1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
|
/*
* Copyright (C) 2011 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(WEB_AUDIO)
#include "AudioParamTimeline.h"
#include "AudioUtilities.h"
#include "FloatConversion.h"
#include <algorithm>
#include <wtf/MathExtras.h>
namespace WebCore {
void AudioParamTimeline::setValueAtTime(float value, float time)
{
insertEvent(ParamEvent(ParamEvent::SetValue, value, time, 0, 0, 0));
}
void AudioParamTimeline::linearRampToValueAtTime(float value, float time)
{
insertEvent(ParamEvent(ParamEvent::LinearRampToValue, value, time, 0, 0, 0));
}
void AudioParamTimeline::exponentialRampToValueAtTime(float value, float time)
{
insertEvent(ParamEvent(ParamEvent::ExponentialRampToValue, value, time, 0, 0, 0));
}
void AudioParamTimeline::setTargetAtTime(float target, float time, float timeConstant)
{
insertEvent(ParamEvent(ParamEvent::SetTarget, target, time, timeConstant, 0, 0));
}
void AudioParamTimeline::setValueCurveAtTime(Float32Array* curve, float time, float duration)
{
insertEvent(ParamEvent(ParamEvent::SetValueCurve, 0, time, 0, duration, curve));
}
static bool isValidNumber(float x)
{
return !std::isnan(x) && !std::isinf(x);
}
void AudioParamTimeline::insertEvent(const ParamEvent& event)
{
// Sanity check the event. Be super careful we're not getting infected with NaN or Inf.
bool isValid = event.type() < ParamEvent::LastType
&& isValidNumber(event.value())
&& isValidNumber(event.time())
&& isValidNumber(event.timeConstant())
&& isValidNumber(event.duration())
&& event.duration() >= 0;
ASSERT(isValid);
if (!isValid)
return;
std::lock_guard<Lock> lock(m_eventsMutex);
unsigned i = 0;
float insertTime = event.time();
for (auto& paramEvent : m_events) {
// Overwrite same event type and time.
if (paramEvent.time() == insertTime && paramEvent.type() == event.type()) {
paramEvent = event;
return;
}
if (paramEvent.time() > insertTime)
break;
++i;
}
m_events.insert(i, event);
}
void AudioParamTimeline::cancelScheduledValues(float startTime)
{
std::lock_guard<Lock> lock(m_eventsMutex);
// Remove all events starting at startTime.
for (unsigned i = 0; i < m_events.size(); ++i) {
if (m_events[i].time() >= startTime) {
m_events.remove(i, m_events.size() - i);
break;
}
}
}
float AudioParamTimeline::valueForContextTime(AudioContext& context, float defaultValue, bool& hasValue)
{
{
std::unique_lock<Lock> lock(m_eventsMutex, std::try_to_lock);
if (!lock.owns_lock() || !m_events.size() || context.currentTime() < m_events[0].time()) {
hasValue = false;
return defaultValue;
}
}
// Ask for just a single value.
float value;
double sampleRate = context.sampleRate();
double startTime = context.currentTime();
double endTime = startTime + 1.1 / sampleRate; // time just beyond one sample-frame
double controlRate = sampleRate / AudioNode::ProcessingSizeInFrames; // one parameter change per render quantum
value = valuesForTimeRange(startTime, endTime, defaultValue, &value, 1, sampleRate, controlRate);
hasValue = true;
return value;
}
float AudioParamTimeline::valuesForTimeRange(double startTime, double endTime, float defaultValue, float* values, unsigned numberOfValues, double sampleRate, double controlRate)
{
// We can't contend the lock in the realtime audio thread.
std::unique_lock<Lock> lock(m_eventsMutex, std::try_to_lock);
if (!lock.owns_lock()) {
if (values) {
for (unsigned i = 0; i < numberOfValues; ++i)
values[i] = defaultValue;
}
return defaultValue;
}
float value = valuesForTimeRangeImpl(startTime, endTime, defaultValue, values, numberOfValues, sampleRate, controlRate);
return value;
}
float AudioParamTimeline::valuesForTimeRangeImpl(double startTime, double endTime, float defaultValue, float* values, unsigned numberOfValues, double sampleRate, double controlRate)
{
ASSERT(values);
if (!values)
return defaultValue;
// Return default value if there are no events matching the desired time range.
if (!m_events.size() || endTime <= m_events[0].time()) {
for (unsigned i = 0; i < numberOfValues; ++i)
values[i] = defaultValue;
return defaultValue;
}
// Maintain a running time and index for writing the values buffer.
double currentTime = startTime;
unsigned writeIndex = 0;
// If first event is after startTime then fill initial part of values buffer with defaultValue
// until we reach the first event time.
double firstEventTime = m_events[0].time();
if (firstEventTime > startTime) {
double fillToTime = std::min(endTime, firstEventTime);
unsigned fillToFrame = AudioUtilities::timeToSampleFrame(fillToTime - startTime, sampleRate);
fillToFrame = std::min(fillToFrame, numberOfValues);
for (; writeIndex < fillToFrame; ++writeIndex)
values[writeIndex] = defaultValue;
currentTime = fillToTime;
}
float value = defaultValue;
// Go through each event and render the value buffer where the times overlap,
// stopping when we've rendered all the requested values.
