1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
|
/*
* Copyright (C) 2014, 2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGPutStackSinkingPhase.h"
#if ENABLE(DFG_JIT)
#include "DFGBlockMapInlines.h"
#include "DFGGraph.h"
#include "DFGInsertionSet.h"
#include "DFGPhase.h"
#include "DFGPreciseLocalClobberize.h"
#include "DFGSSACalculator.h"
#include "DFGValidate.h"
#include "JSCInlines.h"
#include "OperandsInlines.h"
namespace JSC { namespace DFG {
namespace {
bool verbose = false;
class PutStackSinkingPhase : public Phase {
public:
PutStackSinkingPhase(Graph& graph)
: Phase(graph, "PutStack sinking")
{
}
bool run()
{
// FIXME: One of the problems of this approach is that it will create a duplicate Phi graph
// for sunken PutStacks in the presence of interesting control flow merges, and where the
// value being PutStack'd is also otherwise live in the DFG code. We could work around this
// by doing the sinking over CPS, or maybe just by doing really smart hoisting. It's also
// possible that the duplicate Phi graph can be deduplicated by B3. It would be best if we
// could observe that there is already a Phi graph in place that does what we want. In
// principle if we have a request to place a Phi at a particular place, we could just check
// if there is already a Phi that does what we want. Because PutStackSinkingPhase runs just
// after SSA conversion, we have almost a guarantee that the Phi graph we produce here would
// be trivially redundant to the one we already have.
// FIXME: This phase doesn't adequately use KillStacks. KillStack can be viewed as a def.
// This is mostly inconsequential; it would be a bug to have a local live at a KillStack.
// More important is that KillStack should swallow any deferral. After a KillStack, the
// local should behave like a TOP deferral because it would be invalid for anyone to trust
// the stack. It's not clear to me if this is important or not.
// https://bugs.webkit.org/show_bug.cgi?id=145296
if (verbose) {
dataLog("Graph before PutStack sinking:\n");
m_graph.dump();
}
m_graph.ensureDominators();
SSACalculator ssaCalculator(m_graph);
InsertionSet insertionSet(m_graph);
// First figure out where various locals are live.
BlockMap<Operands<bool>> liveAtHead(m_graph);
BlockMap<Operands<bool>> liveAtTail(m_graph);
for (BasicBlock* block : m_graph.blocksInNaturalOrder()) {
liveAtHead[block] = Operands<bool>(OperandsLike, block->variablesAtHead);
liveAtTail[block] = Operands<bool>(OperandsLike, block->variablesAtHead);
liveAtHead[block].fill(false);
liveAtTail[block].fill(false);
}
bool changed;
do {
changed = false;
for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
BasicBlock* block = m_graph.block(blockIndex);
if (!block)
continue;
Operands<bool> live = liveAtTail[block];
for (unsigned nodeIndex = block->size(); nodeIndex--;) {
Node* node = block->at(nodeIndex);
if (verbose)
dataLog("Live at ", node, ": ", live, "\n");
Vector<VirtualRegister, 4> reads;
Vector<VirtualRegister, 4> writes;
auto escapeHandler = [&] (VirtualRegister operand) {
if (operand.isHeader())
return;
if (verbose)
dataLog(" ", operand, " is live at ", node, "\n");
reads.append(operand);
};
auto writeHandler = [&] (VirtualRegister operand) {
RELEASE_ASSERT(node->op() == PutStack || node->op() == LoadVarargs || node->op() == ForwardVarargs);
writes.append(operand);
};
preciseLocalClobberize(
m_graph, node, escapeHandler, writeHandler,
[&] (VirtualRegister, LazyNode) { });
for (VirtualRegister operand : writes)
live.operand(operand) = false;
for (VirtualRegister operand : reads)
live.operand(operand) = true;
}
if (live == liveAtHead[block])
continue;
liveAtHead[block] = live;
changed = true;
for (BasicBlock* predecessor : block->predecessors) {
for (size_t i = live.size(); i--;)
liveAtTail[predecessor][i] |= live[i];
}
}
} while (changed);
// All of the arguments should be live at head of root. Note that we may find that some
// locals are live at head of root. This seems wrong but isn't. This will happen for example
// if the function accesses closure variable #42 for some other function and we either don't
// have variable #42 at all or we haven't set it at root, for whatever reason. Basically this
// arises since our aliasing for closure variables is conservatively based on variable number
// and ignores the owning symbol table. We should probably fix this eventually and make our
// aliasing more precise.
