summaryrefslogtreecommitdiff
path: root/Source/JavaScriptCore/dfg/DFGNode.h
blob: 28eccc07afb88bdf0a1151fb55735f4847b8d8ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
/*
 * Copyright (C) 2011, 2012, 2013 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#ifndef DFGNode_h
#define DFGNode_h

#include <wtf/Platform.h>

#if ENABLE(DFG_JIT)

#include "CodeBlock.h"
#include "CodeOrigin.h"
#include "DFGAbstractValue.h"
#include "DFGAdjacencyList.h"
#include "DFGArrayMode.h"
#include "DFGCommon.h"
#include "DFGNodeFlags.h"
#include "DFGNodeType.h"
#include "DFGVariableAccessData.h"
#include "JSCJSValueInlines.h"
#include "JSCJSValue.h"
#include "Operands.h"
#include "SpeculatedType.h"
#include "StructureSet.h"
#include "ValueProfile.h"

namespace JSC { namespace DFG {

struct StructureTransitionData {
    Structure* previousStructure;
    Structure* newStructure;
    
    StructureTransitionData() { }
    
    StructureTransitionData(Structure* previousStructure, Structure* newStructure)
        : previousStructure(previousStructure)
        , newStructure(newStructure)
    {
    }
};

struct NewArrayBufferData {
    unsigned startConstant;
    unsigned numConstants;
    IndexingType indexingType;
};

// This type used in passing an immediate argument to Node constructor;
// distinguishes an immediate value (typically an index into a CodeBlock data structure - 
// a constant index, argument, or identifier) from a Node*.
struct OpInfo {
    explicit OpInfo(int32_t value) : m_value(static_cast<uintptr_t>(value)) { }
    explicit OpInfo(uint32_t value) : m_value(static_cast<uintptr_t>(value)) { }
#if OS(DARWIN) || USE(JSVALUE64)
    explicit OpInfo(size_t value) : m_value(static_cast<uintptr_t>(value)) { }
#endif
    explicit OpInfo(void* value) : m_value(reinterpret_cast<uintptr_t>(value)) { }
    uintptr_t m_value;
};

// === Node ===
//
// Node represents a single operation in the data flow graph.
struct Node {
    enum VarArgTag { VarArg };
    
    Node() { }
    
    Node(NodeType op, CodeOrigin codeOrigin, const AdjacencyList& children)
        : codeOrigin(codeOrigin)
        , children(children)
        , m_virtualRegister(InvalidVirtualRegister)
        , m_refCount(1)
        , m_prediction(SpecNone)
    {
        setOpAndDefaultFlags(op);
    }
    
    // Construct a node with up to 3 children, no immediate value.
    Node(NodeType op, CodeOrigin codeOrigin, Edge child1 = Edge(), Edge child2 = Edge(), Edge child3 = Edge())
        : codeOrigin(codeOrigin)
        , children(AdjacencyList::Fixed, child1, child2, child3)
        , m_virtualRegister(InvalidVirtualRegister)
        , m_refCount(1)
        , m_prediction(SpecNone)
    {
        setOpAndDefaultFlags(op);
        ASSERT(!(m_flags & NodeHasVarArgs));
    }

    // Construct a node with up to 3 children and an immediate value.
    Node(NodeType op, CodeOrigin codeOrigin, OpInfo imm, Edge child1 = Edge(), Edge child2 = Edge(), Edge child3 = Edge())
        : codeOrigin(codeOrigin)
        , children(AdjacencyList::Fixed, child1, child2, child3)
        , m_virtualRegister(InvalidVirtualRegister)
        , m_refCount(1)
        , m_opInfo(imm.m_value)
        , m_prediction(SpecNone)
    {
        setOpAndDefaultFlags(op);
        ASSERT(!(m_flags & NodeHasVarArgs));
    }

    // Construct a node with up to 3 children and two immediate values.
    Node(NodeType op, CodeOrigin codeOrigin, OpInfo imm1, OpInfo imm2, Edge child1 = Edge(), Edge child2 = Edge(), Edge child3 = Edge())
        : codeOrigin(codeOrigin)
        , children(AdjacencyList::Fixed, child1, child2, child3)
        , m_virtualRegister(InvalidVirtualRegister)
        , m_refCount(1)
        , m_opInfo(imm1.m_value)
        , m_opInfo2(safeCast<unsigned>(imm2.m_value))
        , m_prediction(SpecNone)
    {
        setOpAndDefaultFlags(op);
        ASSERT(!(m_flags & NodeHasVarArgs));
    }
    
