooleanConstant(CodeBlock* codeBlock, NodeIndex nodeIndex)
{
return valueOfJSConstant(codeBlock, nodeIndex).asBoolean();
}
JSFunction* valueOfFunctionConstant(CodeBlock* codeBlock, NodeIndex nodeIndex)
{
JSCell* function = getJSFunction(valueOfJSConstant(codeBlock, nodeIndex));
ASSERT(function);
return asFunction(function);
}
static const char *opName(NodeType);
// This is O(n), and should only be used for verbose dumps.
const char* nameOfVariableAccessData(VariableAccessData*);
void predictArgumentTypes(CodeBlock*);
StructureSet* addStructureSet(const StructureSet& structureSet)
{
ASSERT(structureSet.size());
m_structureSet.append(structureSet);
return &m_structureSet.last();
}
StructureTransitionData* addStructureTransitionData(const StructureTransitionData& structureTransitionData)
{
m_structureTransitionData.append(structureTransitionData);
return &m_structureTransitionData.last();
}
ValueProfile* valueProfileFor(NodeIndex nodeIndex, CodeBlock* profiledBlock)
{
if (nodeIndex == NoNode)
return 0;
Node& node = at(nodeIndex);
if (node.op == GetLocal) {
if (!operandIsArgument(node.local()))
return 0;
int argument = operandToArgument(node.local());
if (node.variableAccessData() != at(m_arguments[argument]).variableAccessData())
return 0;
return profiledBlock->valueProfileForArgument(argument);
}
if (node.hasHeapPrediction())
return profiledBlock->valueProfileForBytecodeOffset(node.codeOrigin.bytecodeIndexForValueProfile());
return 0;
}
Vector< OwnPtr<BasicBlock> , 8> m_blocks;
Vector<NodeUse, 16> m_varArgChildren;
Vector<StorageAccessData> m_storageAccessData;
Vector<ResolveGlobalData> m_resolveGlobalData;
Vector<NodeIndex, 8> m_arguments;
SegmentedVector<VariableAccessData, 16> m_variableAccessData;
SegmentedVector<StructureSet, 16> m_structureSet;
SegmentedVector<StructureTransitionData, 8> m_structureTransitionData;
BitVector m_preservedVars;
unsigned m_localVars;
unsigned m_parameterSlots;
private:
bool addImmediateShouldSpeculateInteger(CodeBlock* codeBlock, Node& add, Node& variable, Node& immediate)
{
ASSERT(immediate.hasConstant());
JSValue immediateValue = immediate.valueOfJSConstant(codeBlock);
if (!immediateValue.isNumber())
return false;
if (!variable.shouldSpeculateInteger())
return false;
if (immediateValue.isInt32())
return add.canSpeculateInteger();
double doubleImmediate = immediateValue.asDouble();
const double twoToThe48 = 281474976710656.0;
if (doubleImmediate < -twoToThe48 || doubleImmediate > twoToThe48)
return false;
return nodeCanTruncateInteger(add.arithNodeFlags());
}
// When a node's refCount goes from 0 to 1, it must (logically) recursively ref all of its children, and vice versa.
void refChildren(NodeIndex);
void derefChildren(NodeIndex);
PredictionTracker m_predictions;
};
class GetBytecodeBeginForBlock {
public:
GetBytecodeBeginForBlock(Graph& graph)
: m_graph(graph)
{
}
unsigned operator()(BlockIndex* blockIndex) const
{
return m_graph.m_blocks[*blockIndex]->bytecodeBegin;
}
private:
Graph& m_graph;
};
inline BlockIndex Graph::blockIndexForBytecodeOffset(Vector<BlockIndex>& linkingTargets, unsigned bytecodeBegin)
{
return *WTF::binarySearchWithFunctor<BlockIndex, unsigned>(linkingTargets.begin(), linkingTargets.size(), bytecodeBegin, WTF::KeyMustBePresentInArray, GetBytecodeBeginForBlock(*this));
}
} } // namespace JSC::DFG
#endif
#endif
|