1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "MarkedBlock.h"
#include "JSCell.h"
#include "JSDestructibleObject.h"
#include "JSCInlines.h"
namespace JSC {
static const bool computeBalance = false;
static size_t balance;
MarkedBlock* MarkedBlock::create(Heap& heap, MarkedAllocator* allocator, size_t capacity, size_t cellSize, bool needsDestruction)
{
if (computeBalance) {
balance++;
if (!(balance % 10))
dataLog("MarkedBlock Balance: ", balance, "\n");
}
MarkedBlock* block = new (NotNull, fastAlignedMalloc(blockSize, capacity)) MarkedBlock(allocator, capacity, cellSize, needsDestruction);
heap.didAllocateBlock(capacity);
return block;
}
void MarkedBlock::destroy(Heap& heap, MarkedBlock* block)
{
if (computeBalance) {
balance--;
if (!(balance % 10))
dataLog("MarkedBlock Balance: ", balance, "\n");
}
size_t capacity = block->capacity();
block->~MarkedBlock();
fastAlignedFree(block);
heap.didFreeBlock(capacity);
}
MarkedBlock::MarkedBlock(MarkedAllocator* allocator, size_t capacity, size_t cellSize, bool needsDestruction)
: DoublyLinkedListNode<MarkedBlock>()
, m_atomsPerCell((cellSize + atomSize - 1) / atomSize)
, m_endAtom((allocator->cellSize() ? atomsPerBlock - m_atomsPerCell : firstAtom()) + 1)
, m_capacity(capacity)
, m_needsDestruction(needsDestruction)
, m_allocator(allocator)
, m_state(New) // All cells start out unmarked.
, m_weakSet(allocator->heap()->vm(), *this)
{
ASSERT(allocator);
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
}
inline void MarkedBlock::callDestructor(JSCell* cell)
{
// A previous eager sweep may already have run cell's destructor.
if (cell->isZapped())
return;
ASSERT(cell->structureID());
if (cell->inlineTypeFlags() & StructureIsImmortal)
cell->structure(*vm())->classInfo()->methodTable.destroy(cell);
else
jsCast<JSDestructibleObject*>(cell)->classInfo()->methodTable.destroy(cell);
cell->zap();
}
template<MarkedBlock::BlockState blockState, MarkedBlock::SweepMode sweepMode, bool callDestructors>
MarkedBlock::FreeList MarkedBlock::specializedSweep()
{
ASSERT(blockState != Allocated && blockState != FreeListed);
ASSERT(!(!callDestructors && sweepMode == SweepOnly));
SamplingRegion samplingRegion((!callDestructors && blockState != New) ? "Calling destructors" : "sweeping");
// This produces a free list that is ordered in reverse through the block.
// This is fine, since the allocation code makes no assumptions about the
// order of the free list.
FreeCell* head = 0;
size_t count = 0;
for (size_t i = firstAtom(); i < m_endAtom; i += m_atomsPerCell) {
if (blockState == Marked && (m_marks.get(i) || (m_newlyAllocated && m_newlyAllocated->get(i))))
continue;
JSCell* cell = reinterpret_cast_ptr<JSCell*>(&atoms()[i]);
if (callDestructors && blockState != New)
callDestructor(cell);
if (sweepMode == SweepToFreeList) {
FreeCell* freeCell = reinterpret_cast<FreeCell*>(cell);
freeCell->next = head;
head = freeCell;
++count;
}
}
// We only want to discard the newlyAllocated bits if we're creating a FreeList,
// otherwise we would lose information on what's currently alive.
if (sweepMode == SweepToFreeList && m_newlyAllocated)
m_newlyAllocated = nullptr;
m_state = ((sweepMode == SweepToFreeList) ? FreeListed : Marked);
return FreeList(head, count * cellSize());
}
MarkedBlock::FreeList MarkedBlock::sweep(SweepMode sweepMode)
{
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
m_weakSet.sweep();
if (sweepMode == SweepOnly && !m_needsDestruction)
return FreeList();
if (m_needsDestruction)
return sweepHelper<true>(sweepMode);
return sweepHelper<false>(sweepMode);
}
template<bool callDestructors>
MarkedBlock::FreeList MarkedBlock::sweepHelper(SweepMode sweepMode)
{
switch (m_state) {
case New:
ASSERT(sweepMode == SweepToFreeList);
return specializedSweep<New, SweepToFreeList, callDestructors>();
case FreeListed:
// Happens when a block transitions to fully allocated.