    // Construct a node with a variable number of children and two immediate values.
    Node(VarArgTag, NodeType op, CodeOrigin codeOrigin, OpInfo imm1, OpInfo imm2, unsigned firstChild, unsigned numChildren)
        : codeOrigin(codeOrigin)
        , children(AdjacencyList::Variable, firstChild, numChildren)
        , m_virtualRegister(InvalidVirtualRegister)
        , m_refCount(1)
        , m_opInfo(imm1.m_value)
        , m_opInfo2(safeCast<unsigned>(imm2.m_value))
        , m_prediction(SpecNone)
    {
        setOpAndDefaultFlags(op);
        ASSERT(m_flags & NodeHasVarArgs);
    }
    
    NodeType op() const { return static_cast<NodeType>(m_op); }
    NodeFlags flags() const { return m_flags; }
    
    // This is not a fast method.
    unsigned index() const;
    
    void setOp(NodeType op)
    {
        m_op = op;
    }
    
    void setFlags(NodeFlags flags)
    {
        m_flags = flags;
    }
    
    bool mergeFlags(NodeFlags flags)
    {
        ASSERT(!(flags & NodeDoesNotExit));
        NodeFlags newFlags = m_flags | flags;
        if (newFlags == m_flags)
            return false;
        m_flags = newFlags;
        return true;
    }
    
    bool filterFlags(NodeFlags flags)
    {
        ASSERT(flags & NodeDoesNotExit);
        NodeFlags newFlags = m_flags & flags;
        if (newFlags == m_flags)
            return false;
        m_flags = newFlags;
        return true;
    }
    
    bool clearFlags(NodeFlags flags)
    {
        return filterFlags(~flags);
    }
    
    void setOpAndDefaultFlags(NodeType op)
    {
        m_op = op;
        m_flags = defaultFlags(op);
    }

    void setOpAndDefaultNonExitFlags(NodeType op)
    {
        ASSERT(!(m_flags & NodeHasVarArgs));
        setOpAndDefaultNonExitFlagsUnchecked(op);
    }

    void setOpAndDefaultNonExitFlagsUnchecked(NodeType op)
    {
        m_op = op;
        m_flags = (defaultFlags(op) & ~NodeExitsForward) | (m_flags & NodeExitsForward);
    }

    void convertToPhantom()
    {
        setOpAndDefaultNonExitFlags(Phantom);
    }

    void convertToPhantomUnchecked()
    {
        setOpAndDefaultNonExitFlagsUnchecked(Phantom);
    }

    void convertToIdentity()
    {
        RELEASE_ASSERT(child1());
        RELEASE_ASSERT(!child2());
        setOpAndDefaultNonExitFlags(Identity);
    }

    bool mustGenerate()
    {
        return m_flags & NodeMustGenerate;
    }
    
    void setCanExit(bool exits)
    {
        if (exits)
            m_flags &= ~NodeDoesNotExit;
        else
            m_flags |= NodeDoesNotExit;
    }
    
    bool canExit()
    {
        return !(m_flags & NodeDoesNotExit);
    }
    
    bool isConstant()
    {
        return op() == JSConstant;
    }
    
    bool isWeakConstant()
    {
        return op() == WeakJSConstant;
    }
    
    bool isStronglyProvedConstantIn(InlineCallFrame* inlineCallFrame)
    {
        return isConstant() && codeOrigin.inlineCallFrame == inlineCallFrame;
    }
    
    bool isStronglyProvedConstantIn(const CodeOrigin& codeOrigin)
    {
        return isStronglyProvedConstantIn(codeOrigin.inlineCallFrame);
    }
    
    bool isPhantomArguments()
    {
        return op() == PhantomArguments;
    }
    
    bool hasConstant()
    {
        switch (op()) {
        case JSConstant:
        case WeakJSConstant:
        case PhantomArguments:
            return true;
        default:
            return false;
        }
    }

    unsigned constantNumber()
    {
        ASSERT(isConstant());
        return m_opInfo;
    }
    
    void convertToConstant(unsigned constantNumber)
    {
        m_op = JSConstant;
        m_flags &= ~(NodeMustGenerate | NodeMightClobber | NodeClobbersWorld);
        m_opInfo = constantNumber;
        children.reset();
    }
    
