summaryrefslogtreecommitdiff
path: root/Source/WebCore/Modules/webaudio/PeriodicWave.cpp
blob: 383af60dbe69742ac20a164b0fbcf0783fe87f97 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/*
 * Copyright (C) 2012 Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1.  Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 * 3.  Neither the name of Apple Inc. ("Apple") nor the names of
 *     its contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"

#if ENABLE(WEB_AUDIO)

#include "PeriodicWave.h"

#include "FFTFrame.h"
#include "OscillatorNode.h"
#include "VectorMath.h"
#include <algorithm>

const unsigned PeriodicWaveSize = 4096; // This must be a power of two.
const unsigned NumberOfRanges = 36; // There should be 3 * log2(PeriodicWaveSize) 1/3 octave ranges.
const float CentsPerRange = 1200 / 3; // 1/3 Octave.

namespace WebCore {
    
using namespace VectorMath;

RefPtr<PeriodicWave> PeriodicWave::create(float sampleRate, Float32Array* real, Float32Array* imag)
{
    bool isGood = real && imag && real->length() == imag->length();
    ASSERT(isGood);
    if (isGood) {
        RefPtr<PeriodicWave> waveTable = adoptRef(new PeriodicWave(sampleRate));
        size_t numberOfComponents = real->length();
        waveTable->createBandLimitedTables(real->data(), imag->data(), numberOfComponents);
        return waveTable;
    }
    return nullptr;
}

Ref<PeriodicWave> PeriodicWave::createSine(float sampleRate)
{
    Ref<PeriodicWave> waveTable = adoptRef(*new PeriodicWave(sampleRate));
    waveTable->generateBasicWaveform(OscillatorNode::SINE);
    return waveTable;
}

Ref<PeriodicWave> PeriodicWave::createSquare(float sampleRate)
{
    Ref<PeriodicWave> waveTable = adoptRef(*new PeriodicWave(sampleRate));
    waveTable->generateBasicWaveform(OscillatorNode::SQUARE);
    return waveTable;
}

Ref<PeriodicWave> PeriodicWave::createSawtooth(float sampleRate)
{
    Ref<PeriodicWave> waveTable = adoptRef(*new PeriodicWave(sampleRate));
    waveTable->generateBasicWaveform(OscillatorNode::SAWTOOTH);
    return waveTable;
}

Ref<PeriodicWave> PeriodicWave::createTriangle(float sampleRate)
{
    Ref<PeriodicWave> waveTable = adoptRef(*new PeriodicWave(sampleRate));
    waveTable->generateBasicWaveform(OscillatorNode::TRIANGLE);
    return waveTable;
}

PeriodicWave::PeriodicWave(float sampleRate)
    : m_sampleRate(sampleRate)
    , m_periodicWaveSize(PeriodicWaveSize)
    , m_numberOfRanges(NumberOfRanges)
    , m_centsPerRange(CentsPerRange)
{
    float nyquist = 0.5 * m_sampleRate;
    m_lowestFundamentalFrequency = nyquist / maxNumberOfPartials();
    m_rateScale = m_periodicWaveSize / m_sampleRate;
}

void PeriodicWave::waveDataForFundamentalFrequency(float fundamentalFrequency, float* &lowerWaveData, float* &higherWaveData, float& tableInterpolationFactor)
{
    // Negative frequencies are allowed, in which case we alias to the positive frequency.
    fundamentalFrequency = fabsf(fundamentalFrequency);

    // Calculate the pitch range.
    float ratio = fundamentalFrequency > 0 ? fundamentalFrequency / m_lowestFundamentalFrequency : 0.5;
    float centsAboveLowestFrequency = log2f(ratio) * 1200;

    // Add one to round-up to the next range just in time to truncate partials before aliasing occurs.
    float pitchRange = 1 + centsAboveLowestFrequency / m_centsPerRange;

    pitchRange = std::max(pitchRange, 0.0f);
    pitchRange = std::min(pitchRange, static_cast<float>(m_numberOfRanges - 1));

    // The words "lower" and "higher" refer to the table data having the lower and higher numbers of partials.
    // It's a little confusing since the range index gets larger the more partials we cull out.
    // So the lower table data will have a larger range index.
    unsigned rangeIndex1 = static_cast<unsigned>(pitchRange);
    unsigned rangeIndex2 = rangeIndex1 < m_numberOfRanges - 1 ? rangeIndex1 + 1 : rangeIndex1;

    lowerWaveData = m_bandLimitedTables[rangeIndex2]->data();
    higherWaveData = m_bandLimitedTables[rangeIndex1]->data();
    