//
// For our purposes here, the imprecision in the aliasing is harmless. It just means that we
// may not do as much Phi pruning as we wanted.
for (size_t i = liveAtHead.atIndex(0).numberOfArguments(); i--;)
DFG_ASSERT(m_graph, nullptr, liveAtHead.atIndex(0).argument(i));
// Next identify where we would want to sink PutStacks to. We say that there is a deferred
// flush if we had a PutStack with a given FlushFormat but it hasn't been materialized yet.
// Deferrals have the following lattice; but it's worth noting that the TOP part of the
// lattice serves an entirely different purpose than the rest of the lattice: it just means
// that we're in a region of code where nobody should have been relying on the value. The
// rest of the lattice means that we either have a PutStack that is deferred (i.e. still
// needs to be executed) or there isn't one (because we've alraedy executed it).
//
// Bottom:
// Represented as DeadFlush.
// Means that all previous PutStacks have been executed so there is nothing deferred.
// During merging this is subordinate to the other kinds of deferrals, because it
// represents the fact that we've already executed all necessary PutStacks. This implies
// that there *had* been some PutStacks that we should have executed.
//
// Top:
// Represented as ConflictingFlush.
// Represents the fact that we know, via forward flow, that there isn't any value in the
// given local that anyone should have been relying on. This comes into play at the
// prologue (because in SSA form at the prologue no local has any value) or when we merge
// deferrals for different formats's. A lexical scope in which a local had some semantic
// meaning will by this point share the same format; if we had stores from different
// lexical scopes that got merged together then we may have a conflicting format. Hence
// a conflicting format proves that we're no longer in an area in which the variable was
// in scope. Note that this is all approximate and only precise enough to later answer
// questions pertinent to sinking. For example, this doesn't always detect when a local
// is no longer semantically relevant - we may well have a deferral from inside some
// inlined call survive outside of that inlined code, and this is generally OK. In the
// worst case it means that we might think that a deferral that is actually dead must
// still be executed. But we usually catch that with liveness. Liveness usually catches
// such cases, but that's not guaranteed since liveness is conservative.
//
// What Top does give us is detects situations where we both don't need to care about a
// deferral and there is no way that we could reason about it anyway. If we merged
// deferrals for different formats then we wouldn't know the format to use. So, we use
// Top in that case because that's also a case where we know that we can ignore the
// deferral.
//
// Deferral with a concrete format:
// Represented by format values other than DeadFlush or ConflictingFlush.
// Represents the fact that the original code would have done a PutStack but we haven't
// identified an operation that would have observed that PutStack.
//
// We need to be precise about liveness in this phase because not doing so
// could cause us to insert a PutStack before a node we thought may escape a
// value that it doesn't really escape. Sinking this PutStack above such a node may
// cause us to insert a GetStack that we forward to the Phi we're feeding into the
// sunken PutStack. Inserting such a GetStack could cause us to load garbage and
// can confuse the AI to claim untrue things (like that the program will exit when
// it really won't).