    void convertToWeakConstant(JSCell* cell)
    {
        m_op = WeakJSConstant;
        m_flags &= ~(NodeMustGenerate | NodeMightClobber | NodeClobbersWorld);
        m_opInfo = bitwise_cast<uintptr_t>(cell);
        children.reset();
    }
    
    void convertToGetLocalUnlinked(VirtualRegister local)
    {
        m_op = GetLocalUnlinked;
        m_flags &= ~(NodeMustGenerate | NodeMightClobber | NodeClobbersWorld);
        m_opInfo = local;
        children.reset();
    }
    
    void convertToStructureTransitionWatchpoint(Structure* structure)
    {
        ASSERT(m_op == CheckStructure || m_op == ForwardCheckStructure || m_op == ArrayifyToStructure);
        m_opInfo = bitwise_cast<uintptr_t>(structure);
        if (m_op == CheckStructure || m_op == ArrayifyToStructure)
            m_op = StructureTransitionWatchpoint;
        else
            m_op = ForwardStructureTransitionWatchpoint;
    }
    
    void convertToStructureTransitionWatchpoint()
    {
        convertToStructureTransitionWatchpoint(structureSet().singletonStructure());
    }
    
    void convertToGetByOffset(unsigned storageAccessDataIndex, Edge storage)
    {
        ASSERT(m_op == GetById || m_op == GetByIdFlush);
        m_opInfo = storageAccessDataIndex;
        children.setChild1(storage);
        m_op = GetByOffset;
        m_flags &= ~NodeClobbersWorld;
    }
    
    void convertToPutByOffset(unsigned storageAccessDataIndex, Edge storage)
    {
        ASSERT(m_op == PutById || m_op == PutByIdDirect);
        m_opInfo = storageAccessDataIndex;
        children.setChild3(children.child2());
        children.setChild2(children.child1());
        children.setChild1(storage);
        m_op = PutByOffset;
        m_flags &= ~NodeClobbersWorld;
    }
    
    void convertToPhantomLocal()
    {
        ASSERT(m_op == Phantom && (child1()->op() == Phi || child1()->op() == SetLocal || child1()->op() == SetArgument));
        m_op = PhantomLocal;
        m_opInfo = child1()->m_opInfo; // Copy the variableAccessData.
        children.setChild1(Edge());
    }
    
    void convertToGetLocal(VariableAccessData* variable, Node* phi)
    {
        ASSERT(m_op == GetLocalUnlinked);
        m_op = GetLocal;
        m_opInfo = bitwise_cast<uintptr_t>(variable);
        children.setChild1(Edge(phi));
    }
    
    void convertToToString()
    {
        ASSERT(m_op == ToPrimitive);
        m_op = ToString;
    }
    
    JSCell* weakConstant()
    {
        ASSERT(op() == WeakJSConstant);
        return bitwise_cast<JSCell*>(m_opInfo);
    }
    
    JSValue valueOfJSConstant(CodeBlock* codeBlock)
    {
        switch (op()) {
        case WeakJSConstant:
            return JSValue(weakConstant());
        case JSConstant:
            return codeBlock->constantRegister(FirstConstantRegisterIndex + constantNumber()).get();
        case PhantomArguments:
            return JSValue();
        default:
            RELEASE_ASSERT_NOT_REACHED();
            return JSValue(); // Have to return something in release mode.
        }
    }

    bool isInt32Constant(CodeBlock* codeBlock)
    {
        return isConstant() && valueOfJSConstant(codeBlock).isInt32();
    }
    
    bool isDoubleConstant(CodeBlock* codeBlock)
    {
        bool result = isConstant() && valueOfJSConstant(codeBlock).isDouble();
        if (result)
            ASSERT(!isInt32Constant(codeBlock));
        return result;
    }
    
    bool isNumberConstant(CodeBlock* codeBlock)
    {
        bool result = isConstant() && valueOfJSConstant(codeBlock).isNumber();
        ASSERT(result == (isInt32Constant(codeBlock) || isDoubleConstant(codeBlock)));
        return result;
    }
    
    bool isBooleanConstant(CodeBlock* codeBlock)
    {
        return isConstant() && valueOfJSConstant(codeBlock).isBoolean();
    }
    
    bool containsMovHint()
    {
        switch (op()) {
        case SetLocal:
        case MovHint:
        case MovHintAndCheck:
        case ZombieHint:
            return true;
        default:
            return false;
        }
    }
    
