1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
|
/*
* Copyright (C) 2011, 2012, 2013 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef DFGSpeculativeJIT_h
#define DFGSpeculativeJIT_h
#include <wtf/Platform.h>
#if ENABLE(DFG_JIT)
#include "DFGAbstractState.h"
#include "DFGGenerationInfo.h"
#include "DFGJITCompiler.h"
#include "DFGOSRExit.h"
#include "DFGOSRExitJumpPlaceholder.h"
#include "DFGOperations.h"
#include "DFGSilentRegisterSavePlan.h"
#include "DFGValueSource.h"
#include "MarkedAllocator.h"
#include "ValueRecovery.h"
namespace JSC { namespace DFG {
class GPRTemporary;
class JSValueOperand;
class SlowPathGenerator;
class SpeculativeJIT;
class SpeculateIntegerOperand;
class SpeculateStrictInt32Operand;
class SpeculateDoubleOperand;
class SpeculateCellOperand;
class SpeculateBooleanOperand;
enum GeneratedOperandType { GeneratedOperandTypeUnknown, GeneratedOperandInteger, GeneratedOperandDouble, GeneratedOperandJSValue};
// === SpeculativeJIT ===
//
// The SpeculativeJIT is used to generate a fast, but potentially
// incomplete code path for the dataflow. When code generating
// we may make assumptions about operand types, dynamically check,
// and bail-out to an alternate code path if these checks fail.
// Importantly, the speculative code path cannot be reentered once
// a speculative check has failed. This allows the SpeculativeJIT
// to propagate type information (including information that has
// only speculatively been asserted) through the dataflow.
class SpeculativeJIT {
friend struct OSRExit;
private:
typedef JITCompiler::TrustedImm32 TrustedImm32;
typedef JITCompiler::Imm32 Imm32;
typedef JITCompiler::TrustedImmPtr TrustedImmPtr;
typedef JITCompiler::ImmPtr ImmPtr;
typedef JITCompiler::TrustedImm64 TrustedImm64;
typedef JITCompiler::Imm64 Imm64;
// These constants are used to set priorities for spill order for
// the register allocator.
#if USE(JSVALUE64)
enum SpillOrder {
SpillOrderConstant = 1, // no spill, and cheap fill
SpillOrderSpilled = 2, // no spill
SpillOrderJS = 4, // needs spill
SpillOrderCell = 4, // needs spill
SpillOrderStorage = 4, // needs spill
SpillOrderInteger = 5, // needs spill and box
SpillOrderBoolean = 5, // needs spill and box
SpillOrderDouble = 6, // needs spill and convert
};
#elif USE(JSVALUE32_64)
enum SpillOrder {
SpillOrderConstant = 1, // no spill, and cheap fill
SpillOrderSpilled = 2, // no spill
SpillOrderJS = 4, // needs spill
SpillOrderStorage = 4, // needs spill
SpillOrderDouble = 4, // needs spill
SpillOrderInteger = 5, // needs spill and box
SpillOrderCell = 5, // needs spill and box
SpillOrderBoolean = 5, // needs spill and box
};
#endif
enum UseChildrenMode { CallUseChildren, UseChildrenCalledExplicitly };
public:
SpeculativeJIT(JITCompiler&);
~SpeculativeJIT();
bool compile();
void createOSREntries();
void linkOSREntries(LinkBuffer&);
BlockIndex nextBlock()
{
for (BlockIndex result = m_block + 1; ; result++) {
if (result >= m_jit.graph().m_blocks.size())
return NoBlock;
if (m_jit.graph().m_blocks[result])
return result;
}
}
GPRReg fillInteger(Edge, DataFormat& returnFormat);
#if USE(JSVALUE64)
GPRReg fillJSValue(Edge);
#elif USE(JSVALUE32_64)
bool fillJSValue(Edge, GPRReg&, GPRReg&, FPRReg&);
#endif
GPRReg fillStorage(Edge);
// lock and unlock GPR & FPR registers.
void lock(GPRReg reg)
{
m_gprs.lock(reg);
}
void lock(FPRReg reg)
{
m_fprs.lock(reg);
}
void unlock(GPRReg reg)
{
m_gprs.unlock(reg);
}
void unlock(FPRReg reg)
{
m_fprs.unlock(reg);
}
// Used to check whether a child node is on its last use,
// and its machine registers may be reused.
bool canReuse(Node* node)
{
VirtualRegister virtualRegister = node->virtualRegister();
GenerationInfo& info = m_generationInfo[virtualRegister];
return info.canReuse();
}
bool canReuse(Edge nodeUse)
{
return canReuse(nodeUse.node());
}
GPRReg reuse(GPRReg reg)
{
m_gprs.lock(reg);
return reg;
}
FPRReg reuse(FPRReg reg)
{
m_fprs.lock(reg);
return reg;
}
// Allocate a gpr/fpr.
GPRReg allocate()
{
#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
m_jit.addRegisterAllocationAtOffset(m_jit.debugOffset());
#endif
VirtualRegister spillMe;
GPRReg gpr = m_gprs.allocate(spillMe);
if (spillMe != InvalidVirtualRegister) {
#if USE(JSVALUE32_64)
GenerationInfo& info = m_generationInfo[spillMe];
RELEASE_ASSERT(info.registerFormat() != DataFormatJSDouble);
if ((info.registerFormat() & DataFormatJS))
m_gprs.release(info.tagGPR() == gpr ? info.payloadGPR() : info.tagGPR());
#endif
spill(spillMe);
}
return gpr;
}
GPRReg allocate(GPRReg specific)
{
#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
m_jit.addRegisterAllocationAtOffset(m_jit.debugOffset());
#endif
VirtualRegister spillMe = m_gprs.allocateSpecific(specific);
if (spillMe != InvalidVirtualRegister) {
#if USE(JSVALUE32_64)
GenerationInfo& info = m_generationInfo[spillMe];
RELEASE_ASSERT(info.registerFormat() != DataFormatJSDouble);
if ((info.registerFormat() & DataFormatJS))
m_gprs.release(info.tagGPR() == specific ? info.payloadGPR() : info.tagGPR());
#endif
spill(spillMe);
}
return specific;
}
GPRReg tryAllocate()
{
return m_gprs.tryAllocate();
}
FPRReg fprAllocate()
{
#if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION)
m_jit.addRegisterAllocationAtOffset(m_jit.debugOffset());
#endif
VirtualRegister spillMe;
FPRReg fpr = m_fprs.allocate(spillMe);
if (spillMe != InvalidVirtualRegister)
spill(spillMe);
return fpr;
}
// Check whether a VirtualRegsiter is currently in a machine register.
// We use this when filling operands to fill those that are already in
// machine registers first (by locking VirtualRegsiters that are already
// in machine register before filling those that are not we attempt to
// avoid spilling values we will need immediately).
bool isFilled(Node* node)
{
VirtualRegister virtualRegister = node->virtualRegister();
GenerationInfo& info = m_generationInfo[virtualRegister];
return info.registerFormat() != DataFormatNone;
}
bool isFilledDouble(Node* node)
{
VirtualRegister virtualRegister = node->virtualRegister();
GenerationInfo& info = m_generationInfo[virtualRegister];
return info.registerFormat() == DataFormatDouble;
}
// Called on an operand once it has been consumed by a parent node.
void use(Node* node)
{
if (!node->hasResult())
return;
VirtualRegister virtualRegister = node->virtualRegister();
GenerationInfo& info = m_generationInfo[virtualRegister];
// use() returns true when the value becomes dead, and any
// associated resources may be freed.
if (!info.use(*m_stream))
return;
// Release the associated machine registers.
DataFormat registerFormat = info.registerFormat();
#if USE(JSVALUE64)
if (registerFormat == DataFormatDouble)
m_fprs.release(info.fpr());
else if (registerFormat != DataFormatNone)
m_gprs.release(info.gpr());
#elif USE(JSVALUE32_64)
if (registerFormat == DataFormatDouble || registerFormat == DataFormatJSDouble)
m_fprs.release(info.fpr());
else if (registerFormat & DataFormatJS) {
m_gprs.release(info.tagGPR());
m_gprs.release(info.payloadGPR());
} else if (registerFormat != DataFormatNone)
m_gprs.release(info.gpr());
#endif
}
void use(Edge nodeUse)
{
use(nodeUse.node());
}
RegisterSet usedRegisters()
{
RegisterSet result;
for (unsigned i = GPRInfo::numberOfRegisters; i--;) {
GPRReg gpr = GPRInfo::toRegister(i);
if (m_gprs.isInUse(gpr))
result.set(gpr);
}
for (unsigned i = FPRInfo::numberOfRegisters; i--;) {
FPRReg fpr = FPRInfo::toRegister(i);
if (m_fprs.isInUse(fpr))
result.set(fpr);
}
return result;
}
static void writeBarrier(MacroAssembler&, GPRReg ownerGPR, GPRReg scratchGPR1, GPRReg scratchGPR2, WriteBarrierUseKind);
void writeBarrier(GPRReg ownerGPR, GPRReg valueGPR, Edge valueUse, WriteBarrierUseKind, GPRReg scratchGPR1 = InvalidGPRReg, GPRReg scratchGPR2 = InvalidGPRReg);
void writeBarrier(GPRReg ownerGPR, JSCell* value, WriteBarrierUseKind, GPRReg scratchGPR1 = InvalidGPRReg, GPRReg scratchGPR2 = InvalidGPRReg);
void writeBarrier(JSCell* owner, GPRReg valueGPR, Edge valueUse, WriteBarrierUseKind, GPRReg scratchGPR1 = InvalidGPRReg);
static GPRReg selectScratchGPR(GPRReg preserve1 = InvalidGPRReg, GPRReg preserve2 = InvalidGPRReg, GPRReg preserve3 = InvalidGPRReg, GPRReg preserve4 = InvalidGPRReg)
{
return AssemblyHelpers::selectScratchGPR(preserve1, preserve2, preserve3, preserve4);
}
// Called by the speculative operand types, below, to fill operand to
// machine registers, implicitly generating speculation checks as needed.
GPRReg fillSpeculateInt(Edge, DataFormat& returnFormat);
GPRReg fillSpeculateIntStrict(Edge);
FPRReg fillSpeculateDouble(Edge);
GPRReg fillSpeculateCell(Edge);
GPRReg fillSpeculateBoolean(Edge);
GeneratedOperandType checkGeneratedTypeForToInt32(Node*);
void addSlowPathGenerator(PassOwnPtr<SlowPathGenerator>);
void runSlowPathGenerators();
void compile(Node*);
void noticeOSRBirth(Node*);
void compile(BasicBlock&);
void checkArgumentTypes();
void clearGenerationInfo();
// These methods are used when generating 'unexpected'
// calls out from JIT code to C++ helper routines -
// they spill all live values to the appropriate
// slots in the JSStack without changing any state
// in the GenerationInfo.
