1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
|
/*
* Copyright (C) 2013-2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGStrengthReductionPhase.h"
#if ENABLE(DFG_JIT)
#include "DFGAbstractHeap.h"
#include "DFGClobberize.h"
#include "DFGGraph.h"
#include "DFGInsertionSet.h"
#include "DFGPhase.h"
#include "DFGPredictionPropagationPhase.h"
#include "DFGVariableAccessDataDump.h"
#include "JSCInlines.h"
#include <cstdlib>
namespace JSC { namespace DFG {
class StrengthReductionPhase : public Phase {
public:
StrengthReductionPhase(Graph& graph)
: Phase(graph, "strength reduction")
, m_insertionSet(graph)
{
}
bool run()
{
ASSERT(m_graph.m_fixpointState == FixpointNotConverged);
m_changed = false;
for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
m_block = m_graph.block(blockIndex);
if (!m_block)
continue;
for (m_nodeIndex = 0; m_nodeIndex < m_block->size(); ++m_nodeIndex) {
m_node = m_block->at(m_nodeIndex);
handleNode();
}
m_insertionSet.execute(m_block);
}
return m_changed;
}
private:
void handleNode()
{
switch (m_node->op()) {
case BitOr:
handleCommutativity();
if (m_node->child1().useKind() != UntypedUse && m_node->child2()->isInt32Constant() && !m_node->child2()->asInt32()) {
convertToIdentityOverChild1();
break;
}
break;
case BitXor:
case BitAnd:
handleCommutativity();
break;
case BitLShift:
case BitRShift:
case BitURShift:
if (m_node->child1().useKind() != UntypedUse && m_node->child2()->isInt32Constant() && !(m_node->child2()->asInt32() & 0x1f)) {
convertToIdentityOverChild1();
break;
}
break;
case UInt32ToNumber:
if (m_node->child1()->op() == BitURShift
&& m_node->child1()->child2()->isInt32Constant()
&& (m_node->child1()->child2()->asInt32() & 0x1f)
&& m_node->arithMode() != Arith::DoOverflow) {
m_node->convertToIdentity();
m_changed = true;
break;
}
break;
case ArithAdd:
handleCommutativity();
if (m_node->child2()->isInt32Constant() && !m_node->child2()->asInt32()) {
convertToIdentityOverChild1();
break;
}
break;
case ArithMul: {
handleCommutativity();
Edge& child2 = m_node->child2();
if (child2->isNumberConstant() && child2->asNumber() == 2) {
switch (m_node->binaryUseKind()) {
case DoubleRepUse:
// It is always valuable to get rid of a double multiplication by 2.
// We won't have half-register dependencies issues on x86 and we won't have to load the constants.
m_node->setOp(ArithAdd);
child2.setNode(m_node->child1().node());
m_changed = true;
break;
#if USE(JSVALUE64)
case Int52RepUse:
#endif
case Int32Use:
// For integers, we can only convert compatible modes.
// ArithAdd does handle do negative zero check for example.
if (m_node->arithMode() == Arith::CheckOverflow || m_node->arithMode() == Arith::Unchecked) {
m_node->setOp(ArithAdd);
child2.setNode(m_node->child1().node());
m_changed = true;
}
break;
default:
break;
}
}
break;
}
case ArithSub:
if (m_node->child2()->isInt32Constant()
&& m_node->isBinaryUseKind(Int32Use)) {
int32_t value = m_node->child2()->asInt32();
if (-value != value) {
m_node->setOp(ArithAdd);
m_node->child2().setNode(
m_insertionSet.insertConstant(
m_nodeIndex, m_node->origin, jsNumber(-value)));
m_changed = true;
break;
}
}
break;
case ArithPow:
if (m_node->child2()->isNumberConstant()) {
double yOperandValue = m_node->child2()->asNumber();
if (yOperandValue == 1) {
convertToIdentityOverChild1();
} else if (yOperandValue == 0.5) {
m_insertionSet.insertCheck(m_nodeIndex, m_node);
m_node->convertToArithSqrt();
m_changed = true;
}
}
break;
case ArithMod:
// On Integers
// In: ArithMod(ArithMod(x, const1), const2)
// Out: Identity(ArithMod(x, const1))
// if const1 <= const2.
if (m_node->binaryUseKind() == Int32Use
&& m_node->child2()->isInt32Constant()
&& m_node->child1()->op() == ArithMod
&& m_node->child1()->binaryUseKind() == Int32Use
&& m_node->child1()->child2()->isInt32Constant()
&& std::abs(m_node->child1()->child2()->asInt32()) <= std::abs(m_node->child2()->asInt32())) {
convertToIdentityOverChild1();
}
break;
case ValueRep:
case Int52Rep:
case DoubleRep: {
// This short-circuits circuitous conversions, like ValueRep(DoubleRep(value)) or
// even more complicated things. Like, it can handle a beast like
// ValueRep(DoubleRep(Int52Rep(value))).