    bool hasVariableAccessData()
    {
        switch (op()) {
        case GetLocal:
        case SetLocal:
        case MovHint:
        case MovHintAndCheck:
        case ZombieHint:
        case Phi:
        case SetArgument:
        case Flush:
        case PhantomLocal:
            return true;
        default:
            return false;
        }
    }
    
    bool hasLocal()
    {
        return hasVariableAccessData();
    }
    
    VariableAccessData* variableAccessData()
    {
        ASSERT(hasVariableAccessData());
        return reinterpret_cast<VariableAccessData*>(m_opInfo)->find();
    }
    
    VirtualRegister local()
    {
        return variableAccessData()->local();
    }
    
    VirtualRegister unlinkedLocal()
    {
        ASSERT(op() == GetLocalUnlinked);
        return static_cast<VirtualRegister>(m_opInfo);
    }
    
    bool hasIdentifier()
    {
        switch (op()) {
        case GetById:
        case GetByIdFlush:
        case PutById:
        case PutByIdDirect:
            return true;
        default:
            return false;
        }
    }

    unsigned identifierNumber()
    {
        ASSERT(hasIdentifier());
        return m_opInfo;
    }
    
    unsigned resolveGlobalDataIndex()
    {
        ASSERT(op() == ResolveGlobal);
        return m_opInfo;
    }

    unsigned resolveOperationsDataIndex()
    {
        ASSERT(op() == Resolve || op() == ResolveBase || op() == ResolveBaseStrictPut);
        return m_opInfo;
    }

    bool hasArithNodeFlags()
    {
        switch (op()) {
        case UInt32ToNumber:
        case ArithAdd:
        case ArithSub:
        case ArithNegate:
        case ArithMul:
        case ArithAbs:
        case ArithMin:
        case ArithMax:
        case ArithMod:
        case ArithDiv:
        case ValueAdd:
            return true;
        default:
            return false;
        }
    }
    
    // This corrects the arithmetic node flags, so that irrelevant bits are
    // ignored. In particular, anything other than ArithMul does not need
    // to know if it can speculate on negative zero.
    NodeFlags arithNodeFlags()
    {
        NodeFlags result = m_flags & NodeArithFlagsMask;
        if (op() == ArithMul || op() == ArithDiv || op() == ArithMod || op() == ArithNegate || op() == DoubleAsInt32)
            return result;
        return result & ~NodeNeedsNegZero;
    }
    
    bool hasConstantBuffer()
    {
        return op() == NewArrayBuffer;
    }
    
    NewArrayBufferData* newArrayBufferData()
    {
        ASSERT(hasConstantBuffer());
        return reinterpret_cast<NewArrayBufferData*>(m_opInfo);
    }
    
    unsigned startConstant()
    {
        return newArrayBufferData()->startConstant;
    }
    
    unsigned numConstants()
    {
        return newArrayBufferData()->numConstants;
    }
    
    bool hasIndexingType()
    {
        switch (op()) {
        case NewArray:
        case NewArrayWithSize:
        case NewArrayBuffer:
            return true;
        default:
            return false;
        }
    }
    
    IndexingType indexingType()
    {
        ASSERT(hasIndexingType());
        if (op() == NewArrayBuffer)
            return newArrayBufferData()->indexingType;
        return m_opInfo;
    }
    
    bool hasInlineCapacity()
    {
        return op() == CreateThis;
    }

    unsigned inlineCapacity()
    {
        ASSERT(hasInlineCapacity());
        return m_opInfo;
    }

    void setIndexingType(IndexingType indexingType)
    {
        ASSERT(hasIndexingType());
        m_opInfo = indexingType;
    }
    
    bool hasRegexpIndex()
    {
        return op() == NewRegexp;
    }
    
    unsigned regexpIndex()
    {
        ASSERT(hasRegexpIndex());
        return m_opInfo;
    }
    
    bool hasVarNumber()
    {
        return op() == GetScopedVar || op() == PutScopedVar;
    }

    unsigned varNumber()
    {
        ASSERT(hasVarNumber());
        return m_opInfo;
    }
    
    bool hasIdentifierNumberForCheck()
    {
        return op() == GlobalVarWatchpoint || op() == PutGlobalVarCheck;
    }
    
    unsigned identifierNumberForCheck()
    {
        ASSERT(hasIdentifierNumberForCheck());
        return m_opInfo2;
    }
    
    bool hasRegisterPointer()
    {
        return op() == GetGlobalVar || op() == PutGlobalVar || op() == GlobalVarWatchpoint || op() == PutGlobalVarCheck;
    }
    