SilentRegisterSavePlan silentSavePlanForGPR(VirtualRegister spillMe, GPRReg source);
SilentRegisterSavePlan silentSavePlanForFPR(VirtualRegister spillMe, FPRReg source);
void silentSpill(const SilentRegisterSavePlan&);
void silentFill(const SilentRegisterSavePlan&, GPRReg canTrample);
template<typename CollectionType>
void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, GPRReg exclude, GPRReg exclude2 = InvalidGPRReg, FPRReg fprExclude = InvalidFPRReg)
{
ASSERT(plans.isEmpty());
for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
GPRReg gpr = iter.regID();
if (iter.name() != InvalidVirtualRegister && gpr != exclude && gpr != exclude2) {
SilentRegisterSavePlan plan = silentSavePlanForGPR(iter.name(), gpr);
if (doSpill)
silentSpill(plan);
plans.append(plan);
}
}
for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister && iter.regID() != fprExclude) {
SilentRegisterSavePlan plan = silentSavePlanForFPR(iter.name(), iter.regID());
if (doSpill)
silentSpill(plan);
plans.append(plan);
}
}
}
template<typename CollectionType>
void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, NoResultTag)
{
silentSpillAllRegistersImpl(doSpill, plans, InvalidGPRReg, InvalidGPRReg, InvalidFPRReg);
}
template<typename CollectionType>
void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, FPRReg exclude)
{
silentSpillAllRegistersImpl(doSpill, plans, InvalidGPRReg, InvalidGPRReg, exclude);
}
#if USE(JSVALUE32_64)
template<typename CollectionType>
void silentSpillAllRegistersImpl(bool doSpill, CollectionType& plans, JSValueRegs exclude)
{
silentSpillAllRegistersImpl(doSpill, plans, exclude.tagGPR(), exclude.payloadGPR());
}
#endif
void silentSpillAllRegisters(GPRReg exclude, GPRReg exclude2 = InvalidGPRReg, FPRReg fprExclude = InvalidFPRReg)
{
silentSpillAllRegistersImpl(true, m_plans, exclude, exclude2, fprExclude);
}
void silentSpillAllRegisters(FPRReg exclude)
{
silentSpillAllRegisters(InvalidGPRReg, InvalidGPRReg, exclude);
}
static GPRReg pickCanTrample(GPRReg exclude)
{
GPRReg result = GPRInfo::regT0;
if (result == exclude)
result = GPRInfo::regT1;
return result;
}
static GPRReg pickCanTrample(FPRReg)
{
return GPRInfo::regT0;
}
static GPRReg pickCanTrample(NoResultTag)
{
return GPRInfo::regT0;
}
#if USE(JSVALUE32_64)
static GPRReg pickCanTrample(JSValueRegs exclude)
{
GPRReg result = GPRInfo::regT0;
if (result == exclude.tagGPR()) {
result = GPRInfo::regT1;
if (result == exclude.payloadGPR())
result = GPRInfo::regT2;
} else if (result == exclude.payloadGPR()) {
result = GPRInfo::regT1;
if (result == exclude.tagGPR())
result = GPRInfo::regT2;
}
return result;
}
#endif
template<typename RegisterType>
void silentFillAllRegisters(RegisterType exclude)
{
GPRReg canTrample = pickCanTrample(exclude);
while (!m_plans.isEmpty()) {
SilentRegisterSavePlan& plan = m_plans.last();
silentFill(plan, canTrample);
m_plans.removeLast();
}
}
// These methods convert between doubles, and doubles boxed and JSValues.
#if USE(JSVALUE64)
GPRReg boxDouble(FPRReg fpr, GPRReg gpr)
{
return m_jit.boxDouble(fpr, gpr);
}
FPRReg unboxDouble(GPRReg gpr, FPRReg fpr)
{
return m_jit.unboxDouble(gpr, fpr);
}
GPRReg boxDouble(FPRReg fpr)
{
return boxDouble(fpr, allocate());
}
#elif USE(JSVALUE32_64)
void boxDouble(FPRReg fpr, GPRReg tagGPR, GPRReg payloadGPR)
{
m_jit.boxDouble(fpr, tagGPR, payloadGPR);
}
void unboxDouble(GPRReg tagGPR, GPRReg payloadGPR, FPRReg fpr, FPRReg scratchFPR)
{
m_jit.unboxDouble(tagGPR, payloadGPR, fpr, scratchFPR);
}
#endif
// Spill a VirtualRegister to the JSStack.
void spill(VirtualRegister spillMe)
{
GenerationInfo& info = m_generationInfo[spillMe];
#if USE(JSVALUE32_64)
if (info.registerFormat() == DataFormatNone) // it has been spilled. JS values which have two GPRs can reach here
return;
#endif
// Check the GenerationInfo to see if this value need writing
// to the JSStack - if not, mark it as spilled & return.
if (!info.needsSpill()) {
info.setSpilled(*m_stream, spillMe);
return;
}
DataFormat spillFormat = info.registerFormat();
switch (spillFormat) {
case DataFormatStorage: {
// This is special, since it's not a JS value - as in it's not visible to JS
// code.
m_jit.storePtr(info.gpr(), JITCompiler::addressFor(spillMe));
info.spill(*m_stream, spillMe, DataFormatStorage);
return;
}
case DataFormatInteger: {
m_jit.store32(info.gpr(), JITCompiler::payloadFor(spillMe));
info.spill(*m_stream, spillMe, DataFormatInteger);
return;
}
#if USE(JSVALUE64)
case DataFormatDouble: {
m_jit.storeDouble(info.fpr(), JITCompiler::addressFor(spillMe));
info.spill(*m_stream, spillMe, DataFormatDouble);
return;
}
default:
// The following code handles JSValues, int32s, and cells.
RELEASE_ASSERT(spillFormat == DataFormatCell || spillFormat & DataFormatJS);
GPRReg reg = info.gpr();
// We need to box int32 and cell values ...
// but on JSVALUE64 boxing a cell is a no-op!
if (spillFormat == DataFormatInteger)
m_jit.or64(GPRInfo::tagTypeNumberRegister, reg);
// Spill the value, and record it as spilled in its boxed form.
m_jit.store64(reg, JITCompiler::addressFor(spillMe));
info.spill(*m_stream, spillMe, (DataFormat)(spillFormat | DataFormatJS));
return;
#elif USE(JSVALUE32_64)
case DataFormatCell:
case DataFormatBoolean: {
m_jit.store32(info.gpr(), JITCompiler::payloadFor(spillMe));
info.spill(*m_stream, spillMe, spillFormat);
return;
}
case DataFormatDouble:
case DataFormatJSDouble: {
// On JSVALUE32_64 boxing a double is a no-op.
m_jit.storeDouble(info.fpr(), JITCompiler::addressFor(spillMe));
info.spill(*m_stream, spillMe, DataFormatJSDouble);
return;
}
default:
// The following code handles JSValues.
RELEASE_ASSERT(spillFormat & DataFormatJS);
m_jit.store32(info.tagGPR(), JITCompiler::tagFor(spillMe));
m_jit.store32(info.payloadGPR(), JITCompiler::payloadFor(spillMe));
info.spill(*m_stream, spillMe, spillFormat);
return;
#endif
}
}
bool isKnownInteger(Node* node) { return !(m_state.forNode(node).m_type & ~SpecInt32); }
bool isKnownCell(Node* node) { return !(m_state.forNode(node).m_type & ~SpecCell); }
bool isKnownNotInteger(Node* node) { return !(m_state.forNode(node).m_type & SpecInt32); }
bool isKnownNotNumber(Node* node) { return !(m_state.forNode(node).m_type & SpecNumber); }
bool isKnownNotCell(Node* node) { return !(m_state.forNode(node).m_type & SpecCell); }
// Checks/accessors for constant values.
bool isConstant(Node* node) { return m_jit.graph().isConstant(node); }
bool isJSConstant(Node* node) { return m_jit.graph().isJSConstant(node); }
bool isInt32Constant(Node* node) { return m_jit.graph().isInt32Constant(node); }
bool isDoubleConstant(Node* node) { return m_jit.graph().isDoubleConstant(node); }
bool isNumberConstant(Node* node) { return m_jit.graph().isNumberConstant(node); }
bool isBooleanConstant(Node* node) { return m_jit.graph().isBooleanConstant(node); }
bool isFunctionConstant(Node* node) { return m_jit.graph().isFunctionConstant(node); }
int32_t valueOfInt32Constant(Node* node) { return m_jit.graph().valueOfInt32Constant(node); }
double valueOfNumberConstant(Node* node) { return m_jit.graph().valueOfNumberConstant(node); }
#if USE(JSVALUE32_64)
void* addressOfDoubleConstant(Node* node) { return m_jit.addressOfDoubleConstant(node); }
#endif
JSValue valueOfJSConstant(Node* node) { return m_jit.graph().valueOfJSConstant(node); }
bool valueOfBooleanConstant(Node* node) { return m_jit.graph().valueOfBooleanConstant(node); }
JSFunction* valueOfFunctionConstant(Node* node) { return m_jit.graph().valueOfFunctionConstant(node); }
bool isNullConstant(Node* node)
{
if (!isConstant(node))
return false;
return valueOfJSConstant(node).isNull();
}
Identifier* identifier(unsigned index)
{
return &m_jit.codeBlock()->identifier(index);
}
// Spill all VirtualRegisters back to the JSStack.
void flushRegisters()
{
for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister) {
spill(iter.name());
iter.release();
}
}
for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister) {
spill(iter.name());
iter.release();
}
}
}
#ifndef NDEBUG
// Used to ASSERT flushRegisters() has been called prior to
// calling out from JIT code to a C helper function.
bool isFlushed()
{
for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister)
return false;
}
for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister)
return false;
}
return true;
}
#endif
#if USE(JSVALUE64)
MacroAssembler::Imm64 valueOfJSConstantAsImm64(Node* node)
{
return MacroAssembler::Imm64(JSValue::encode(valueOfJSConstant(node)));
}
#endif
// Helper functions to enable code sharing in implementations of bit/shift ops.
