1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
|
/*
* Copyright (C) 2014, 2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGStructureAbstractValue.h"
#if ENABLE(DFG_JIT)
#include "DFGGraph.h"
namespace JSC { namespace DFG {
// Comment out the empty SAMPLE() definition, and uncomment the one that uses SamplingRegion, if
// you want extremely fine-grained profiling in this code.
#define SAMPLE(name)
//#define SAMPLE(name) SamplingRegion samplingRegion(name)
#if !ASSERT_DISABLED
void StructureAbstractValue::assertIsRegistered(Graph& graph) const
{
SAMPLE("StructureAbstractValue assertIsRegistered");
if (isTop())
return;
for (unsigned i = size(); i--;)
graph.assertIsRegistered(at(i));
}
#endif // !ASSERT_DISABLED
void StructureAbstractValue::clobber()
{
SAMPLE("StructureAbstractValue clobber");
// The premise of this approach to clobbering is that anytime we introduce
// a watchable structure into an abstract value, we watchpoint it. You can assert
// that this holds by calling assertIsWatched().
if (isTop())
return;
setClobbered(true);
if (m_set.isThin()) {
if (!m_set.singleEntry())
return;
if (!m_set.singleEntry()->dfgShouldWatch())
makeTopWhenThin();
return;
}
StructureSet::OutOfLineList* list = m_set.list();
for (unsigned i = list->m_length; i--;) {
if (!list->list()[i]->dfgShouldWatch()) {
makeTop();
return;
}
}
}
void StructureAbstractValue::observeTransition(Structure* from, Structure* to)
{
SAMPLE("StructureAbstractValue observeTransition");
ASSERT(!from->dfgShouldWatch());
if (isTop())
return;
if (!m_set.contains(from))
return;
if (!m_set.add(to))
return;
if (m_set.size() > polymorphismLimit)
makeTop();
}
void StructureAbstractValue::observeTransitions(const TransitionVector& vector)
{
SAMPLE("StructureAbstractValue observeTransitions");
if (isTop())
return;
StructureSet newStructures;
for (unsigned i = vector.size(); i--;) {
ASSERT(!vector[i].previous->dfgShouldWatch());
if (!m_set.contains(vector[i].previous))
continue;
newStructures.add(vector[i].next);
}
if (!m_set.merge(newStructures))
return;
if (m_set.size() > polymorphismLimit)
makeTop();
}
bool StructureAbstractValue::add(Structure* structure)
{
SAMPLE("StructureAbstractValue add");
if (isTop())
return false;
if (!m_set.add(structure))
return false;
if (m_set.size() > polymorphismLimit)
makeTop();
return true;
}
bool StructureAbstractValue::merge(const StructureSet& other)
{
SAMPLE("StructureAbstractValue merge set");
if (isTop())
return false;
return mergeNotTop(other);
}
bool StructureAbstractValue::mergeSlow(const StructureAbstractValue& other)
{
SAMPLE("StructureAbstractValue merge value slow");
// It isn't immediately obvious that the code below is doing the right thing, so let's go
// through it.
//
// This not clobbered, other not clobbered: Clearly, we don't want to make anything clobbered
// since we just have two sets and we are merging them. mergeNotTop() can handle this just
// fine.
//
// This clobbered, other clobbered: Clobbered means that we have a set of things, plus we
// temporarily have the set of all things but the latter will go away once we hit the next
// invalidation point. This allows us to merge two clobbered sets the natural way. For now
// the set will still be TOP (and so we keep the clobbered bit set), but we know that after
// invalidation, we will have the union of the this and other.
//
// This clobbered, other not clobbered: It's safe to merge in other for both before and after
// invalidation, so long as we leave the clobbered bit set. Before invalidation this has no
// effect since the set will still appear to have all things in it. The way to think about
// what invalidation would do is imagine if we had a set A that was clobbered and a set B
// that wasn't and we considered the following two cases. Note that we expect A to be the
// same at the end in both cases:
//
// A.merge(B) InvalidationPoint
// InvalidationPoint A.merge(B)
//
// The fact that we expect A to be the same in both cases means that we want to merge other
// into this but keep the clobbered bit.