    WriteBarrier<Unknown>* registerPointer()
    {
        return bitwise_cast<WriteBarrier<Unknown>*>(m_opInfo);
    }

    bool hasResult()
    {
        return m_flags & NodeResultMask;
    }

    bool hasInt32Result()
    {
        return (m_flags & NodeResultMask) == NodeResultInt32;
    }
    
    bool hasNumberResult()
    {
        return (m_flags & NodeResultMask) == NodeResultNumber;
    }
    
    bool hasJSResult()
    {
        return (m_flags & NodeResultMask) == NodeResultJS;
    }
    
    bool hasBooleanResult()
    {
        return (m_flags & NodeResultMask) == NodeResultBoolean;
    }

    bool hasStorageResult()
    {
        return (m_flags & NodeResultMask) == NodeResultStorage;
    }

    bool isJump()
    {
        return op() == Jump;
    }

    bool isBranch()
    {
        return op() == Branch;
    }

    bool isTerminal()
    {
        switch (op()) {
        case Jump:
        case Branch:
        case Return:
        case Unreachable:
            return true;
        default:
            return false;
        }
    }

    unsigned takenBytecodeOffsetDuringParsing()
    {
        ASSERT(isBranch() || isJump());
        return m_opInfo;
    }

    unsigned notTakenBytecodeOffsetDuringParsing()
    {
        ASSERT(isBranch());
        return m_opInfo2;
    }
    
    void setTakenBlockIndex(BlockIndex blockIndex)
    {
        ASSERT(isBranch() || isJump());
        m_opInfo = blockIndex;
    }
    
    void setNotTakenBlockIndex(BlockIndex blockIndex)
    {
        ASSERT(isBranch());
        m_opInfo2 = blockIndex;
    }
    
    BlockIndex takenBlockIndex()
    {
        ASSERT(isBranch() || isJump());
        return m_opInfo;
    }
    
    BlockIndex notTakenBlockIndex()
    {
        ASSERT(isBranch());
        return m_opInfo2;
    }
    
    unsigned numSuccessors()
    {
        switch (op()) {
        case Jump:
            return 1;
        case Branch:
            return 2;
        default:
            return 0;
        }
    }
    
    BlockIndex successor(unsigned index)
    {
        switch (index) {
        case 0:
            return takenBlockIndex();
        case 1:
            return notTakenBlockIndex();
        default:
            RELEASE_ASSERT_NOT_REACHED();
            return NoBlock;
        }
    }
    
    BlockIndex successorForCondition(bool condition)
    {
        ASSERT(isBranch());
        return condition ? takenBlockIndex() : notTakenBlockIndex();
    }
    
    bool hasHeapPrediction()
    {
        switch (op()) {
        case GetById:
        case GetByIdFlush:
        case GetByVal:
        case GetMyArgumentByVal:
        case GetMyArgumentByValSafe:
        case Call:
        case Construct:
        case GetByOffset:
        case GetScopedVar:
        case Resolve:
        case ResolveBase:
        case ResolveBaseStrictPut:
        case ResolveGlobal:
        case ArrayPop:
        case ArrayPush:
        case RegExpExec:
        case RegExpTest:
        case GetGlobalVar:
            return true;
        default:
            return false;
        }
    }
    
    SpeculatedType getHeapPrediction()
    {
        ASSERT(hasHeapPrediction());
        return static_cast<SpeculatedType>(m_opInfo2);
    }
    
    bool predictHeap(SpeculatedType prediction)
    {
        ASSERT(hasHeapPrediction());
        
        return mergeSpeculation(m_opInfo2, prediction);
    }
    
    bool hasFunction()
    {
        switch (op()) {
        case CheckFunction:
        case AllocationProfileWatchpoint:
            return true;
        default:
            return false;
        }
    }