void bitOp(NodeType op, int32_t imm, GPRReg op1, GPRReg result)
{
switch (op) {
case BitAnd:
m_jit.and32(Imm32(imm), op1, result);
break;
case BitOr:
m_jit.or32(Imm32(imm), op1, result);
break;
case BitXor:
m_jit.xor32(Imm32(imm), op1, result);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
void bitOp(NodeType op, GPRReg op1, GPRReg op2, GPRReg result)
{
switch (op) {
case BitAnd:
m_jit.and32(op1, op2, result);
break;
case BitOr:
m_jit.or32(op1, op2, result);
break;
case BitXor:
m_jit.xor32(op1, op2, result);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
void shiftOp(NodeType op, GPRReg op1, int32_t shiftAmount, GPRReg result)
{
switch (op) {
case BitRShift:
m_jit.rshift32(op1, Imm32(shiftAmount), result);
break;
case BitLShift:
m_jit.lshift32(op1, Imm32(shiftAmount), result);
break;
case BitURShift:
m_jit.urshift32(op1, Imm32(shiftAmount), result);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
void shiftOp(NodeType op, GPRReg op1, GPRReg shiftAmount, GPRReg result)
{
switch (op) {
case BitRShift:
m_jit.rshift32(op1, shiftAmount, result);
break;
case BitLShift:
m_jit.lshift32(op1, shiftAmount, result);
break;
case BitURShift:
m_jit.urshift32(op1, shiftAmount, result);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
// Returns the index of the branch node if peephole is okay, UINT_MAX otherwise.
unsigned detectPeepHoleBranch()
{
BasicBlock* block = m_jit.graph().m_blocks[m_block].get();
// Check that no intervening nodes will be generated.
for (unsigned index = m_indexInBlock + 1; index < block->size() - 1; ++index) {
Node* node = block->at(index);
if (node->shouldGenerate())
return UINT_MAX;
}
// Check if the lastNode is a branch on this node.
Node* lastNode = block->last();
return lastNode->op() == Branch && lastNode->child1() == m_currentNode ? block->size() - 1 : UINT_MAX;
}
void compileMovHint(Node*);
void compileMovHintAndCheck(Node*);
void compileInlineStart(Node*);
void nonSpeculativeUInt32ToNumber(Node*);
#if USE(JSVALUE64)
void cachedGetById(CodeOrigin, GPRReg baseGPR, GPRReg resultGPR, unsigned identifierNumber, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill);
void cachedPutById(CodeOrigin, GPRReg base, GPRReg value, Edge valueUse, GPRReg scratchGPR, unsigned identifierNumber, PutKind, JITCompiler::Jump slowPathTarget = JITCompiler::Jump());
#elif USE(JSVALUE32_64)
void cachedGetById(CodeOrigin, GPRReg baseTagGPROrNone, GPRReg basePayloadGPR, GPRReg resultTagGPR, GPRReg resultPayloadGPR, unsigned identifierNumber, JITCompiler::Jump slowPathTarget = JITCompiler::Jump(), SpillRegistersMode = NeedToSpill);
void cachedPutById(CodeOrigin, GPRReg basePayloadGPR, GPRReg valueTagGPR, GPRReg valuePayloadGPR, Edge valueUse, GPRReg scratchGPR, unsigned identifierNumber, PutKind, JITCompiler::Jump slowPathTarget = JITCompiler::Jump());
#endif
void nonSpeculativeNonPeepholeCompareNull(Edge operand, bool invert = false);
void nonSpeculativePeepholeBranchNull(Edge operand, Node* branchNode, bool invert = false);
bool nonSpeculativeCompareNull(Node*, Edge operand, bool invert = false);
void nonSpeculativePeepholeBranch(Node*, Node* branchNode, MacroAssembler::RelationalCondition, S_DFGOperation_EJJ helperFunction);
void nonSpeculativeNonPeepholeCompare(Node*, MacroAssembler::RelationalCondition, S_DFGOperation_EJJ helperFunction);
bool nonSpeculativeCompare(Node*, MacroAssembler::RelationalCondition, S_DFGOperation_EJJ helperFunction);
void nonSpeculativePeepholeStrictEq(Node*, Node* branchNode, bool invert = false);
void nonSpeculativeNonPeepholeStrictEq(Node*, bool invert = false);
bool nonSpeculativeStrictEq(Node*, bool invert = false);
void compileInstanceOfForObject(Node*, GPRReg valueReg, GPRReg prototypeReg, GPRReg scratchAndResultReg);
void compileInstanceOf(Node*);
// Access to our fixed callee CallFrame.
MacroAssembler::Address callFrameSlot(int slot)
{
return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + slot) * static_cast<int>(sizeof(Register)));
}
// Access to our fixed callee CallFrame.
MacroAssembler::Address argumentSlot(int argument)
{
return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + argumentToOperand(argument)) * static_cast<int>(sizeof(Register)));
}
MacroAssembler::Address callFrameTagSlot(int slot)
{
return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + slot) * static_cast<int>(sizeof(Register)) + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.tag));
}
MacroAssembler::Address callFramePayloadSlot(int slot)
{
return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + slot) * static_cast<int>(sizeof(Register)) + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.payload));
}
MacroAssembler::Address argumentTagSlot(int argument)
{
return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + argumentToOperand(argument)) * static_cast<int>(sizeof(Register)) + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.tag));
}
MacroAssembler::Address argumentPayloadSlot(int argument)
{
return MacroAssembler::Address(GPRInfo::callFrameRegister, (m_jit.codeBlock()->m_numCalleeRegisters + argumentToOperand(argument)) * static_cast<int>(sizeof(Register)) + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.payload));
}
void emitCall(Node*);
// Called once a node has completed code generation but prior to setting
// its result, to free up its children. (This must happen prior to setting
// the nodes result, since the node may have the same VirtualRegister as
// a child, and as such will use the same GeneratioInfo).
void useChildren(Node*);
// These method called to initialize the the GenerationInfo
// to describe the result of an operation.
void integerResult(GPRReg reg, Node* node, DataFormat format = DataFormatInteger, UseChildrenMode mode = CallUseChildren)
{
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
GenerationInfo& info = m_generationInfo[virtualRegister];
if (format == DataFormatInteger) {
m_jit.jitAssertIsInt32(reg);
m_gprs.retain(reg, virtualRegister, SpillOrderInteger);
info.initInteger(node, node->refCount(), reg);
} else {
#if USE(JSVALUE64)
RELEASE_ASSERT(format == DataFormatJSInteger);
m_jit.jitAssertIsJSInt32(reg);
m_gprs.retain(reg, virtualRegister, SpillOrderJS);
info.initJSValue(node, node->refCount(), reg, format);
#elif USE(JSVALUE32_64)
RELEASE_ASSERT_NOT_REACHED();
#endif
}
}
void integerResult(GPRReg reg, Node* node, UseChildrenMode mode)
{
integerResult(reg, node, DataFormatInteger, mode);
}
void noResult(Node* node, UseChildrenMode mode = CallUseChildren)
{
if (mode == UseChildrenCalledExplicitly)
return;
useChildren(node);
}
void cellResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
{
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
m_gprs.retain(reg, virtualRegister, SpillOrderCell);
GenerationInfo& info = m_generationInfo[virtualRegister];
info.initCell(node, node->refCount(), reg);
}
void booleanResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
{
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
m_gprs.retain(reg, virtualRegister, SpillOrderBoolean);
GenerationInfo& info = m_generationInfo[virtualRegister];
info.initBoolean(node, node->refCount(), reg);
}
#if USE(JSVALUE64)
void jsValueResult(GPRReg reg, Node* node, DataFormat format = DataFormatJS, UseChildrenMode mode = CallUseChildren)
{
if (format == DataFormatJSInteger)
m_jit.jitAssertIsJSInt32(reg);
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
m_gprs.retain(reg, virtualRegister, SpillOrderJS);
GenerationInfo& info = m_generationInfo[virtualRegister];
info.initJSValue(node, node->refCount(), reg, format);
}
void jsValueResult(GPRReg reg, Node* node, UseChildrenMode mode)
{
jsValueResult(reg, node, DataFormatJS, mode);
}
#elif USE(JSVALUE32_64)
void jsValueResult(GPRReg tag, GPRReg payload, Node* node, DataFormat format = DataFormatJS, UseChildrenMode mode = CallUseChildren)
{
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
m_gprs.retain(tag, virtualRegister, SpillOrderJS);
m_gprs.retain(payload, virtualRegister, SpillOrderJS);
GenerationInfo& info = m_generationInfo[virtualRegister];
info.initJSValue(node, node->refCount(), tag, payload, format);
}
void jsValueResult(GPRReg tag, GPRReg payload, Node* node, UseChildrenMode mode)
{
jsValueResult(tag, payload, node, DataFormatJS, mode);
}
#endif
void storageResult(GPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
{
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
m_gprs.retain(reg, virtualRegister, SpillOrderStorage);
GenerationInfo& info = m_generationInfo[virtualRegister];
info.initStorage(node, node->refCount(), reg);
}
void doubleResult(FPRReg reg, Node* node, UseChildrenMode mode = CallUseChildren)
{
if (mode == CallUseChildren)
useChildren(node);
VirtualRegister virtualRegister = node->virtualRegister();
m_fprs.retain(reg, virtualRegister, SpillOrderDouble);
GenerationInfo& info = m_generationInfo[virtualRegister];
info.initDouble(node, node->refCount(), reg);
}
void initConstantInfo(Node* node)
{
ASSERT(isInt32Constant(node) || isNumberConstant(node) || isJSConstant(node));
m_generationInfo[node->virtualRegister()].initConstant(node, node->refCount());
}
// These methods add calls to C++ helper functions.
// These methods are broadly value representation specific (i.e.
// deal with the fact that a JSValue may be passed in one or two
// machine registers, and delegate the calling convention specific
// decision as to how to fill the regsiters to setupArguments* methods.