BlockMap<Operands<FlushFormat>> deferredAtHead(m_graph);
BlockMap<Operands<FlushFormat>> deferredAtTail(m_graph);
for (BasicBlock* block : m_graph.blocksInNaturalOrder()) {
deferredAtHead[block] =
Operands<FlushFormat>(OperandsLike, block->variablesAtHead);
deferredAtTail[block] =
Operands<FlushFormat>(OperandsLike, block->variablesAtHead);
}
for (unsigned local = deferredAtHead.atIndex(0).numberOfLocals(); local--;)
deferredAtHead.atIndex(0).local(local) = ConflictingFlush;
do {
changed = false;
for (BasicBlock* block : m_graph.blocksInNaturalOrder()) {
Operands<FlushFormat> deferred = deferredAtHead[block];
for (Node* node : *block) {
if (verbose)
dataLog("Deferred at ", node, ":", deferred, "\n");
if (node->op() == GetStack) {
// Handle the case that the input doesn't match our requirements. This is
// really a bug, but it's a benign one if we simply don't run this phase.
// It usually arises because of patterns like:
//
// if (thing)
// PutStack()
// ...
// if (thing)
// GetStack()
//
// Or:
//
// if (never happens)
// GetStack()
//
// Because this phase runs early in SSA, it should be sensible to enforce
// that no such code pattern has arisen yet. So, when validation is
// enabled, we assert that we aren't seeing this. But with validation
// disabled we silently let this fly and we just abort this phase.
// FIXME: Get rid of all remaining cases of conflicting GetStacks.
// https://bugs.webkit.org/show_bug.cgi?id=150398
bool isConflicting =
deferred.operand(node->stackAccessData()->local) == ConflictingFlush;
if (validationEnabled())
DFG_ASSERT(m_graph, node, !isConflicting);
if (isConflicting) {
// Oh noes! Abort!!
return false;
}
// A GetStack doesn't affect anything, since we know which local we are reading
// from.
continue;
} else if (node->op() == PutStack) {
VirtualRegister operand = node->stackAccessData()->local;
deferred.operand(operand) = node->stackAccessData()->format;
continue;
}
auto escapeHandler = [&] (VirtualRegister operand) {
if (verbose)
dataLog("For ", node, " escaping ", operand, "\n");
if (operand.isHeader())
return;
// We will materialize just before any reads.
deferred.operand(operand) = DeadFlush;
};
auto writeHandler = [&] (VirtualRegister operand) {
RELEASE_ASSERT(node->op() == LoadVarargs || node->op() == ForwardVarargs);
deferred.operand(operand) = DeadFlush;
};
preciseLocalClobberize(
m_graph, node, escapeHandler, writeHandler,
[&] (VirtualRegister, LazyNode) { });
}
if (deferred == deferredAtTail[block])
continue;
deferredAtTail[block] = deferred;
changed = true;
for (BasicBlock* successor : block->successors()) {
for (size_t i = deferred.size(); i--;) {
if (verbose)
dataLog("Considering ", VirtualRegister(deferred.operandForIndex(i)), " at ", pointerDump(block), "->", pointerDump(successor), ": ", deferred[i], " and ", deferredAtHead[successor][i], " merges to ");
deferredAtHead[successor][i] =
merge(deferredAtHead[successor][i], deferred[i]);
if (verbose)
dataLog(deferredAtHead[successor][i], "\n");
}
}
}
} while (changed);
// We wish to insert PutStacks at all of the materialization points, which are defined
// implicitly as the places where we set deferred to Dead while it was previously not Dead.
// To do this, we may need to build some Phi functions to handle stuff like this:
//
// Before:
//
// if (p)
// PutStack(r42, @x)
// else
// PutStack(r42, @y)
//
// After:
//
// if (p)
// Upsilon(@x, ^z)
// else
// Upsilon(@y, ^z)
// z: Phi()
// PutStack(r42, @z)
//
// This means that we have an SSACalculator::Variable for each local, and a Def is any
// PutStack in the original program. The original PutStacks will simply vanish.