    JSCell* function()
    {
        ASSERT(hasFunction());
        JSCell* result = reinterpret_cast<JSFunction*>(m_opInfo);
        ASSERT(JSValue(result).isFunction());
        return result;
    }
    
    bool hasExecutable()
    {
        return op() == CheckExecutable;
    }
    
    ExecutableBase* executable()
    {
        return jsCast<ExecutableBase*>(reinterpret_cast<JSCell*>(m_opInfo));
    }

    bool hasStructureTransitionData()
    {
        switch (op()) {
        case PutStructure:
        case PhantomPutStructure:
        case AllocatePropertyStorage:
        case ReallocatePropertyStorage:
            return true;
        default:
            return false;
        }
    }
    
    StructureTransitionData& structureTransitionData()
    {
        ASSERT(hasStructureTransitionData());
        return *reinterpret_cast<StructureTransitionData*>(m_opInfo);
    }
    
    bool hasStructureSet()
    {
        switch (op()) {
        case CheckStructure:
        case ForwardCheckStructure:
            return true;
        default:
            return false;
        }
    }
    
    StructureSet& structureSet()
    {
        ASSERT(hasStructureSet());
        return *reinterpret_cast<StructureSet*>(m_opInfo);
    }
    
    bool hasStructure()
    {
        switch (op()) {
        case StructureTransitionWatchpoint:
        case ForwardStructureTransitionWatchpoint:
        case ArrayifyToStructure:
        case NewObject:
        case NewStringObject:
            return true;
        default:
            return false;
        }
    }
    
    Structure* structure()
    {
        ASSERT(hasStructure());
        return reinterpret_cast<Structure*>(m_opInfo);
    }
    
    bool hasStorageAccessData()
    {
        return op() == GetByOffset || op() == PutByOffset;
    }
    
    unsigned storageAccessDataIndex()
    {
        ASSERT(hasStorageAccessData());
        return m_opInfo;
    }
    
    bool hasFunctionDeclIndex()
    {
        return op() == NewFunction
            || op() == NewFunctionNoCheck;
    }
    
    unsigned functionDeclIndex()
    {
        ASSERT(hasFunctionDeclIndex());
        return m_opInfo;
    }
    
    bool hasFunctionExprIndex()
    {
        return op() == NewFunctionExpression;
    }
    
    unsigned functionExprIndex()
    {
        ASSERT(hasFunctionExprIndex());
        return m_opInfo;
    }
    
    bool hasArrayMode()
    {
        switch (op()) {
        case GetIndexedPropertyStorage:
        case GetArrayLength:
        case PutByVal:
        case PutByValAlias:
        case GetByVal:
        case StringCharAt:
        case StringCharCodeAt:
        case CheckArray:
        case Arrayify:
        case ArrayifyToStructure:
        case ArrayPush:
        case ArrayPop:
            return true;
        default:
            return false;
        }
    }
    
    ArrayMode arrayMode()
    {
        ASSERT(hasArrayMode());
        if (op() == ArrayifyToStructure)
            return ArrayMode::fromWord(m_opInfo2);
        return ArrayMode::fromWord(m_opInfo);
    }
    
    bool setArrayMode(ArrayMode arrayMode)
    {
        ASSERT(hasArrayMode());
        if (this->arrayMode() == arrayMode)
            return false;
        m_opInfo = arrayMode.asWord();
        return true;
    }
    
    bool hasVirtualRegister()
    {
        return m_virtualRegister != InvalidVirtualRegister;
    }
    
    VirtualRegister virtualRegister()
    {
        ASSERT(hasResult());
        ASSERT(m_virtualRegister != InvalidVirtualRegister);
        return m_virtualRegister;
    }
    
    void setVirtualRegister(VirtualRegister virtualRegister)
    {
        ASSERT(hasResult());
        ASSERT(m_virtualRegister == InvalidVirtualRegister);
        m_virtualRegister = virtualRegister;
    }
    
    bool hasArgumentPositionStart()
    {
        return op() == InlineStart;
    }
    
    unsigned argumentPositionStart()
    {
        ASSERT(hasArgumentPositionStart());
        return m_opInfo;
    }
    
    bool hasExecutionCounter()
    {
        return op() == CountExecution;
    }
    
    Profiler::ExecutionCounter* executionCounter()
    {
        return bitwise_cast<Profiler::ExecutionCounter*>(m_opInfo);
    }