JITCompiler::Call callOperation(P_DFGOperation_E operation, GPRReg result)
{
m_jit.setupArgumentsExecState();
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EC operation, GPRReg result, GPRReg cell)
{
m_jit.setupArgumentsWithExecState(cell);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EO operation, GPRReg result, GPRReg object)
{
m_jit.setupArgumentsWithExecState(object);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EOS operation, GPRReg result, GPRReg object, size_t size)
{
m_jit.setupArgumentsWithExecState(object, TrustedImmPtr(size));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EOZ operation, GPRReg result, GPRReg object, int32_t size)
{
m_jit.setupArgumentsWithExecState(object, TrustedImmPtr(size));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_EOZ operation, GPRReg result, GPRReg object, int32_t size)
{
m_jit.setupArgumentsWithExecState(object, TrustedImmPtr(static_cast<size_t>(size)));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EPS operation, GPRReg result, GPRReg old, size_t size)
{
m_jit.setupArgumentsWithExecState(old, TrustedImmPtr(size));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_ES operation, GPRReg result, size_t size)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(size));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_ESt operation, GPRReg result, Structure* structure)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EStZ operation, GPRReg result, Structure* structure, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EStZ operation, GPRReg result, Structure* structure, size_t arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImm32(arg2));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EStZ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EStPS operation, GPRReg result, Structure* structure, void* pointer, size_t size)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImmPtr(pointer), TrustedImmPtr(size));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(P_DFGOperation_EStSS operation, GPRReg result, Structure* structure, size_t index, size_t size)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure), TrustedImmPtr(index), TrustedImmPtr(size));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_E operation, GPRReg result)
{
m_jit.setupArgumentsExecState();
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_EC operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_EC operation, GPRReg result, JSCell* cell)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(cell));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_ECC operation, GPRReg result, GPRReg arg1, JSCell* cell)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(cell));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_EIcf operation, GPRReg result, InlineCallFrame* inlineCallFrame)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(inlineCallFrame));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_ESt operation, GPRReg result, Structure* structure)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(structure));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_EJssSt operation, GPRReg result, GPRReg arg1, Structure* structure)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(structure));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_EJssJss operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_EJssJssJss operation, GPRReg result, GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(S_DFGOperation_ECC operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(V_DFGOperation_EC operation, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_ECIcf operation, GPRReg arg1, InlineCallFrame* inlineCallFrame)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(inlineCallFrame));
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_ECCIcf operation, GPRReg arg1, GPRReg arg2, InlineCallFrame* inlineCallFrame)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(inlineCallFrame));
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_ECZ operation, GPRReg arg1, int arg2)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImm32(arg2));
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_ECC operation, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EOZD operation, GPRReg arg1, GPRReg arg2, FPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_W operation, WatchpointSet* watchpointSet)
{
m_jit.setupArguments(TrustedImmPtr(watchpointSet));
return appendCall(operation);
}
template<typename FunctionType, typename ArgumentType1>
JITCompiler::Call callOperation(FunctionType operation, NoResultTag, ArgumentType1 arg1)
{
return callOperation(operation, arg1);
}
template<typename FunctionType, typename ArgumentType1, typename ArgumentType2>
JITCompiler::Call callOperation(FunctionType operation, NoResultTag, ArgumentType1 arg1, ArgumentType2 arg2)
{
return callOperation(operation, arg1, arg2);
}
template<typename FunctionType, typename ArgumentType1, typename ArgumentType2, typename ArgumentType3>
JITCompiler::Call callOperation(FunctionType operation, NoResultTag, ArgumentType1 arg1, ArgumentType2 arg2, ArgumentType3 arg3)
{
return callOperation(operation, arg1, arg2, arg3);
}
template<typename FunctionType, typename ArgumentType1, typename ArgumentType2, typename ArgumentType3, typename ArgumentType4>
JITCompiler::Call callOperation(FunctionType operation, NoResultTag, ArgumentType1 arg1, ArgumentType2 arg2, ArgumentType3 arg3, ArgumentType4 arg4)
{
return callOperation(operation, arg1, arg2, arg3, arg4);
}
template<typename FunctionType, typename ArgumentType1, typename ArgumentType2, typename ArgumentType3, typename ArgumentType4, typename ArgumentType5>
JITCompiler::Call callOperation(FunctionType operation, NoResultTag, ArgumentType1 arg1, ArgumentType2 arg2, ArgumentType3 arg3, ArgumentType4 arg4, ArgumentType5 arg5)
{
return callOperation(operation, arg1, arg2, arg3, arg4, arg5);
}
JITCompiler::Call callOperation(D_DFGOperation_ZZ operation, FPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArguments(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(D_DFGOperation_DD operation, FPRReg result, FPRReg arg1, FPRReg arg2)
{
m_jit.setupArguments(arg1, arg2);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(Str_DFGOperation_EJss operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_EZ operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
#if USE(JSVALUE64)
JITCompiler::Call callOperation(J_DFGOperation_E operation, GPRReg result)
{
m_jit.setupArgumentsExecState();
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EP operation, GPRReg result, void* pointer)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(Z_DFGOperation_D operation, GPRReg result, FPRReg arg1)
{
m_jit.setupArguments(arg1);
JITCompiler::Call call = m_jit.appendCall(operation);
m_jit.zeroExtend32ToPtr(GPRInfo::returnValueGPR, result);
return call;
}
JITCompiler::Call callOperation(J_DFGOperation_EGriJsgI operation, GPRReg result, GPRReg arg1, GPRReg arg2, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(identifier));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EI operation, GPRReg result, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(identifier));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EIRo operation, GPRReg result, Identifier* identifier, ResolveOperations* operations)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(identifier), TrustedImmPtr(operations));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EIRoPtbo operation, GPRReg result, Identifier* identifier, ResolveOperations* operations, PutToBaseOperation* putToBaseOperations)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(identifier), TrustedImmPtr(operations), TrustedImmPtr(putToBaseOperations));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EA operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EAZ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EPS operation, GPRReg result, void* pointer, size_t size)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer), TrustedImmPtr(size));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_ESS operation, GPRReg result, int startConstant, int numConstants)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(startConstant), TrustedImm32(numConstants));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EPP operation, GPRReg result, GPRReg arg1, void* pointer)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(pointer));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EC operation, GPRReg result, JSCell* cell)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(cell));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_ECI operation, GPRReg result, GPRReg arg1, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(identifier));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EJI operation, GPRReg result, GPRReg arg1, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(identifier));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EDA operation, GPRReg result, FPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EJA operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EP operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EZ operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EZ operation, GPRReg result, int32_t arg1)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EZZ operation, GPRReg result, int32_t arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EZIcfZ operation, GPRReg result, int32_t arg1, InlineCallFrame* inlineCallFrame, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), TrustedImmPtr(inlineCallFrame), arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(C_DFGOperation_EJ operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(S_DFGOperation_J operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArguments(arg1);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(S_DFGOperation_EJ operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EJ operation, GPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(S_DFGOperation_EJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EPP operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg result, GPRReg arg1, MacroAssembler::TrustedImm32 imm)
{
m_jit.setupArgumentsWithExecState(arg1, MacroAssembler::TrustedImm64(JSValue::encode(jsNumber(imm.m_value))));
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg result, MacroAssembler::TrustedImm32 imm, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(MacroAssembler::TrustedImm64(JSValue::encode(jsNumber(imm.m_value))), arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_ECC operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_ECJ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(V_DFGOperation_EJPP operation, GPRReg arg1, GPRReg arg2, void* pointer)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(pointer));
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EJCI operation, GPRReg arg1, GPRReg arg2, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(identifier));
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EJJJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EPZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EOZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_ECJJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, arg3);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(D_DFGOperation_EJ operation, FPRReg result, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, result);
}
#else // USE(JSVALUE32_64)
// EncodedJSValue in JSVALUE32_64 is a 64-bit integer. When being compiled in ARM EABI, it must be aligned even-numbered register (r0, r2 or [sp]).
// To avoid assemblies from using wrong registers, let's occupy r1 or r3 with a dummy argument when necessary.
#if (COMPILER_SUPPORTS(EABI) && CPU(ARM)) || CPU(MIPS)
#define EABI_32BIT_DUMMY_ARG TrustedImm32(0),
#else
#define EABI_32BIT_DUMMY_ARG
#endif
// JSVALUE32_64 is a 64-bit integer that cannot be put half in an argument register and half on stack when using SH4 architecture.
// To avoid this, let's occupy the 4th argument register (r7) with a dummy argument when necessary.
