1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
/*
* Copyright (C) 2013, 2015-2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "FTLAbstractHeap.h"
#if ENABLE(FTL_JIT)
#include "DFGCommon.h"
#include "FTLAbbreviatedTypes.h"
#include "FTLAbstractHeapRepository.h"
#include "FTLOutput.h"
#include "FTLTypedPointer.h"
#include "JSCInlines.h"
#include "Options.h"
namespace JSC { namespace FTL {
using namespace B3;
AbstractHeap::AbstractHeap(AbstractHeap* parent, const char* heapName, ptrdiff_t offset)
: m_offset(offset)
, m_heapName(heapName)
{
changeParent(parent);
}
void AbstractHeap::changeParent(AbstractHeap* parent)
{
if (m_parent) {
bool result = m_parent->m_children.removeFirst(this);
RELEASE_ASSERT(result);
}
m_parent = parent;
if (parent) {
ASSERT(!m_parent->m_children.contains(this));
m_parent->m_children.append(this);
}
}
void AbstractHeap::compute(unsigned begin)
{
// This recursively computes the ranges of the tree. This solves the following constraints
// in linear time:
//
// - A node's end is greater than its begin.
// - A node's begin is greater than or equal to its parent's begin.
// - A node's end is less than or equal to its parent's end.
// - The ranges are as small as possible.
//
// It's OK to recurse because we keep the depth of our abstract heap hierarchy fairly sane.
// I think that it gets 4 deep at most.
if (m_children.isEmpty()) {
// Must special-case leaves so that they use just one slot on the number line.
m_range = HeapRange(begin);
return;
}
unsigned current = begin;
for (AbstractHeap* child : m_children) {
child->compute(current);
current = child->range().end();
}
m_range = HeapRange(begin, current);
}
void AbstractHeap::shallowDump(PrintStream& out) const
{
out.print(heapName(), "(", m_offset, ")");
if (m_range)
out.print("<", m_range, ">");
}
void AbstractHeap::dump(PrintStream& out) const
{
shallowDump(out);
if (m_parent)
out.print("->", *m_parent);
}
void AbstractHeap::deepDump(PrintStream& out, unsigned indent) const
{
auto printIndent = [&] () {
for (unsigned i = indent; i--;)
out.print(" ");
};
printIndent();
shallowDump(out);
if (m_children.isEmpty()) {
out.print("\n");
return;
}
out.print(":\n");
for (AbstractHeap* child : m_children)
child->deepDump(out, indent + 1);
}
void AbstractHeap::badRangeError() const
{
dataLog("Heap does not have range: ", *this, "\n");
RELEASE_ASSERT_NOT_REACHED();
}
IndexedAbstractHeap::IndexedAbstractHeap(AbstractHeap* parent, const char* heapName, ptrdiff_t offset, size_t elementSize)
: m_heapForAnyIndex(parent, heapName)
, m_heapNameLength(strlen(heapName))
, m_offset(offset)
, m_elementSize(elementSize)
{
}
IndexedAbstractHeap::~IndexedAbstractHeap()
{
}
TypedPointer IndexedAbstractHeap::baseIndex(Output& out, LValue base, LValue index, JSValue indexAsConstant, ptrdiff_t offset)
{
if (indexAsConstant.isInt32())
return out.address(base, at(indexAsConstant.asInt32()), offset);
LValue result = out.add(base, out.mul(index, out.constIntPtr(m_elementSize)));
return TypedPointer(atAnyIndex(), out.addPtr(result, m_offset + offset));
}
const AbstractHeap& IndexedAbstractHeap::atSlow(ptrdiff_t index)
{
ASSERT(static_cast<size_t>(index) >= m_smallIndices.size());
if (UNLIKELY(!m_largeIndices))
m_largeIndices = std::make_unique<MapType>();
std::unique_ptr<AbstractHeap>& field = m_largeIndices->add(index, nullptr).iterator->value;
if (!field) {
field = std::make_unique<AbstractHeap>();
initialize(*field, index);
}
return *field;
}
void IndexedAbstractHeap::initialize(AbstractHeap& field, ptrdiff_t signedIndex)
{
// Build up a name of the form:
//
// heapName_hexIndex
//
// or:
//
// heapName_neg_hexIndex
//
// For example if you access an indexed heap called FooBar at index 5, you'll
// get:
//
// FooBar_5
//
// Or if you access an indexed heap called Blah at index -10, you'll get:
//
// Blah_neg_A
//
// This naming convention comes from our previous use of LLVM. It's not clear that we need
// it anymore, though it is sort of nifty. Basically, B3 doesn't need string names for
// abstract heaps, but the fact that we have a reasonably efficient way to always name the
// heaps will probably come in handy for debugging.
static const char* negSplit = "_neg_";
static const char* posSplit = "_";
bool negative;
size_t index;
if (signedIndex < 0) {
negative = true;
index = -signedIndex;
} else {
negative = false;
index = signedIndex;
}
for (unsigned power = 4; power <= sizeof(void*) * 8; power += 4) {
if (isGreaterThanNonZeroPowerOfTwo(index, power))
continue;
unsigned numHexlets = power >> 2;
size_t stringLength = m_heapNameLength + (negative ? strlen(negSplit) : strlen(posSplit)) + numHexlets;
char* characters;
m_largeIndexNames.append(CString::newUninitialized(stringLength, characters));
memcpy(characters, m_heapForAnyIndex.heapName(), m_heapNameLength);
if (negative)
memcpy(characters + m_heapNameLength, negSplit, strlen(negSplit));
else
memcpy(characters + m_heapNameLength, posSplit, strlen(posSplit));
size_t accumulator = index;
for (unsigned i = 0; i < numHexlets; ++i) {
characters[stringLength - i - 1] = lowerNibbleToASCIIHexDigit(accumulator);
accumulator >>= 4;
}
field.initialize(&m_heapForAnyIndex, characters, m_offset + signedIndex * m_elementSize);
return;
}
RELEASE_ASSERT_NOT_REACHED();
}
void IndexedAbstractHeap::dump(PrintStream& out) const
{
out.print("Indexed:", atAnyIndex());
}
NumberedAbstractHeap::NumberedAbstractHeap(AbstractHeap* heap, const char* heapName)
: m_indexedHeap(heap, heapName, 0, 1)
{
}
NumberedAbstractHeap::~NumberedAbstractHeap()
{
}
void NumberedAbstractHeap::dump(PrintStream& out) const
{
out.print("Numbered: ", atAnyNumber());
}
AbsoluteAbstractHeap::AbsoluteAbstractHeap(AbstractHeap* heap, const char* heapName)
: m_indexedHeap(heap, heapName, 0, 1)
{
}
AbsoluteAbstractHeap::~AbsoluteAbstractHeap()
{
}
void AbsoluteAbstractHeap::dump(PrintStream& out) const
{
out.print("Absolute:", atAnyAddress());
}
} } // namespace JSC::FTL
#endif // ENABLE(FTL_JIT)
|