    bool shouldGenerate()
    {
        return m_refCount;
    }
    
    bool willHaveCodeGenOrOSR()
    {
        switch (op()) {
        case SetLocal:
        case MovHint:
        case ZombieHint:
        case MovHintAndCheck:
        case Int32ToDouble:
        case ForwardInt32ToDouble:
        case ValueToInt32:
        case UInt32ToNumber:
        case DoubleAsInt32:
        case PhantomArguments:
            return true;
        case Nop:
            return false;
        case Phantom:
            return child1().useKindUnchecked() != UntypedUse || child2().useKindUnchecked() != UntypedUse || child3().useKindUnchecked() != UntypedUse;
        default:
            return shouldGenerate();
        }
    }

    unsigned refCount()
    {
        return m_refCount;
    }

    unsigned postfixRef()
    {
        return m_refCount++;
    }

    unsigned adjustedRefCount()
    {
        return mustGenerate() ? m_refCount - 1 : m_refCount;
    }
    
    void setRefCount(unsigned refCount)
    {
        m_refCount = refCount;
    }
    
    Edge& child1()
    {
        ASSERT(!(m_flags & NodeHasVarArgs));
        return children.child1();
    }
    
    // This is useful if you want to do a fast check on the first child
    // before also doing a check on the opcode. Use this with care and
    // avoid it if possible.
    Edge child1Unchecked()
    {
        return children.child1Unchecked();
    }

    Edge& child2()
    {
        ASSERT(!(m_flags & NodeHasVarArgs));
        return children.child2();
    }

    Edge& child3()
    {
        ASSERT(!(m_flags & NodeHasVarArgs));
        return children.child3();
    }
    
    unsigned firstChild()
    {
        ASSERT(m_flags & NodeHasVarArgs);
        return children.firstChild();
    }
    
    unsigned numChildren()
    {
        ASSERT(m_flags & NodeHasVarArgs);
        return children.numChildren();
    }
    
    UseKind binaryUseKind()
    {
        ASSERT(child1().useKind() == child2().useKind());
        return child1().useKind();
    }
    
    bool isBinaryUseKind(UseKind useKind)
    {
        return child1().useKind() == useKind && child2().useKind() == useKind;
    }
    
    SpeculatedType prediction()
    {
        return m_prediction;
    }
    
    bool predict(SpeculatedType prediction)
    {
        return mergeSpeculation(m_prediction, prediction);
    }
    
    bool shouldSpeculateInteger()
    {
        return isInt32Speculation(prediction());
    }
    
    bool shouldSpeculateIntegerForArithmetic()
    {
        return isInt32SpeculationForArithmetic(prediction());
    }
    
    bool shouldSpeculateIntegerExpectingDefined()
    {
        return isInt32SpeculationExpectingDefined(prediction());
    }
    
    bool shouldSpeculateDouble()
    {
        return isDoubleSpeculation(prediction());
    }
    
    bool shouldSpeculateDoubleForArithmetic()
    {
        return isDoubleSpeculationForArithmetic(prediction());
    }
    
    bool shouldSpeculateNumber()
    {
        return isNumberSpeculation(prediction());
    }
    
    bool shouldSpeculateNumberExpectingDefined()
    {
        return isNumberSpeculationExpectingDefined(prediction());
    }
    
    bool shouldSpeculateBoolean()
    {
        return isBooleanSpeculation(prediction());
    }
   
    bool shouldSpeculateString()
    {
        return isStringSpeculation(prediction());
    }
 
    bool shouldSpeculateStringObject()
    {
        return isStringObjectSpeculation(prediction());
    }
    
    bool shouldSpeculateStringOrStringObject()
    {
        return isStringOrStringObjectSpeculation(prediction());
    }
    
    bool shouldSpeculateFinalObject()
    {
        return isFinalObjectSpeculation(prediction());
    }
    
    bool shouldSpeculateFinalObjectOrOther()
    {
        return isFinalObjectOrOtherSpeculation(prediction());
    }
    
    bool shouldSpeculateArray()
    {
        return isArraySpeculation(prediction());
    }
    
    bool shouldSpeculateArguments()
    {
        return isArgumentsSpeculation(prediction());
    }
    
    bool shouldSpeculateInt8Array()
    {
        return isInt8ArraySpeculation(prediction());
    }
    
    bool shouldSpeculateInt16Array()
    {
        return isInt16ArraySpeculation(prediction());
    }
    
    bool shouldSpeculateInt32Array()
    {
        return isInt32ArraySpeculation(prediction());
    }
    
    bool shouldSpeculateUint8Array()
    {
        return isUint8ArraySpeculation(prediction());
    }