#if CPU(SH4)
#define SH4_32BIT_DUMMY_ARG TrustedImm32(0),
#else
#define SH4_32BIT_DUMMY_ARG
#endif
JITCompiler::Call callOperation(Z_DFGOperation_D operation, GPRReg result, FPRReg arg1)
{
prepareForExternalCall();
m_jit.setupArguments(arg1);
JITCompiler::Call call = m_jit.appendCall(operation);
m_jit.zeroExtend32ToPtr(GPRInfo::returnValueGPR, result);
return call;
}
JITCompiler::Call callOperation(J_DFGOperation_E operation, GPRReg resultTag, GPRReg resultPayload)
{
m_jit.setupArgumentsExecState();
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EP operation, GPRReg resultTag, GPRReg resultPayload, void* pointer)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EPP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, void* pointer)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(pointer));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EGriJsgI operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, TrustedImmPtr(identifier));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EI operation, GPRReg resultTag, GPRReg resultPayload, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(identifier));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EA operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EAZ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EPS operation, GPRReg resultTag, GPRReg resultPayload, void* pointer, size_t size)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(pointer), TrustedImmPtr(size));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_ESS operation, GPRReg resultTag, GPRReg resultPayload, int startConstant, int numConstants)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(startConstant), TrustedImm32(numConstants));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EJP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, void* pointer)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, TrustedImmPtr(pointer));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EJP operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EC operation, GPRReg resultTag, GPRReg resultPayload, JSCell* cell)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(cell));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_ECI operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(arg1, TrustedImmPtr(identifier));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EJI operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, TrustedImmPtr(identifier));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EJI operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1Tag, GPRReg arg1Payload, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, TrustedImm32(arg1Tag), TrustedImmPtr(identifier));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EDA operation, GPRReg resultTag, GPRReg resultPayload, FPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EJA operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EJA operation, GPRReg resultTag, GPRReg resultPayload, TrustedImm32 arg1Tag, GPRReg arg1Payload, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EZ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1)
{
m_jit.setupArgumentsWithExecState(arg1);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EZ operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EZIcfZ operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1, InlineCallFrame* inlineCallFrame, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), TrustedImmPtr(inlineCallFrame), arg2);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EZZ operation, GPRReg resultTag, GPRReg resultPayload, int32_t arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(TrustedImm32(arg1), arg2);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(C_DFGOperation_EJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(S_DFGOperation_J operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload)
{
m_jit.setupArguments(arg1Payload, arg1Tag);
return appendCallSetResult(operation, result);
}
JITCompiler::Call callOperation(S_DFGOperation_EJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(S_DFGOperation_EJJ operation, GPRReg result, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, SH4_32BIT_DUMMY_ARG arg2Payload, arg2Tag);
return appendCallWithExceptionCheckSetResult(operation, result);
}
JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2Tag, GPRReg arg2Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, SH4_32BIT_DUMMY_ARG arg2Payload, arg2Tag);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1Tag, GPRReg arg1Payload, MacroAssembler::TrustedImm32 imm)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, SH4_32BIT_DUMMY_ARG imm, TrustedImm32(JSValue::Int32Tag));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EJJ operation, GPRReg resultTag, GPRReg resultPayload, MacroAssembler::TrustedImm32 imm, GPRReg arg2Tag, GPRReg arg2Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG imm, TrustedImm32(JSValue::Int32Tag), SH4_32BIT_DUMMY_ARG arg2Payload, arg2Tag);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EIRo operation, GPRReg resultTag, GPRReg resultPayload, Identifier* identifier, ResolveOperations* operations)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(identifier), TrustedImmPtr(operations));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_EIRoPtbo operation, GPRReg resultTag, GPRReg resultPayload, Identifier* identifier, ResolveOperations* operations, PutToBaseOperation* putToBaseOperations)
{
m_jit.setupArgumentsWithExecState(TrustedImmPtr(identifier), TrustedImmPtr(operations), TrustedImmPtr(putToBaseOperations));
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_ECJ operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload)
{
m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(J_DFGOperation_ECC operation, GPRReg resultTag, GPRReg resultPayload, GPRReg arg1, GPRReg arg2)
{
m_jit.setupArgumentsWithExecState(arg1, arg2);
return appendCallWithExceptionCheckSetResult(operation, resultPayload, resultTag);
}
JITCompiler::Call callOperation(V_DFGOperation_EJPP operation, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2, void* pointer)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2, TrustedImmPtr(pointer));
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EJCI operation, GPRReg arg1Tag, GPRReg arg1Payload, GPRReg arg2, Identifier* identifier)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag, arg2, TrustedImmPtr(identifier));
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_ECJJ operation, GPRReg arg1, GPRReg arg2Tag, GPRReg arg2Payload, GPRReg arg3Tag, GPRReg arg3Payload)
{
m_jit.setupArgumentsWithExecState(arg1, arg2Payload, arg2Tag, arg3Payload, arg3Tag);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EPZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3Tag, GPRReg arg3Payload)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG SH4_32BIT_DUMMY_ARG arg3Payload, arg3Tag);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EOZJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3Tag, GPRReg arg3Payload)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG SH4_32BIT_DUMMY_ARG arg3Payload, arg3Tag);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(V_DFGOperation_EOZJ operation, GPRReg arg1, GPRReg arg2, TrustedImm32 arg3Tag, GPRReg arg3Payload)
{
m_jit.setupArgumentsWithExecState(arg1, arg2, EABI_32BIT_DUMMY_ARG SH4_32BIT_DUMMY_ARG arg3Payload, arg3Tag);
return appendCallWithExceptionCheck(operation);
}
JITCompiler::Call callOperation(D_DFGOperation_EJ operation, FPRReg result, GPRReg arg1Tag, GPRReg arg1Payload)
{
m_jit.setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1Payload, arg1Tag);
return appendCallWithExceptionCheckSetResult(operation, result);
}
#undef EABI_32BIT_DUMMY_ARG
#undef SH4_32BIT_DUMMY_ARG
template<typename FunctionType>
JITCompiler::Call callOperation(
FunctionType operation, JSValueRegs result)
{
return callOperation(operation, result.tagGPR(), result.payloadGPR());
}
template<typename FunctionType, typename ArgumentType1>
JITCompiler::Call callOperation(
FunctionType operation, JSValueRegs result, ArgumentType1 arg1)
{
return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1);
}
template<typename FunctionType, typename ArgumentType1, typename ArgumentType2>
JITCompiler::Call callOperation(
FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2)
{
return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1, arg2);
}
template<
typename FunctionType, typename ArgumentType1, typename ArgumentType2,
typename ArgumentType3>
JITCompiler::Call callOperation(
FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2,
ArgumentType3 arg3)
{
return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1, arg2, arg3);
}
template<
typename FunctionType, typename ArgumentType1, typename ArgumentType2,
typename ArgumentType3, typename ArgumentType4>
JITCompiler::Call callOperation(
FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2,
ArgumentType3 arg3, ArgumentType4 arg4)
{
return callOperation(operation, result.tagGPR(), result.payloadGPR(), arg1, arg2, arg3, arg4);
}
template<
typename FunctionType, typename ArgumentType1, typename ArgumentType2,
typename ArgumentType3, typename ArgumentType4, typename ArgumentType5>
JITCompiler::Call callOperation(
FunctionType operation, JSValueRegs result, ArgumentType1 arg1, ArgumentType2 arg2,
ArgumentType3 arg3, ArgumentType4 arg4, ArgumentType5 arg5)
{
return callOperation(
operation, result.tagGPR(), result.payloadGPR(), arg1, arg2, arg3, arg4, arg5);
}
#endif // USE(JSVALUE32_64)
#if !defined(NDEBUG) && !CPU(ARM) && !CPU(MIPS) && !CPU(SH4)
void prepareForExternalCall()
{
// We're about to call out to a "native" helper function. The helper
// function is expected to set topCallFrame itself with the ExecState
// that is passed to it.
//
// We explicitly trash topCallFrame here so that we'll know if some of
// the helper functions are not setting topCallFrame when they should
// be doing so. Note: the previous value in topcallFrame was not valid
// anyway since it was not being updated by JIT'ed code by design.
for (unsigned i = 0; i < sizeof(void*) / 4; i++)
m_jit.store32(TrustedImm32(0xbadbeef), reinterpret_cast<char*>(&m_jit.vm()->topCallFrame) + i * 4);
}
#else
void prepareForExternalCall() { }
#endif
// These methods add call instructions, with optional exception checks & setting results.
JITCompiler::Call appendCallWithExceptionCheck(const FunctionPtr& function)
{
prepareForExternalCall();
CodeOrigin codeOrigin = m_currentNode->codeOrigin;
CallBeginToken token;
m_jit.beginCall(codeOrigin, token);
JITCompiler::Call call = m_jit.appendCall(function);
m_jit.addExceptionCheck(call, codeOrigin, token);
return call;
}
JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, GPRReg result)
{
JITCompiler::Call call = appendCallWithExceptionCheck(function);
m_jit.move(GPRInfo::returnValueGPR, result);
return call;
}
JITCompiler::Call appendCallSetResult(const FunctionPtr& function, GPRReg result)
{
prepareForExternalCall();
JITCompiler::Call call = m_jit.appendCall(function);
m_jit.move(GPRInfo::returnValueGPR, result);
return call;
}
JITCompiler::Call appendCall(const FunctionPtr& function)
{
prepareForExternalCall();
return m_jit.appendCall(function);
}
JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, GPRReg result1, GPRReg result2)
{
JITCompiler::Call call = appendCallWithExceptionCheck(function);
m_jit.setupResults(result1, result2);
return call;
}
#if CPU(X86)
JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, FPRReg result)
{
JITCompiler::Call call = appendCallWithExceptionCheck(function);
m_jit.assembler().fstpl(0, JITCompiler::stackPointerRegister);
m_jit.loadDouble(JITCompiler::stackPointerRegister, result);
return call;
}
JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result)
{
JITCompiler::Call call = m_jit.appendCall(function);
m_jit.assembler().fstpl(0, JITCompiler::stackPointerRegister);
m_jit.loadDouble(JITCompiler::stackPointerRegister, result);
return call;
}
#elif CPU(ARM)
#if CPU(ARM_HARDFP)
JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, FPRReg result)
{
JITCompiler::Call call = appendCallWithExceptionCheck(function);
if (result != InvalidFPRReg)
m_jit.moveDouble(FPRInfo::argumentFPR0, result);
return call;
}
JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result)
{
JITCompiler::Call call = m_jit.appendCall(function);
if (result != InvalidFPRReg)
m_jit.moveDouble(FPRInfo::argumentFPR0, result);
return call;