Operands<SSACalculator::Variable*> operandToVariable(
OperandsLike, m_graph.block(0)->variablesAtHead);
Vector<VirtualRegister> indexToOperand;
for (size_t i = m_graph.block(0)->variablesAtHead.size(); i--;) {
VirtualRegister operand(m_graph.block(0)->variablesAtHead.operandForIndex(i));
SSACalculator::Variable* variable = ssaCalculator.newVariable();
operandToVariable.operand(operand) = variable;
ASSERT(indexToOperand.size() == variable->index());
indexToOperand.append(operand);
}
HashSet<Node*> putStacksToSink;
for (BasicBlock* block : m_graph.blocksInNaturalOrder()) {
for (Node* node : *block) {
switch (node->op()) {
case PutStack:
putStacksToSink.add(node);
ssaCalculator.newDef(
operandToVariable.operand(node->stackAccessData()->local),
block, node->child1().node());
break;
case GetStack:
ssaCalculator.newDef(
operandToVariable.operand(node->stackAccessData()->local),
block, node);
break;
default:
break;
}
}
}
ssaCalculator.computePhis(
[&] (SSACalculator::Variable* variable, BasicBlock* block) -> Node* {
VirtualRegister operand = indexToOperand[variable->index()];
if (!liveAtHead[block].operand(operand))
return nullptr;
FlushFormat format = deferredAtHead[block].operand(operand);
// We could have an invalid deferral because liveness is imprecise.
if (!isConcrete(format))
return nullptr;
if (verbose)
dataLog("Adding Phi for ", operand, " at ", pointerDump(block), "\n");
Node* phiNode = m_graph.addNode(SpecHeapTop, Phi, block->at(0)->origin.withInvalidExit());
phiNode->mergeFlags(resultFor(format));
return phiNode;
});
Operands<Node*> mapping(OperandsLike, m_graph.block(0)->variablesAtHead);
Operands<FlushFormat> deferred;
for (BasicBlock* block : m_graph.blocksInNaturalOrder()) {
mapping.fill(nullptr);
for (size_t i = mapping.size(); i--;) {
VirtualRegister operand(mapping.operandForIndex(i));
SSACalculator::Variable* variable = operandToVariable.operand(operand);
SSACalculator::Def* def = ssaCalculator.reachingDefAtHead(block, variable);
if (!def)
continue;
mapping.operand(operand) = def->value();
}
if (verbose)
dataLog("Mapping at top of ", pointerDump(block), ": ", mapping, "\n");
for (SSACalculator::Def* phiDef : ssaCalculator.phisForBlock(block)) {
VirtualRegister operand = indexToOperand[phiDef->variable()->index()];
insertionSet.insert(0, phiDef->value());
if (verbose)
dataLog(" Mapping ", operand, " to ", phiDef->value(), "\n");
mapping.operand(operand) = phiDef->value();
}
deferred = deferredAtHead[block];
for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) {
Node* node = block->at(nodeIndex);
if (verbose)
dataLog("Deferred at ", node, ":", deferred, "\n");
switch (node->op()) {
case PutStack: {
StackAccessData* data = node->stackAccessData();
VirtualRegister operand = data->local;
deferred.operand(operand) = data->format;
if (verbose)
dataLog(" Mapping ", operand, " to ", node->child1().node(), " at ", node, "\n");
mapping.operand(operand) = node->child1().node();
break;
}
case GetStack: {
StackAccessData* data = node->stackAccessData();
FlushFormat format = deferred.operand(data->local);
if (!isConcrete(format)) {
DFG_ASSERT(
m_graph, node,
deferred.operand(data->local) != ConflictingFlush);
// This means there is no deferral. No deferral means that the most
// authoritative value for this stack slot is what is stored in the stack. So,
// keep the GetStack.
mapping.operand(data->local) = node;
break;
}
// We have a concrete deferral, which means a PutStack that hasn't executed yet. It
// would have stored a value with a certain format. That format must match our
// format. But more importantly, we can simply use the value that the PutStack would
// have stored and get rid of the GetStack.