//
// This not clobbered, other clobbered: This is just the converse of the previous case. We
// want to merge other into this and set the clobbered bit.
bool changed = false;
if (!isClobbered() && other.isClobbered()) {
setClobbered(true);
changed = true;
}
changed |= mergeNotTop(other.m_set);
return changed;
}
bool StructureAbstractValue::mergeNotTop(const StructureSet& other)
{
SAMPLE("StructureAbstractValue merge not top");
if (!m_set.merge(other))
return false;
if (m_set.size() > polymorphismLimit)
makeTop();
return true;
}
void StructureAbstractValue::filter(const StructureSet& other)
{
SAMPLE("StructureAbstractValue filter set");
if (isTop()) {
m_set = other;
return;
}
if (isClobbered()) {
// We have two choices here:
//
// Do nothing: It's legal to keep our set intact, which would essentially mean that for
// now, our set would behave like TOP but after the next invalidation point it wold be
// a finite set again. This may be a good choice if 'other' is much bigger than our
// m_set.
//
// Replace m_set with other and clear the clobber bit: This is also legal, and means that
// we're no longer clobbered. This is usually better because it immediately gives us a
// smaller set.
//
// This scenario should come up rarely. We usually don't do anything to an abstract value
// after it is clobbered. But we apply some heuristics.
if (other.size() > m_set.size() + clobberedSupremacyThreshold)
return; // Keep the clobbered set.
m_set = other;
setClobbered(false);
return;
}
m_set.filter(other);
}
void StructureAbstractValue::filter(const StructureAbstractValue& other)
{
SAMPLE("StructureAbstractValue filter value");
if (other.isTop())
return;
if (other.isClobbered()) {
if (isTop())
return;
if (!isClobbered()) {
// See justification in filter(const StructureSet&), above. An unclobbered set is
// almost always better.
if (m_set.size() > other.m_set.size() + clobberedSupremacyThreshold)
*this = other; // Keep the clobbered set.
return;
}
m_set.filter(other.m_set);
return;
}
filter(other.m_set);
}
void StructureAbstractValue::filterSlow(SpeculatedType type)
{
SAMPLE("StructureAbstractValue filter type slow");
if (!(type & SpecCell)) {
clear();
return;
}
ASSERT(!isTop());
m_set.genericFilter(
[&] (Structure* structure) {
return !!(speculationFromStructure(structure) & type);
});
}
bool StructureAbstractValue::contains(Structure* structure) const
{
SAMPLE("StructureAbstractValue contains");
if (isInfinite())
return true;
return m_set.contains(structure);
}
bool StructureAbstractValue::isSubsetOf(const StructureSet& other) const
{
SAMPLE("StructureAbstractValue isSubsetOf set");
if (isInfinite())
return false;
return m_set.isSubsetOf(other);
}
bool StructureAbstractValue::isSubsetOf(const StructureAbstractValue& other) const
{
SAMPLE("StructureAbstractValue isSubsetOf value");
if (isTop())
return false;
if (other.isTop())
return true;
if (isClobbered() == other.isClobbered())
return m_set.isSubsetOf(other.m_set);
// Here it gets tricky. If in doubt, return false!
if (isClobbered())
return false; // A clobbered set is never a subset of an unclobbered set.
// An unclobbered set is currently a subset of a clobbered set, but it may not be so after
// invalidation.
return m_set.isSubsetOf(other.m_set);
}
bool StructureAbstractValue::isSupersetOf(const StructureSet& other) const
{
SAMPLE("StructureAbstractValue isSupersetOf set");
if (isInfinite())
return true;
return m_set.isSupersetOf(other);
}
bool StructureAbstractValue::overlaps(const StructureSet& other) const
{
SAMPLE("StructureAbstractValue overlaps set");
if (isInfinite())
return true;
return m_set.overlaps(other);
}
bool StructureAbstractValue::overlaps(const StructureAbstractValue& other) const
{
SAMPLE("StructureAbstractValue overlaps value");
if (other.isInfinite())
return true;
return overlaps(other.m_set);
}
bool StructureAbstractValue::equalsSlow(const StructureAbstractValue& other) const
{
SAMPLE("StructureAbstractValue equalsSlow");
ASSERT(m_set.m_pointer != other.m_set.m_pointer);
ASSERT(!isTop());
ASSERT(!other.isTop());
return m_set == other.m_set
&& isClobbered() == other.isClobbered();
}
void StructureAbstractValue::dumpInContext(PrintStream& out, DumpContext* context) const
{
if (isClobbered())
out.print("Clobbered:");
if (isTop())
out.print("TOP");
else
out.print(inContext(m_set, context));
}
void StructureAbstractValue::dump(PrintStream& out) const
{
dumpInContext(out, 0);
}
void StructureAbstractValue::validateReferences(const TrackedReferences& trackedReferences) const
{
if (isTop())
return;
m_set.validateReferences(trackedReferences);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
|