// The only speculation that we would do beyond validating that we have a type that
// can be represented a certain way is an Int32 check that would appear on Int52Rep
// nodes. For now, if we see this and the final type we want is an Int52, we use it
// as an excuse not to fold. The only thing we would need is a Int52RepInt32Use kind.
bool hadInt32Check = false;
if (m_node->op() == Int52Rep) {
if (m_node->child1().useKind() != Int32Use)
break;
hadInt32Check = true;
}
for (Node* node = m_node->child1().node(); ; node = node->child1().node()) {
if (canonicalResultRepresentation(node->result()) ==
canonicalResultRepresentation(m_node->result())) {
m_insertionSet.insertCheck(m_nodeIndex, m_node);
if (hadInt32Check) {
// FIXME: Consider adding Int52RepInt32Use or even DoubleRepInt32Use,
// which would be super weird. The latter would only arise in some
// seriously circuitous conversions.
if (canonicalResultRepresentation(node->result()) != NodeResultJS)
break;
m_insertionSet.insertCheck(
m_nodeIndex, m_node->origin, Edge(node, Int32Use));
}
m_node->child1() = node->defaultEdge();
m_node->convertToIdentity();
m_changed = true;
break;
}
switch (node->op()) {
case Int52Rep:
if (node->child1().useKind() != Int32Use)
break;
hadInt32Check = true;
continue;
case DoubleRep:
case ValueRep:
continue;
default:
break;
}
break;
}
break;
}
case Flush: {
ASSERT(m_graph.m_form != SSA);
Node* setLocal = nullptr;
VirtualRegister local = m_node->local();
for (unsigned i = m_nodeIndex; i--;) {
Node* node = m_block->at(i);
if (node->op() == SetLocal && node->local() == local) {
setLocal = node;
break;
}
if (accessesOverlap(m_graph, node, AbstractHeap(Stack, local)))
break;
}
if (!setLocal)
break;
// The Flush should become a PhantomLocal at this point. This means that we want the
// local's value during OSR, but we don't care if the value is stored to the stack. CPS
// rethreading can canonicalize PhantomLocals for us.
m_node->convertFlushToPhantomLocal();
m_graph.dethread();
m_changed = true;
break;
}
// FIXME: we should probably do this in constant folding but this currently relies on an OSR exit rule.
// https://bugs.webkit.org/show_bug.cgi?id=154832
case OverridesHasInstance: {
if (!m_node->child2().node()->isCellConstant())
break;
if (m_node->child2().node()->asCell() != m_graph.globalObjectFor(m_node->origin.semantic)->functionProtoHasInstanceSymbolFunction()) {
m_graph.convertToConstant(m_node, jsBoolean(true));
m_changed = true;
} else if (!m_graph.hasExitSite(m_node->origin.semantic, BadTypeInfoFlags)) {
// We optimistically assume that we will not see a function that has a custom instanceof operation as they should be rare.
m_insertionSet.insertNode(m_nodeIndex, SpecNone, CheckTypeInfoFlags, m_node->origin, OpInfo(ImplementsDefaultHasInstance), Edge(m_node->child1().node(), CellUse));
m_graph.convertToConstant(m_node, jsBoolean(false));
m_changed = true;
}
break;
}
default:
break;
}
}
void convertToIdentityOverChild(unsigned childIndex)
{
m_insertionSet.insertCheck(m_nodeIndex, m_node);
m_node->children.removeEdge(childIndex ^ 1);
m_node->convertToIdentity();
m_changed = true;
}
void convertToIdentityOverChild1()
{
convertToIdentityOverChild(0);
}
void convertToIdentityOverChild2()
{
convertToIdentityOverChild(1);
}
void handleCommutativity()
{
// If the right side is a constant then there is nothing left to do.
if (m_node->child2()->hasConstant())
return;
// This case ensures that optimizations that look for x + const don't also have
// to look for const + x.
if (m_node->child1()->hasConstant()) {
std::swap(m_node->child1(), m_node->child2());
m_changed = true;
return;
}
// This case ensures that CSE is commutativity-aware.
if (m_node->child1().node() > m_node->child2().node()) {
std::swap(m_node->child1(), m_node->child2());
m_changed = true;
return;
}
}
InsertionSet m_insertionSet;
BasicBlock* m_block;
unsigned m_nodeIndex;
Node* m_node;
bool m_changed;
};
bool performStrengthReduction(Graph& graph)
{
SamplingRegion samplingRegion("DFG Strength Reduction Phase");
return runPhase<StrengthReductionPhase>(graph);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
|