DFG_ASSERT(m_graph, node, format == data->format);
Node* incoming = mapping.operand(data->local);
node->child1() = incoming->defaultEdge();
node->convertToIdentity();
break;
}
default: {
auto escapeHandler = [&] (VirtualRegister operand) {
if (verbose)
dataLog("For ", node, " escaping ", operand, "\n");
if (operand.isHeader())
return;
FlushFormat format = deferred.operand(operand);
if (!isConcrete(format)) {
// It's dead now, rather than conflicting.
deferred.operand(operand) = DeadFlush;
return;
}
// Gotta insert a PutStack.
if (verbose)
dataLog("Inserting a PutStack for ", operand, " at ", node, "\n");
Node* incoming = mapping.operand(operand);
DFG_ASSERT(m_graph, node, incoming);
insertionSet.insertNode(
nodeIndex, SpecNone, PutStack, node->origin,
OpInfo(m_graph.m_stackAccessData.add(operand, format)),
Edge(incoming, uncheckedUseKindFor(format)));
deferred.operand(operand) = DeadFlush;
};
auto writeHandler = [&] (VirtualRegister operand) {
// LoadVarargs and ForwardVarargs are unconditional writes to the stack
// locations they claim to write to. They do not read from the stack
// locations they write to. This makes those stack locations dead right
// before a LoadVarargs/ForwardVarargs. This means we should never sink
// PutStacks right to this point.
RELEASE_ASSERT(node->op() == LoadVarargs || node->op() == ForwardVarargs);
deferred.operand(operand) = DeadFlush;
};
preciseLocalClobberize(
m_graph, node, escapeHandler, writeHandler,
[&] (VirtualRegister, LazyNode) { });
break;
} }
}
NodeAndIndex terminal = block->findTerminal();
size_t upsilonInsertionPoint = terminal.index;
NodeOrigin upsilonOrigin = terminal.node->origin;
for (BasicBlock* successorBlock : block->successors()) {
for (SSACalculator::Def* phiDef : ssaCalculator.phisForBlock(successorBlock)) {
Node* phiNode = phiDef->value();
SSACalculator::Variable* variable = phiDef->variable();
VirtualRegister operand = indexToOperand[variable->index()];
if (verbose)
dataLog("Creating Upsilon for ", operand, " at ", pointerDump(block), "->", pointerDump(successorBlock), "\n");
FlushFormat format = deferredAtHead[successorBlock].operand(operand);
DFG_ASSERT(m_graph, nullptr, isConcrete(format));
UseKind useKind = uncheckedUseKindFor(format);
// We need to get a value for the stack slot. This phase doesn't really have a
// good way of determining if a stack location got clobbered. It just knows if
// there is a deferral. The lack of a deferral might mean that a PutStack or
// GetStack had never happened, or it might mean that the value was read, or
// that it was written. It's OK for us to make some bad decisions here, since
// GCSE will clean it up anyway.
Node* incoming;
if (isConcrete(deferred.operand(operand))) {
incoming = mapping.operand(operand);
DFG_ASSERT(m_graph, phiNode, incoming);
} else {
// Issue a GetStack to get the value. This might introduce some redundancy
// into the code, but if it's bad enough, GCSE will clean it up.
incoming = insertionSet.insertNode(
upsilonInsertionPoint, SpecNone, GetStack, upsilonOrigin,
OpInfo(m_graph.m_stackAccessData.add(operand, format)));
incoming->setResult(resultFor(format));
}
insertionSet.insertNode(
upsilonInsertionPoint, SpecNone, Upsilon, upsilonOrigin,
OpInfo(phiNode), Edge(incoming, useKind));
}
}
insertionSet.execute(block);
}
// Finally eliminate the sunken PutStacks by turning them into Checks. This keeps whatever
// type check they were doing.
for (BasicBlock* block : m_graph.blocksInNaturalOrder()) {
for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) {
Node* node = block->at(nodeIndex);
if (!putStacksToSink.contains(node))
continue;
node->remove();
}
}
if (verbose) {
dataLog("Graph after PutStack sinking:\n");
m_graph.dump();
}
return true;
}
};
} // anonymous namespace
bool performPutStackSinking(Graph& graph)
{
SamplingRegion samplingRegion("DFG PutStack Sinking Phase");
return runPhase<PutStackSinkingPhase>(graph);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
|