// FIXME: could try to optimize by avoiding having to iterate starting from the very first event
// and keeping track of a "current" event index.
int n = m_events.size();
for (int i = 0; i < n && writeIndex < numberOfValues; ++i) {
ParamEvent& event = m_events[i];
ParamEvent* nextEvent = i < n - 1 ? &(m_events[i + 1]) : 0;
// Wait until we get a more recent event.
if (nextEvent && nextEvent->time() < currentTime)
continue;
float value1 = event.value();
double time1 = event.time();
float value2 = nextEvent ? nextEvent->value() : value1;
double time2 = nextEvent ? nextEvent->time() : endTime + 1;
double deltaTime = time2 - time1;
float k = deltaTime > 0 ? 1 / deltaTime : 0;
double sampleFrameTimeIncr = 1 / sampleRate;
double fillToTime = std::min(endTime, time2);
unsigned fillToFrame = AudioUtilities::timeToSampleFrame(fillToTime - startTime, sampleRate);
fillToFrame = std::min(fillToFrame, numberOfValues);
ParamEvent::Type nextEventType = nextEvent ? static_cast<ParamEvent::Type>(nextEvent->type()) : ParamEvent::LastType /* unknown */;
// First handle linear and exponential ramps which require looking ahead to the next event.
if (nextEventType == ParamEvent::LinearRampToValue) {
for (; writeIndex < fillToFrame; ++writeIndex) {
float x = (currentTime - time1) * k;
value = (1 - x) * value1 + x * value2;
values[writeIndex] = value;
currentTime += sampleFrameTimeIncr;
}
} else if (nextEventType == ParamEvent::ExponentialRampToValue) {
if (value1 <= 0 || value2 <= 0) {
// Handle negative values error case by propagating previous value.
for (; writeIndex < fillToFrame; ++writeIndex)
values[writeIndex] = value;
} else {
float numSampleFrames = deltaTime * sampleRate;
// The value goes exponentially from value1 to value2 in a duration of deltaTime seconds (corresponding to numSampleFrames).
// Compute the per-sample multiplier.
float multiplier = powf(value2 / value1, 1 / numSampleFrames);
// Set the starting value of the exponential ramp. This is the same as multiplier ^
// AudioUtilities::timeToSampleFrame(currentTime - time1, sampleRate), but is more
// accurate, especially if multiplier is close to 1.
value = value1 * powf(value2 / value1,
AudioUtilities::timeToSampleFrame(currentTime - time1, sampleRate) / numSampleFrames);
for (; writeIndex < fillToFrame; ++writeIndex) {
values[writeIndex] = value;
value *= multiplier;
currentTime += sampleFrameTimeIncr;
}
}
} else {
// Handle event types not requiring looking ahead to the next event.
switch (event.type()) {
case ParamEvent::SetValue:
case ParamEvent::LinearRampToValue:
case ParamEvent::ExponentialRampToValue:
{
currentTime = fillToTime;
// Simply stay at a constant value.
value = event.value();
for (; writeIndex < fillToFrame; ++writeIndex)
values[writeIndex] = value;
break;
}
case ParamEvent::SetTarget:
{
currentTime = fillToTime;
// Exponential approach to target value with given time constant.
float target = event.value();
float timeConstant = event.timeConstant();
float discreteTimeConstant = static_cast<float>(AudioUtilities::discreteTimeConstantForSampleRate(timeConstant, controlRate));
for (; writeIndex < fillToFrame; ++writeIndex) {
values[writeIndex] = value;
value += (target - value) * discreteTimeConstant;
}
break;
}
case ParamEvent::SetValueCurve:
{
Float32Array* curve = event.curve();
float* curveData = curve ? curve->data() : 0;
unsigned numberOfCurvePoints = curve ? curve->length() : 0;
// Curve events have duration, so don't just use next event time.
float duration = event.duration();
float durationFrames = duration * sampleRate;
float curvePointsPerFrame = static_cast<float>(numberOfCurvePoints) / durationFrames;
if (!curve || !curveData || !numberOfCurvePoints || duration <= 0 || sampleRate <= 0) {
// Error condition - simply propagate previous value.
currentTime = fillToTime;
for (; writeIndex < fillToFrame; ++writeIndex)
values[writeIndex] = value;
break;
}
// Save old values and recalculate information based on the curve's duration
// instead of the next event time.
unsigned nextEventFillToFrame = fillToFrame;
float nextEventFillToTime = fillToTime;
fillToTime = std::min(endTime, time1 + duration);
fillToFrame = AudioUtilities::timeToSampleFrame(fillToTime - startTime, sampleRate);
fillToFrame = std::min(fillToFrame, numberOfValues);
// Index into the curve data using a floating-point value.
// We're scaling the number of curve points by the duration (see curvePointsPerFrame).
float curveVirtualIndex = 0;
if (time1 < currentTime) {
// Index somewhere in the middle of the curve data.
// Don't use timeToSampleFrame() since we want the exact floating-point frame.
float frameOffset = (currentTime - time1) * sampleRate;
curveVirtualIndex = curvePointsPerFrame * frameOffset;
}
// Render the stretched curve data using nearest neighbor sampling.
// Oversampled curve data can be provided if smoothness is desired.
for (; writeIndex < fillToFrame; ++writeIndex) {
// Ideally we'd use round() from MathExtras, but we're in a tight loop here
// and we're trading off precision for extra speed.
unsigned curveIndex = static_cast<unsigned>(0.5 + curveVirtualIndex);
curveVirtualIndex += curvePointsPerFrame;
// Bounds check.
if (curveIndex < numberOfCurvePoints)
value = curveData[curveIndex];
values[writeIndex] = value;
}
// If there's any time left after the duration of this event and the start
// of the next, then just propagate the last value.
for (; writeIndex < nextEventFillToFrame; ++writeIndex)
values[writeIndex] = value;
// Re-adjust current time
currentTime = nextEventFillToTime;
break;
}
}
}
}
// If there's any time left after processing the last event then just propagate the last value
// to the end of the values buffer.
for (; writeIndex < numberOfValues; ++writeIndex)
values[writeIndex] = value;
return value;
}
} // namespace WebCore
#endif // ENABLE(WEB_AUDIO)
|