ASSERT(sweepMode == SweepToFreeList);
return FreeList();
case Retired:
case Allocated:
RELEASE_ASSERT_NOT_REACHED();
return FreeList();
case Marked:
return sweepMode == SweepToFreeList
? specializedSweep<Marked, SweepToFreeList, callDestructors>()
: specializedSweep<Marked, SweepOnly, callDestructors>();
}
RELEASE_ASSERT_NOT_REACHED();
return FreeList();
}
class SetNewlyAllocatedFunctor : public MarkedBlock::VoidFunctor {
public:
SetNewlyAllocatedFunctor(MarkedBlock* block)
: m_block(block)
{
}
IterationStatus operator()(JSCell* cell)
{
ASSERT(MarkedBlock::blockFor(cell) == m_block);
m_block->setNewlyAllocated(cell);
return IterationStatus::Continue;
}
private:
MarkedBlock* m_block;
};
void MarkedBlock::stopAllocating(const FreeList& freeList)
{
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
FreeCell* head = freeList.head;
if (m_state == Marked) {
// If the block is in the Marked state then we know that:
// 1) It was not used for allocation during the previous allocation cycle.
// 2) It may have dead objects, and we only know them to be dead by the
// fact that their mark bits are unset.
// Hence if the block is Marked we need to leave it Marked.
ASSERT(!head);
return;
}
ASSERT(m_state == FreeListed);
// Roll back to a coherent state for Heap introspection. Cells newly
// allocated from our free list are not currently marked, so we need another
// way to tell what's live vs dead.
ASSERT(!m_newlyAllocated);
m_newlyAllocated = std::make_unique<WTF::Bitmap<atomsPerBlock>>();
SetNewlyAllocatedFunctor functor(this);
forEachCell(functor);
FreeCell* next;
for (FreeCell* current = head; current; current = next) {
next = current->next;
reinterpret_cast<JSCell*>(current)->zap();
clearNewlyAllocated(current);
}
m_state = Marked;
}
void MarkedBlock::clearMarks()
{
if (heap()->operationInProgress() == JSC::EdenCollection)
this->clearMarksWithCollectionType<EdenCollection>();
else
this->clearMarksWithCollectionType<FullCollection>();
}
template <HeapOperation collectionType>
void MarkedBlock::clearMarksWithCollectionType()
{
ASSERT(collectionType == FullCollection || collectionType == EdenCollection);
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
ASSERT(m_state != New && m_state != FreeListed);
if (collectionType == FullCollection) {
m_marks.clearAll();
// This will become true at the end of the mark phase. We set it now to
// avoid an extra pass to do so later.
m_state = Marked;
return;
}
ASSERT(collectionType == EdenCollection);
// If a block was retired then there's no way an EdenCollection can un-retire it.
if (m_state != Retired)
m_state = Marked;
}
void MarkedBlock::lastChanceToFinalize()
{
m_weakSet.lastChanceToFinalize();
clearNewlyAllocated();
clearMarksWithCollectionType<FullCollection>();
sweep();
}
MarkedBlock::FreeList MarkedBlock::resumeAllocating()
{
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
ASSERT(m_state == Marked);
if (!m_newlyAllocated) {
// We didn't have to create a "newly allocated" bitmap. That means we were already Marked
// when we last stopped allocation, so return an empty free list and stay in the Marked state.
return FreeList();
}
// Re-create our free list from before stopping allocation.
return sweep(SweepToFreeList);
}
void MarkedBlock::didRetireBlock(const FreeList& freeList)
{
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
FreeCell* head = freeList.head;
// Currently we don't notify the Heap that we're giving up on this block.
// The Heap might be able to make a better decision about how many bytes should
// be allocated before the next collection if it knew about this retired block.
// On the other hand we'll waste at most 10% of our Heap space between FullCollections
// and only under heavy fragmentation.
// We need to zap the free list when retiring a block so that we don't try to destroy
// previously destroyed objects when we re-sweep the block in the future.
FreeCell* next;
for (FreeCell* current = head; current; current = next) {
next = current->next;
reinterpret_cast<JSCell*>(current)->zap();
}
ASSERT(m_state == FreeListed);
m_state = Retired;
}
} // namespace JSC
|