}
#else
JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, FPRReg result)
{
JITCompiler::Call call = appendCallWithExceptionCheck(function);
m_jit.assembler().vmov(result, GPRInfo::returnValueGPR, GPRInfo::returnValueGPR2);
return call;
}
JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result)
{
JITCompiler::Call call = m_jit.appendCall(function);
m_jit.assembler().vmov(result, GPRInfo::returnValueGPR, GPRInfo::returnValueGPR2);
return call;
}
#endif // CPU(ARM_HARDFP)
#else
JITCompiler::Call appendCallWithExceptionCheckSetResult(const FunctionPtr& function, FPRReg result)
{
JITCompiler::Call call = appendCallWithExceptionCheck(function);
m_jit.moveDouble(FPRInfo::returnValueFPR, result);
return call;
}
JITCompiler::Call appendCallSetResult(const FunctionPtr& function, FPRReg result)
{
JITCompiler::Call call = m_jit.appendCall(function);
m_jit.moveDouble(FPRInfo::returnValueFPR, result);
return call;
}
#endif
void branchDouble(JITCompiler::DoubleCondition cond, FPRReg left, FPRReg right, BlockIndex destination)
{
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branchDouble(cond, left, right), destination);
JITCompiler::Jump notTaken = m_jit.branchDouble(JITCompiler::invert(cond), left, right);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
void branchDoubleNonZero(FPRReg value, FPRReg scratch, BlockIndex destination)
{
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branchDoubleNonZero(value, scratch), destination);
JITCompiler::Jump notTaken = m_jit.branchDoubleZeroOrNaN(value, scratch);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
template<typename T, typename U>
void branch32(JITCompiler::RelationalCondition cond, T left, U right, BlockIndex destination)
{
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branch32(cond, left, right), destination);
JITCompiler::Jump notTaken = m_jit.branch32(JITCompiler::invert(cond), left, right);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
template<typename T, typename U>
void branchTest32(JITCompiler::ResultCondition cond, T value, U mask, BlockIndex destination)
{
ASSERT(JITCompiler::isInvertible(cond));
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branchTest32(cond, value, mask), destination);
JITCompiler::Jump notTaken = m_jit.branchTest32(JITCompiler::invert(cond), value, mask);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
template<typename T>
void branchTest32(JITCompiler::ResultCondition cond, T value, BlockIndex destination)
{
ASSERT(JITCompiler::isInvertible(cond));
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branchTest32(cond, value), destination);
JITCompiler::Jump notTaken = m_jit.branchTest32(JITCompiler::invert(cond), value);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
#if USE(JSVALUE64)
template<typename T, typename U>
void branch64(JITCompiler::RelationalCondition cond, T left, U right, BlockIndex destination)
{
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branch64(cond, left, right), destination);
JITCompiler::Jump notTaken = m_jit.branch64(JITCompiler::invert(cond), left, right);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
#endif
template<typename T, typename U>
void branchPtr(JITCompiler::RelationalCondition cond, T left, U right, BlockIndex destination)
{
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branchPtr(cond, left, right), destination);
JITCompiler::Jump notTaken = m_jit.branchPtr(JITCompiler::invert(cond), left, right);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
template<typename T, typename U>
void branchTestPtr(JITCompiler::ResultCondition cond, T value, U mask, BlockIndex destination)
{
ASSERT(JITCompiler::isInvertible(cond));
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branchTestPtr(cond, value, mask), destination);
JITCompiler::Jump notTaken = m_jit.branchTestPtr(JITCompiler::invert(cond), value, mask);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
template<typename T>
void branchTestPtr(JITCompiler::ResultCondition cond, T value, BlockIndex destination)
{
ASSERT(JITCompiler::isInvertible(cond));
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branchTestPtr(cond, value), destination);
JITCompiler::Jump notTaken = m_jit.branchTestPtr(JITCompiler::invert(cond), value);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
template<typename T, typename U>
void branchTest8(JITCompiler::ResultCondition cond, T value, U mask, BlockIndex destination)
{
ASSERT(JITCompiler::isInvertible(cond));
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branchTest8(cond, value, mask), destination);
JITCompiler::Jump notTaken = m_jit.branchTest8(JITCompiler::invert(cond), value, mask);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
template<typename T>
void branchTest8(JITCompiler::ResultCondition cond, T value, BlockIndex destination)
{
ASSERT(JITCompiler::isInvertible(cond));
if (!haveEdgeCodeToEmit(destination))
return addBranch(m_jit.branchTest8(cond, value), destination);
JITCompiler::Jump notTaken = m_jit.branchTest8(JITCompiler::invert(cond), value);
emitEdgeCode(destination);
addBranch(m_jit.jump(), destination);
notTaken.link(&m_jit);
}
enum FallThroughMode {
AtFallThroughPoint,
ForceJump
};
void jump(BlockIndex destination, FallThroughMode fallThroughMode = AtFallThroughPoint)
{
if (haveEdgeCodeToEmit(destination))
emitEdgeCode(destination);
if (destination == nextBlock()
&& fallThroughMode == AtFallThroughPoint)
return;
addBranch(m_jit.jump(), destination);
}
inline bool haveEdgeCodeToEmit(BlockIndex)
{
return DFG_ENABLE_EDGE_CODE_VERIFICATION;
}
void emitEdgeCode(BlockIndex destination)
{
if (!DFG_ENABLE_EDGE_CODE_VERIFICATION)
return;
m_jit.move(TrustedImm32(destination), GPRInfo::regT0);
}
void addBranch(const MacroAssembler::Jump& jump, BlockIndex destination)
{
m_branches.append(BranchRecord(jump, destination));
}
void linkBranches()
{
for (size_t i = 0; i < m_branches.size(); ++i) {
BranchRecord& branch = m_branches[i];
branch.jump.linkTo(m_blockHeads[branch.destination], &m_jit);
}
}
BasicBlock* block()
{
return m_jit.graph().m_blocks[m_block].get();
}
#ifndef NDEBUG
void dump(const char* label = 0);
#endif
#if DFG_ENABLE(CONSISTENCY_CHECK)
void checkConsistency();
#else
void checkConsistency() { }
#endif
bool isInteger(Node* node)
{
if (node->hasInt32Result())
return true;
if (isInt32Constant(node))
return true;
VirtualRegister virtualRegister = node->virtualRegister();
GenerationInfo& info = m_generationInfo[virtualRegister];
return info.isJSInteger();
}
bool compare(Node*, MacroAssembler::RelationalCondition, MacroAssembler::DoubleCondition, S_DFGOperation_EJJ);
bool compilePeepHoleBranch(Node*, MacroAssembler::RelationalCondition, MacroAssembler::DoubleCondition, S_DFGOperation_EJJ);
void compilePeepHoleIntegerBranch(Node*, Node* branchNode, JITCompiler::RelationalCondition);
void compilePeepHoleBooleanBranch(Node*, Node* branchNode, JITCompiler::RelationalCondition);
void compilePeepHoleDoubleBranch(Node*, Node* branchNode, JITCompiler::DoubleCondition);
void compilePeepHoleObjectEquality(Node*, Node* branchNode);
void compilePeepHoleObjectToObjectOrOtherEquality(Edge leftChild, Edge rightChild, Node* branchNode);
void compileObjectEquality(Node*);
void compileObjectToObjectOrOtherEquality(Edge leftChild, Edge rightChild);
void compileValueAdd(Node*);
void compileObjectOrOtherLogicalNot(Edge value);
void compileLogicalNot(Node*);
void compileStringEquality(Node*);
void emitObjectOrOtherBranch(Edge value, BlockIndex taken, BlockIndex notTaken);
void emitBranch(Node*);
void compileToStringOnCell(Node*);
void compileNewStringObject(Node*);
void compileIntegerCompare(Node*, MacroAssembler::RelationalCondition);
void compileBooleanCompare(Node*, MacroAssembler::RelationalCondition);
void compileDoubleCompare(Node*, MacroAssembler::DoubleCondition);
bool compileStrictEqForConstant(Node*, Edge value, JSValue constant);
bool compileStrictEq(Node*);
void compileAllocatePropertyStorage(Node*);
void compileReallocatePropertyStorage(Node*);
#if USE(JSVALUE32_64)
template<typename BaseOperandType, typename PropertyOperandType, typename ValueOperandType, typename TagType>
void compileContiguousPutByVal(Node*, BaseOperandType&, PropertyOperandType&, ValueOperandType&, GPRReg valuePayloadReg, TagType valueTag);
#endif
void compileDoublePutByVal(Node*, SpeculateCellOperand& base, SpeculateStrictInt32Operand& property);
bool putByValWillNeedExtraRegister(ArrayMode arrayMode)
{
return arrayMode.mayStoreToHole();
}
GPRReg temporaryRegisterForPutByVal(GPRTemporary&, ArrayMode);
GPRReg temporaryRegisterForPutByVal(GPRTemporary& temporary, Node* node)
{
return temporaryRegisterForPutByVal(temporary, node->arrayMode());
}
void compileGetCharCodeAt(Node*);
void compileGetByValOnString(Node*);
void compileFromCharCode(Node*);
void compileGetByValOnArguments(Node*);
void compileGetArgumentsLength(Node*);
void compileGetArrayLength(Node*);
void compileValueToInt32(Node*);
void compileUInt32ToNumber(Node*);
void compileDoubleAsInt32(Node*);
void compileInt32ToDouble(Node*);
void compileAdd(Node*);
void compileMakeRope(Node*);
void compileArithSub(Node*);
void compileArithNegate(Node*);
void compileArithMul(Node*);
void compileArithIMul(Node*);
#if CPU(X86) || CPU(X86_64)
void compileIntegerArithDivForX86(Node*);
#elif CPU(APPLE_ARMV7S)
void compileIntegerArithDivForARMv7s(Node*);
#endif
void compileArithMod(Node*);
void compileSoftModulo(Node*);
void compileGetIndexedPropertyStorage(Node*);
void compileGetByValOnIntTypedArray(const TypedArrayDescriptor&, Node*, size_t elementSize, TypedArraySignedness);
void compilePutByValForIntTypedArray(const TypedArrayDescriptor&, GPRReg base, GPRReg property, Node*, size_t elementSize, TypedArraySignedness, TypedArrayRounding = TruncateRounding);
void compileGetByValOnFloatTypedArray(const TypedArrayDescriptor&, Node*, size_t elementSize);
void compilePutByValForFloatTypedArray(const TypedArrayDescriptor&, GPRReg base, GPRReg property, Node*, size_t elementSize);
void compileNewFunctionNoCheck(Node*);
void compileNewFunctionExpression(Node*);
bool compileRegExpExec(Node*);
// size can be an immediate or a register, and must be in bytes. If size is a register,
// it must be a different register than resultGPR. Emits code that place a pointer to
// the end of the allocation. The returned jump is the jump to the slow path.
template<typename SizeType>
MacroAssembler::Jump emitAllocateBasicStorage(SizeType size, GPRReg resultGPR)
{
CopiedAllocator* copiedAllocator = &m_jit.vm()->heap.storageAllocator();
m_jit.loadPtr(&copiedAllocator->m_currentRemaining, resultGPR);
MacroAssembler::Jump slowPath = m_jit.branchSubPtr(JITCompiler::Signed, size, resultGPR);
m_jit.storePtr(resultGPR, &copiedAllocator->m_currentRemaining);
m_jit.negPtr(resultGPR);
m_jit.addPtr(JITCompiler::AbsoluteAddress(&copiedAllocator->m_currentPayloadEnd), resultGPR);
return slowPath;
}
// Allocator for a cell of a specific size.
template <typename StructureType> // StructureType can be GPR or ImmPtr.
void emitAllocateJSCell(GPRReg resultGPR, GPRReg allocatorGPR, StructureType structure,
GPRReg scratchGPR, MacroAssembler::JumpList& slowPath)
{
m_jit.loadPtr(MacroAssembler::Address(allocatorGPR, MarkedAllocator::offsetOfFreeListHead()), resultGPR);
slowPath.append(m_jit.branchTestPtr(MacroAssembler::Zero, resultGPR));
// The object is half-allocated: we have what we know is a fresh object, but
// it's still on the GC's free list.
m_jit.loadPtr(MacroAssembler::Address(resultGPR), scratchGPR);
m_jit.storePtr(scratchGPR, MacroAssembler::Address(allocatorGPR, MarkedAllocator::offsetOfFreeListHead()));
// Initialize the object's Structure.
m_jit.storePtr(structure, MacroAssembler::Address(resultGPR, JSCell::structureOffset()));
}
// Allocator for an object of a specific size.
template <typename StructureType, typename StorageType> // StructureType and StorageType can be GPR or ImmPtr.
void emitAllocateJSObject(GPRReg resultGPR, GPRReg allocatorGPR, StructureType structure,
StorageType storage, GPRReg scratchGPR, MacroAssembler::JumpList& slowPath)
{
emitAllocateJSCell(resultGPR, allocatorGPR, structure, scratchGPR, slowPath);
// Initialize the object's property storage pointer.
m_jit.storePtr(storage, MacroAssembler::Address(resultGPR, JSObject::butterflyOffset()));
}
// Convenience allocator for a buit-in object.
template <typename ClassType, typename StructureType, typename StorageType> // StructureType and StorageType can be GPR or ImmPtr.
