1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
/*
* Copyright (C) 2013, 2015-2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef FTLAbstractHeap_h
#define FTLAbstractHeap_h
#if ENABLE(FTL_JIT)
#include "B3HeapRange.h"
#include "FTLAbbreviatedTypes.h"
#include "JSCJSValue.h"
#include <array>
#include <wtf/FastMalloc.h>
#include <wtf/HashMap.h>
#include <wtf/Noncopyable.h>
#include <wtf/Vector.h>
#include <wtf/text/CString.h>
namespace JSC { namespace FTL {
class AbstractHeapRepository;
class Output;
class TypedPointer;
class AbstractHeap {
WTF_MAKE_NONCOPYABLE(AbstractHeap); WTF_MAKE_FAST_ALLOCATED;
public:
AbstractHeap()
{
}
AbstractHeap(AbstractHeap* parent, const char* heapName, ptrdiff_t offset = 0);
bool isInitialized() const { return !!m_heapName; }
void initialize(AbstractHeap* parent, const char* heapName, ptrdiff_t offset = 0)
{
changeParent(parent);
m_heapName = heapName;
m_offset = offset;
}
void changeParent(AbstractHeap* parent);
AbstractHeap* parent() const
{
ASSERT(isInitialized());
return m_parent;
}
const Vector<AbstractHeap*>& children() const;
const char* heapName() const
{
ASSERT(isInitialized());
return m_heapName;
}
B3::HeapRange range() const
{
// This will not have a valid value until after all lowering is done. Do associate an
// AbstractHeap with a B3::Value*, use AbstractHeapRepository::decorateXXX().
if (!m_range)
badRangeError();
return m_range;
}
// WARNING: Not all abstract heaps have a meaningful offset.
ptrdiff_t offset() const
{
ASSERT(isInitialized());
return m_offset;
}
void compute(unsigned begin = 0);
// Print information about just this heap.
void shallowDump(PrintStream&) const;
// Print information about this heap and its ancestors. This is the default.
void dump(PrintStream&) const;
// Print information about this heap and its descendents. This is a multi-line dump.
void deepDump(PrintStream&, unsigned indent = 0) const;
private:
friend class AbstractHeapRepository;
NO_RETURN_DUE_TO_CRASH void badRangeError() const;
AbstractHeap* m_parent { nullptr };
Vector<AbstractHeap*> m_children;
intptr_t m_offset { 0 };
B3::HeapRange m_range;
const char* m_heapName { nullptr };
};
class IndexedAbstractHeap {
public:
IndexedAbstractHeap(AbstractHeap* parent, const char* heapName, ptrdiff_t offset, size_t elementSize);
~IndexedAbstractHeap();
const AbstractHeap& atAnyIndex() const { return m_heapForAnyIndex; }
const AbstractHeap& at(ptrdiff_t index)
{
if (static_cast<size_t>(index) < m_smallIndices.size())
return returnInitialized(m_smallIndices[index], index);
return atSlow(index);
}
const AbstractHeap& operator[](ptrdiff_t index) { return at(index); }
TypedPointer baseIndex(Output& out, LValue base, LValue index, JSValue indexAsConstant = JSValue(), ptrdiff_t offset = 0);
void dump(PrintStream&) const;
private:
const AbstractHeap& returnInitialized(AbstractHeap& field, ptrdiff_t index)
{
if (UNLIKELY(!field.isInitialized()))
initialize(field, index);
return field;
}
const AbstractHeap& atSlow(ptrdiff_t index);
void initialize(AbstractHeap& field, ptrdiff_t index);
AbstractHeap m_heapForAnyIndex;
size_t m_heapNameLength;
ptrdiff_t m_offset;
size_t m_elementSize;
std::array<AbstractHeap, 16> m_smallIndices;
struct WithoutZeroOrOneHashTraits : WTF::GenericHashTraits<ptrdiff_t> {
static void constructDeletedValue(ptrdiff_t& slot) { slot = 1; }
static bool isDeletedValue(ptrdiff_t value) { return value == 1; }
};
typedef HashMap<ptrdiff_t, std::unique_ptr<AbstractHeap>, WTF::IntHash<ptrdiff_t>, WithoutZeroOrOneHashTraits> MapType;
std::unique_ptr<MapType> m_largeIndices;
Vector<CString, 16> m_largeIndexNames;
};
// A numbered abstract heap is like an indexed abstract heap, except that you
// can't rely on there being a relationship between the number you use to
// retrieve the sub-heap, and the offset that this heap has. (In particular,
// the sub-heaps don't have indices.)
class NumberedAbstractHeap {
public:
NumberedAbstractHeap(AbstractHeap* parent, const char* heapName);
~NumberedAbstractHeap();
const AbstractHeap& atAnyNumber() const { return m_indexedHeap.atAnyIndex(); }
const AbstractHeap& at(unsigned number) { return m_indexedHeap.at(number); }
const AbstractHeap& operator[](unsigned number) { return at(number); }
void dump(PrintStream&) const;
private:
// We use the fact that the indexed heap already has a superset of the
// functionality we need.
IndexedAbstractHeap m_indexedHeap;
};
class AbsoluteAbstractHeap {
public:
AbsoluteAbstractHeap(AbstractHeap* parent, const char* heapName);
~AbsoluteAbstractHeap();
const AbstractHeap& atAnyAddress() const { return m_indexedHeap.atAnyIndex(); }
const AbstractHeap& at(void* address)
{
return m_indexedHeap.at(bitwise_cast<ptrdiff_t>(address));
}
const AbstractHeap& operator[](void* address) { return at(address); }
void dump(PrintStream&) const;
private:
// The trick here is that the indexed heap is "indexed" by a pointer-width
// integer. Pointers are themselves pointer-width integers. So we can reuse
// all of the functionality.
IndexedAbstractHeap m_indexedHeap;
};
} } // namespace JSC::FTL
#endif // ENABLE(FTL_JIT)
#endif // FTLAbstractHeap_h
|