    bool shouldSpeculateUint8ClampedArray()
    {
        return isUint8ClampedArraySpeculation(prediction());
    }
    
    bool shouldSpeculateUint16Array()
    {
        return isUint16ArraySpeculation(prediction());
    }
    
    bool shouldSpeculateUint32Array()
    {
        return isUint32ArraySpeculation(prediction());
    }
    
    bool shouldSpeculateFloat32Array()
    {
        return isFloat32ArraySpeculation(prediction());
    }
    
    bool shouldSpeculateFloat64Array()
    {
        return isFloat64ArraySpeculation(prediction());
    }
    
    bool shouldSpeculateArrayOrOther()
    {
        return isArrayOrOtherSpeculation(prediction());
    }
    
    bool shouldSpeculateObject()
    {
        return isObjectSpeculation(prediction());
    }
    
    bool shouldSpeculateObjectOrOther()
    {
        return isObjectOrOtherSpeculation(prediction());
    }

    bool shouldSpeculateCell()
    {
        return isCellSpeculation(prediction());
    }
    
    static bool shouldSpeculateBoolean(Node* op1, Node* op2)
    {
        return op1->shouldSpeculateBoolean() && op2->shouldSpeculateBoolean();
    }
    
    static bool shouldSpeculateInteger(Node* op1, Node* op2)
    {
        return op1->shouldSpeculateInteger() && op2->shouldSpeculateInteger();
    }
    
    static bool shouldSpeculateIntegerForArithmetic(Node* op1, Node* op2)
    {
        return op1->shouldSpeculateIntegerForArithmetic() && op2->shouldSpeculateIntegerForArithmetic();
    }
    
    static bool shouldSpeculateIntegerExpectingDefined(Node* op1, Node* op2)
    {
        return op1->shouldSpeculateIntegerExpectingDefined() && op2->shouldSpeculateIntegerExpectingDefined();
    }
    
    static bool shouldSpeculateDoubleForArithmetic(Node* op1, Node* op2)
    {
        return op1->shouldSpeculateDoubleForArithmetic() && op2->shouldSpeculateDoubleForArithmetic();
    }
    
    static bool shouldSpeculateNumber(Node* op1, Node* op2)
    {
        return op1->shouldSpeculateNumber() && op2->shouldSpeculateNumber();
    }
    
    static bool shouldSpeculateNumberExpectingDefined(Node* op1, Node* op2)
    {
        return op1->shouldSpeculateNumberExpectingDefined() && op2->shouldSpeculateNumberExpectingDefined();
    }
    
    static bool shouldSpeculateFinalObject(Node* op1, Node* op2)
    {
        return op1->shouldSpeculateFinalObject() && op2->shouldSpeculateFinalObject();
    }

    static bool shouldSpeculateArray(Node* op1, Node* op2)
    {
        return op1->shouldSpeculateArray() && op2->shouldSpeculateArray();
    }
    
    bool canSpeculateInteger()
    {
        return nodeCanSpeculateInteger(arithNodeFlags());
    }
    
    void dumpChildren(PrintStream& out)
    {
        if (!child1())
            return;
        out.printf("@%u", child1()->index());
        if (!child2())
            return;
        out.printf(", @%u", child2()->index());
        if (!child3())
            return;
        out.printf(", @%u", child3()->index());
    }
    
    // NB. This class must have a trivial destructor.
    
    // Used to look up exception handling information (currently implemented as a bytecode index).
    CodeOrigin codeOrigin;
    // References to up to 3 children, or links to a variable length set of children.
    AdjacencyList children;

private:
    unsigned m_op : 10; // real type is NodeType
    unsigned m_flags : 22;
    // The virtual register number (spill location) associated with this .
    VirtualRegister m_virtualRegister;
    // The number of uses of the result of this operation (+1 for 'must generate' nodes, which have side-effects).
    unsigned m_refCount;
    // Immediate values, accesses type-checked via accessors above. The first one is
    // big enough to store a pointer.
    uintptr_t m_opInfo;
    unsigned m_opInfo2;
    // The prediction ascribed to this node after propagation.
    SpeculatedType m_prediction;

public:
    // Fields used by various analyses.
    AbstractValue value;
    Node* replacement;
};

} } // namespace JSC::DFG

namespace WTF {

void printInternal(PrintStream&, JSC::DFG::Node*);

} // namespace WTF

#endif
#endif