void emitAllocateJSObject(GPRReg resultGPR, StructureType structure, StorageType storage,
GPRReg scratchGPR1, GPRReg scratchGPR2, MacroAssembler::JumpList& slowPath)
{
MarkedAllocator* allocator = 0;
size_t size = ClassType::allocationSize(0);
if (ClassType::needsDestruction && ClassType::hasImmortalStructure)
allocator = &m_jit.vm()->heap.allocatorForObjectWithImmortalStructureDestructor(size);
else if (ClassType::needsDestruction)
allocator = &m_jit.vm()->heap.allocatorForObjectWithNormalDestructor(size);
else
allocator = &m_jit.vm()->heap.allocatorForObjectWithoutDestructor(size);
m_jit.move(TrustedImmPtr(allocator), scratchGPR1);
emitAllocateJSObject(resultGPR, scratchGPR1, structure, storage, scratchGPR2, slowPath);
}
void emitAllocateJSArray(GPRReg resultGPR, Structure*, GPRReg storageGPR, unsigned numElements);
#if USE(JSVALUE64)
JITCompiler::Jump convertToDouble(GPRReg value, FPRReg result, GPRReg tmp);
#elif USE(JSVALUE32_64)
JITCompiler::Jump convertToDouble(JSValueOperand&, FPRReg result);
#endif
// Add a backward speculation check.
void backwardSpeculationCheck(ExitKind, JSValueSource, Node*, MacroAssembler::Jump jumpToFail);
void backwardSpeculationCheck(ExitKind, JSValueSource, Node*, const MacroAssembler::JumpList& jumpsToFail);
// Add a speculation check without additional recovery.
void speculationCheck(ExitKind, JSValueSource, Node*, MacroAssembler::Jump jumpToFail);
void speculationCheck(ExitKind, JSValueSource, Edge, MacroAssembler::Jump jumpToFail);
// Add a speculation check without additional recovery, and with a promise to supply a jump later.
OSRExitJumpPlaceholder backwardSpeculationCheck(ExitKind, JSValueSource, Node*);
OSRExitJumpPlaceholder backwardSpeculationCheck(ExitKind, JSValueSource, Edge);
// Add a set of speculation checks without additional recovery.
void speculationCheck(ExitKind, JSValueSource, Node*, const MacroAssembler::JumpList& jumpsToFail);
void speculationCheck(ExitKind, JSValueSource, Edge, const MacroAssembler::JumpList& jumpsToFail);
// Add a speculation check with additional recovery.
void backwardSpeculationCheck(ExitKind, JSValueSource, Node*, MacroAssembler::Jump jumpToFail, const SpeculationRecovery&);
void backwardSpeculationCheck(ExitKind, JSValueSource, Edge, MacroAssembler::Jump jumpToFail, const SpeculationRecovery&);
// Use this like you would use speculationCheck(), except that you don't pass it a jump
// (because you don't have to execute a branch; that's kind of the whole point), and you
// must register the returned Watchpoint with something relevant. In general, this should
// be used with extreme care. Use speculationCheck() unless you've got an amazing reason
// not to.
JumpReplacementWatchpoint* speculationWatchpoint(ExitKind, JSValueSource, Node*);
// The default for speculation watchpoints is that they're uncounted, because the
// act of firing a watchpoint invalidates it. So, future recompilations will not
// attempt to set this watchpoint again.
JumpReplacementWatchpoint* speculationWatchpoint(ExitKind = UncountableWatchpoint);
// It is generally a good idea to not use this directly.
void convertLastOSRExitToForward(const ValueRecovery& = ValueRecovery());
// Note: not specifying the valueRecovery argument (leaving it as ValueRecovery()) implies
// that you've ensured that there exists a MovHint prior to your use of forwardSpeculationCheck().
void forwardSpeculationCheck(ExitKind, JSValueSource, Node*, MacroAssembler::Jump jumpToFail, const ValueRecovery& = ValueRecovery());
void forwardSpeculationCheck(ExitKind, JSValueSource, Node*, const MacroAssembler::JumpList& jumpsToFail, const ValueRecovery& = ValueRecovery());
void speculationCheck(ExitKind, JSValueSource, Node*, MacroAssembler::Jump jumpToFail, const SpeculationRecovery&);
void speculationCheck(ExitKind, JSValueSource, Edge, MacroAssembler::Jump jumpToFail, const SpeculationRecovery&);
// Called when we statically determine that a speculation will fail.
void terminateSpeculativeExecution(ExitKind, JSValueRegs, Node*);
void terminateSpeculativeExecution(ExitKind, JSValueRegs, Edge);
// Helpers for performing type checks on an edge stored in the given registers.
bool needsTypeCheck(Edge edge, SpeculatedType typesPassedThrough) { return m_state.forNode(edge).m_type & ~typesPassedThrough; }
void backwardTypeCheck(JSValueSource, Edge, SpeculatedType typesPassedThrough, MacroAssembler::Jump jumpToFail);
void typeCheck(JSValueSource, Edge, SpeculatedType typesPassedThrough, MacroAssembler::Jump jumpToFail);
void forwardTypeCheck(JSValueSource, Edge, SpeculatedType typesPassedThrough, MacroAssembler::Jump jumpToFail, const ValueRecovery&);
void speculateInt32(Edge);
void speculateNumber(Edge);
void speculateRealNumber(Edge);
void speculateBoolean(Edge);
void speculateCell(Edge);
void speculateObject(Edge);
void speculateObjectOrOther(Edge);
void speculateString(Edge);
template<typename StructureLocationType>
void speculateStringObjectForStructure(Edge, StructureLocationType);
void speculateStringObject(Edge, GPRReg);
void speculateStringObject(Edge);
void speculateStringOrStringObject(Edge);
void speculateNotCell(Edge);
void speculateOther(Edge);
void speculate(Node*, Edge);
const TypedArrayDescriptor* typedArrayDescriptor(ArrayMode);
JITCompiler::Jump jumpSlowForUnwantedArrayMode(GPRReg tempWithIndexingTypeReg, ArrayMode, IndexingType);
JITCompiler::JumpList jumpSlowForUnwantedArrayMode(GPRReg tempWithIndexingTypeReg, ArrayMode);
void checkArray(Node*);
void arrayify(Node*, GPRReg baseReg, GPRReg propertyReg);
void arrayify(Node*);
template<bool strict>
GPRReg fillSpeculateIntInternal(Edge, DataFormat& returnFormat);
// It is possible, during speculative generation, to reach a situation in which we
// can statically determine a speculation will fail (for example, when two nodes
// will make conflicting speculations about the same operand). In such cases this
// flag is cleared, indicating no further code generation should take place.
bool m_compileOkay;
// Tracking for which nodes are currently holding the values of arguments and bytecode
// operand-indexed variables.
ValueSource valueSourceForOperand(int operand)
{
return valueSourceReferenceForOperand(operand);
}
void setNodeForOperand(Node* node, int operand)
{
valueSourceReferenceForOperand(operand) = ValueSource(MinifiedID(node));
}
// Call this with care, since it both returns a reference into an array
// and potentially resizes the array. So it would not be right to call this
// twice and then perform operands on both references, since the one from
// the first call may no longer be valid.
ValueSource& valueSourceReferenceForOperand(int operand)
{
if (operandIsArgument(operand)) {
int argument = operandToArgument(operand);
return m_arguments[argument];
}
if ((unsigned)operand >= m_variables.size())
m_variables.resize(operand + 1);
return m_variables[operand];
}
void recordSetLocal(int operand, ValueSource valueSource)
{
valueSourceReferenceForOperand(operand) = valueSource;
m_stream->appendAndLog(VariableEvent::setLocal(operand, valueSource.dataFormat()));
}
// The JIT, while also provides MacroAssembler functionality.
JITCompiler& m_jit;
// The current node being generated.
BlockIndex m_block;
Node* m_currentNode;
SpeculationDirection m_speculationDirection;
#if !ASSERT_DISABLED
bool m_canExit;
#endif
unsigned m_indexInBlock;
// Virtual and physical register maps.
Vector<GenerationInfo, 32> m_generationInfo;
RegisterBank<GPRInfo> m_gprs;
RegisterBank<FPRInfo> m_fprs;
Vector<MacroAssembler::Label> m_blockHeads;
Vector<MacroAssembler::Label> m_osrEntryHeads;
struct BranchRecord {
BranchRecord(MacroAssembler::Jump jump, BlockIndex destination)
: jump(jump)
, destination(destination)
{
}
MacroAssembler::Jump jump;
BlockIndex destination;
};
Vector<BranchRecord, 8> m_branches;
Vector<ValueSource, 0> m_arguments;
Vector<ValueSource, 0> m_variables;
int m_lastSetOperand;
CodeOrigin m_codeOriginForOSR;
AbstractState m_state;
VariableEventStream* m_stream;
MinifiedGraph* m_minifiedGraph;
bool m_isCheckingArgumentTypes;
Vector<OwnPtr<SlowPathGenerator>, 8> m_slowPathGenerators;
Vector<SilentRegisterSavePlan> m_plans;
ValueRecovery computeValueRecoveryFor(const ValueSource&);
ValueRecovery computeValueRecoveryFor(int operand)
{
return computeValueRecoveryFor(valueSourceForOperand(operand));
}
};
// === Operand types ===
//
// IntegerOperand and JSValueOperand.
//
// These classes are used to lock the operands to a node into machine
// registers. These classes implement of pattern of locking a value
// into register at the point of construction only if it is already in
// registers, and otherwise loading it lazily at the point it is first
// used. We do so in order to attempt to avoid spilling one operand
// in order to make space available for another.
class IntegerOperand {
public:
explicit IntegerOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
#ifndef NDEBUG
, m_format(DataFormatNone)
#endif
{
ASSERT(m_jit);
ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == KnownInt32Use);
if (jit->isFilled(edge.node()))
gpr();
}
~IntegerOperand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
DataFormat format()
{
gpr(); // m_format is set when m_gpr is locked.
ASSERT(m_format == DataFormatInteger || m_format == DataFormatJSInteger);
return m_format;
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillInteger(m_edge, m_format);
return m_gprOrInvalid;
}
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
DataFormat m_format;
};
class JSValueOperand {
public:
explicit JSValueOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
: m_jit(jit)
, m_edge(edge)
#if USE(JSVALUE64)
, m_gprOrInvalid(InvalidGPRReg)
#elif USE(JSVALUE32_64)
, m_isDouble(false)
#endif
{
ASSERT(m_jit);
ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == UntypedUse);
#if USE(JSVALUE64)
if (jit->isFilled(node()))
gpr();
#elif USE(JSVALUE32_64)
m_register.pair.tagGPR = InvalidGPRReg;
m_register.pair.payloadGPR = InvalidGPRReg;
if (jit->isFilled(node()))
fill();
#endif
}
~JSValueOperand()
{
#if USE(JSVALUE64)
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
#elif USE(JSVALUE32_64)
if (m_isDouble) {
ASSERT(m_register.fpr != InvalidFPRReg);
m_jit->unlock(m_register.fpr);
} else {
ASSERT(m_register.pair.tagGPR != InvalidGPRReg && m_register.pair.payloadGPR != InvalidGPRReg);
m_jit->unlock(m_register.pair.tagGPR);
m_jit->unlock(m_register.pair.payloadGPR);
}
#endif
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
#if USE(JSVALUE64)
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillJSValue(m_edge);
return m_gprOrInvalid;
}
JSValueRegs jsValueRegs()
{
return JSValueRegs(gpr());
}
#elif USE(JSVALUE32_64)
bool isDouble() { return m_isDouble; }
void fill()
{
if (m_register.pair.tagGPR == InvalidGPRReg && m_register.pair.payloadGPR == InvalidGPRReg)
m_isDouble = !m_jit->fillJSValue(m_edge, m_register.pair.tagGPR, m_register.pair.payloadGPR, m_register.fpr);
}
GPRReg tagGPR()
{
fill();
ASSERT(!m_isDouble);
return m_register.pair.tagGPR;
}
GPRReg payloadGPR()
{
fill();
ASSERT(!m_isDouble);
return m_register.pair.payloadGPR;
}
JSValueRegs jsValueRegs()
{
return JSValueRegs(tagGPR(), payloadGPR());
}
FPRReg fpr()
{
fill();
ASSERT(m_isDouble);
return m_register.fpr;
}
#endif
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
#if USE(JSVALUE64)
GPRReg m_gprOrInvalid;
#elif USE(JSVALUE32_64)
union {
struct {
GPRReg tagGPR;
GPRReg payloadGPR;
} pair;
FPRReg fpr;
} m_register;
bool m_isDouble;
#endif
};
class StorageOperand {
public:
explicit StorageOperand(SpeculativeJIT* jit, Edge edge)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
{
ASSERT(m_jit);
ASSERT(edge.useKind() == UntypedUse || edge.useKind() == KnownCellUse);
if (jit->isFilled(node()))
gpr();
}
~StorageOperand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillStorage(edge());
return m_gprOrInvalid;
}
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
};
// === Temporaries ===
//
// These classes are used to allocate temporary registers.
// A mechanism is provided to attempt to reuse the registers
// currently allocated to child nodes whose value is consumed
// by, and not live after, this operation.
class GPRTemporary {
public:
GPRTemporary();
GPRTemporary(SpeculativeJIT*);
GPRTemporary(SpeculativeJIT*, GPRReg specific);
GPRTemporary(SpeculativeJIT*, SpeculateIntegerOperand&);
GPRTemporary(SpeculativeJIT*, SpeculateIntegerOperand&, SpeculateIntegerOperand&);
GPRTemporary(SpeculativeJIT*, SpeculateStrictInt32Operand&);
GPRTemporary(SpeculativeJIT*, IntegerOperand&);
GPRTemporary(SpeculativeJIT*, IntegerOperand&, IntegerOperand&);
GPRTemporary(SpeculativeJIT*, SpeculateCellOperand&);
GPRTemporary(SpeculativeJIT*, SpeculateBooleanOperand&);
#if USE(JSVALUE64)
GPRTemporary(SpeculativeJIT*, JSValueOperand&);
#elif USE(JSVALUE32_64)
GPRTemporary(SpeculativeJIT*, JSValueOperand&, bool tag = true);
#endif
GPRTemporary(SpeculativeJIT*, StorageOperand&);
void adopt(GPRTemporary&);
~GPRTemporary()
{
if (m_jit && m_gpr != InvalidGPRReg)
m_jit->unlock(gpr());
}
GPRReg gpr()
{
return m_gpr;
}
private:
SpeculativeJIT* m_jit;
GPRReg m_gpr;
};
class FPRTemporary {
public:
FPRTemporary(SpeculativeJIT*);
FPRTemporary(SpeculativeJIT*, SpeculateDoubleOperand&);
FPRTemporary(SpeculativeJIT*, SpeculateDoubleOperand&, SpeculateDoubleOperand&);
#if USE(JSVALUE32_64)
FPRTemporary(SpeculativeJIT*, JSValueOperand&);
#endif
~FPRTemporary()
{
m_jit->unlock(fpr());
}
FPRReg fpr() const
{
ASSERT(m_fpr != InvalidFPRReg);
return m_fpr;
}
protected:
FPRTemporary(SpeculativeJIT* jit, FPRReg lockedFPR)
: m_jit(jit)
, m_fpr(lockedFPR)
{
}
private:
SpeculativeJIT* m_jit;
FPRReg m_fpr;
};
// === Results ===
//
// These classes lock the result of a call to a C++ helper function.
class GPRResult : public GPRTemporary {
public:
GPRResult(SpeculativeJIT* jit)
: GPRTemporary(jit, GPRInfo::returnValueGPR)
{
}
};
#if USE(JSVALUE32_64)
class GPRResult2 : public GPRTemporary {
public:
GPRResult2(SpeculativeJIT* jit)
: GPRTemporary(jit, GPRInfo::returnValueGPR2)
{
}
};
#endif
class FPRResult : public FPRTemporary {
public:
FPRResult(SpeculativeJIT* jit)
: FPRTemporary(jit, lockedResult(jit))
{
}
private:
static FPRReg lockedResult(SpeculativeJIT* jit)
{
jit->lock(FPRInfo::returnValueFPR);
return FPRInfo::returnValueFPR;
}
};
// === Speculative Operand types ===
//
// SpeculateIntegerOperand, SpeculateStrictInt32Operand and SpeculateCellOperand.
//
// These are used to lock the operands to a node into machine registers within the
// SpeculativeJIT. The classes operate like those above, however these will
// perform a speculative check for a more restrictive type than we can statically
// determine the operand to have. If the operand does not have the requested type,
// a bail-out to the non-speculative path will be taken.
class SpeculateIntegerOperand {
public:
explicit SpeculateIntegerOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
#ifndef NDEBUG
, m_format(DataFormatNone)
#endif
{
ASSERT(m_jit);
ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || (edge.useKind() == Int32Use || edge.useKind() == KnownInt32Use));
if (jit->isFilled(node()))
gpr();
}
~SpeculateIntegerOperand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
DataFormat format()
{
gpr(); // m_format is set when m_gpr is locked.
ASSERT(m_format == DataFormatInteger || m_format == DataFormatJSInteger);
return m_format;
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillSpeculateInt(edge(), m_format);
return m_gprOrInvalid;
}
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
DataFormat m_format;
};
class SpeculateStrictInt32Operand {
public:
explicit SpeculateStrictInt32Operand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
{
ASSERT(m_jit);
ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || (edge.useKind() == Int32Use || edge.useKind() == KnownInt32Use));
if (jit->isFilled(node()))
gpr();
}
~SpeculateStrictInt32Operand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillSpeculateIntStrict(edge());
return m_gprOrInvalid;
}
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
};
class SpeculateDoubleOperand {
public:
explicit SpeculateDoubleOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
: m_jit(jit)
, m_edge(edge)
, m_fprOrInvalid(InvalidFPRReg)
{
ASSERT(m_jit);
ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || (edge.useKind() == NumberUse || edge.useKind() == KnownNumberUse || edge.useKind() == RealNumberUse));
if (jit->isFilled(node()))
fpr();
}
~SpeculateDoubleOperand()
{
ASSERT(m_fprOrInvalid != InvalidFPRReg);
m_jit->unlock(m_fprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
FPRReg fpr()
{
if (m_fprOrInvalid == InvalidFPRReg)
m_fprOrInvalid = m_jit->fillSpeculateDouble(edge());
return m_fprOrInvalid;
}
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
FPRReg m_fprOrInvalid;
};
class SpeculateCellOperand {
public:
explicit SpeculateCellOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
{
ASSERT(m_jit);
if (!edge)
return;
ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || (edge.useKind() == CellUse || edge.useKind() == KnownCellUse || edge.useKind() == ObjectUse || edge.useKind() == StringUse || edge.useKind() == KnownStringUse || edge.useKind() == StringObjectUse || edge.useKind() == StringOrStringObjectUse));
if (jit->isFilled(node()))
gpr();
}
~SpeculateCellOperand()
{
if (!m_edge)
return;
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
GPRReg gpr()
{
ASSERT(m_edge);
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillSpeculateCell(edge());
return m_gprOrInvalid;
}
void use()
{
ASSERT(m_edge);
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
};
class SpeculateBooleanOperand {
public:
explicit SpeculateBooleanOperand(SpeculativeJIT* jit, Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation)
: m_jit(jit)
, m_edge(edge)
, m_gprOrInvalid(InvalidGPRReg)
{
ASSERT(m_jit);
ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == BooleanUse);
if (jit->isFilled(node()))
gpr();
}
~SpeculateBooleanOperand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
Edge edge() const
{
return m_edge;
}
Node* node() const
{
return edge().node();
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillSpeculateBoolean(edge());
return m_gprOrInvalid;
}
void use()
{
m_jit->use(node());
}
private:
SpeculativeJIT* m_jit;
Edge m_edge;
GPRReg m_gprOrInvalid;
};
template<typename StructureLocationType>
void SpeculativeJIT::speculateStringObjectForStructure(Edge edge, StructureLocationType structureLocation)
{
Structure* stringObjectStructure =
m_jit.globalObjectFor(m_currentNode->codeOrigin)->stringObjectStructure();
Structure* stringPrototypeStructure = stringObjectStructure->storedPrototype().asCell()->structure();
ASSERT(stringPrototypeStructure->transitionWatchpointSetIsStillValid());
if (!m_state.forNode(edge).m_currentKnownStructure.isSubsetOf(StructureSet(m_jit.globalObjectFor(m_currentNode->codeOrigin)->stringObjectStructure()))) {
speculationCheck(
NotStringObject, JSValueRegs(), 0,
m_jit.branchPtr(
JITCompiler::NotEqual, structureLocation, TrustedImmPtr(stringObjectStructure)));
}
stringPrototypeStructure->addTransitionWatchpoint(speculationWatchpoint(NotStringObject));
}
#define DFG_TYPE_CHECK(source, edge, typesPassedThrough, jumpToFail) do { \
if (!needsTypeCheck((edge), (typesPassedThrough))) \
break; \
typeCheck((source), (edge), (typesPassedThrough), (jumpToFail)); \
} while (0)
} } // namespace JSC::DFG
#endif
#endif
|