    // Ranges from 0 -> 1 to interpolate between lower -> higher.
    tableInterpolationFactor = pitchRange - rangeIndex1;
}

unsigned PeriodicWave::maxNumberOfPartials() const
{
    return m_periodicWaveSize / 2;
}

unsigned PeriodicWave::numberOfPartialsForRange(unsigned rangeIndex) const
{
    // Number of cents below nyquist where we cull partials.
    float centsToCull = rangeIndex * m_centsPerRange;

    // A value from 0 -> 1 representing what fraction of the partials to keep.
    float cullingScale = pow(2, -centsToCull / 1200);

    // The very top range will have all the partials culled.
    unsigned numberOfPartials = cullingScale * maxNumberOfPartials();

    return numberOfPartials;
}

// Convert into time-domain wave tables.
// One table is created for each range for non-aliasing playback at different playback rates.
// Thus, higher ranges have more high-frequency partials culled out.
void PeriodicWave::createBandLimitedTables(const float* realData, const float* imagData, unsigned numberOfComponents)
{
    float normalizationScale = 1;

    unsigned fftSize = m_periodicWaveSize;
    unsigned halfSize = fftSize / 2;
    unsigned i;
    
    numberOfComponents = std::min(numberOfComponents, halfSize);

    m_bandLimitedTables.reserveCapacity(m_numberOfRanges);

    for (unsigned rangeIndex = 0; rangeIndex < m_numberOfRanges; ++rangeIndex) {
        // This FFTFrame is used to cull partials (represented by frequency bins).
        FFTFrame frame(fftSize);
        float* realP = frame.realData();
        float* imagP = frame.imagData();

        // Copy from loaded frequency data and scale.
        float scale = fftSize;
        vsmul(realData, 1, &scale, realP, 1, numberOfComponents);
        vsmul(imagData, 1, &scale, imagP, 1, numberOfComponents);

        // If fewer components were provided than 1/2 FFT size, then clear the remaining bins.
        for (i = numberOfComponents; i < halfSize; ++i) {
            realP[i] = 0;
            imagP[i] = 0;
        }
        
        // Generate complex conjugate because of the way the inverse FFT is defined.
        float minusOne = -1;
        vsmul(imagP, 1, &minusOne, imagP, 1, halfSize);

        // Find the starting bin where we should start culling.
        // We need to clear out the highest frequencies to band-limit the waveform.
        unsigned numberOfPartials = numberOfPartialsForRange(rangeIndex);

        // Cull the aliasing partials for this pitch range.
        for (i = numberOfPartials + 1; i < halfSize; ++i) {
            realP[i] = 0;
            imagP[i] = 0;
        }
        // Clear packed-nyquist if necessary.
        if (numberOfPartials < halfSize)
            imagP[0] = 0;

        // Clear any DC-offset.
        realP[0] = 0;

        // Create the band-limited table.
        m_bandLimitedTables.append(std::make_unique<AudioFloatArray>(m_periodicWaveSize));

        // Apply an inverse FFT to generate the time-domain table data.
        float* data = m_bandLimitedTables[rangeIndex]->data();
        frame.doInverseFFT(data);

        // For the first range (which has the highest power), calculate its peak value then compute normalization scale.
        if (!rangeIndex) {
            float maxValue;
            vmaxmgv(data, 1, &maxValue, m_periodicWaveSize);

            if (maxValue)
                normalizationScale = 1.0f / maxValue;
        }

        // Apply normalization scale.
        vsmul(data, 1, &normalizationScale, data, 1, m_periodicWaveSize);          
    }
}

void PeriodicWave::generateBasicWaveform(int shape)
{
    unsigned fftSize = periodicWaveSize();
    unsigned halfSize = fftSize / 2;

    AudioFloatArray real(halfSize);
    AudioFloatArray imag(halfSize);
    float* realP = real.data();
    float* imagP = imag.data();

    // Clear DC and Nyquist.
    realP[0] = 0;
    imagP[0] = 0;

    for (unsigned n = 1; n < halfSize; ++n) {
        float omega = 2 * piFloat * n;
        float invOmega = 1 / omega;

        // Fourier coefficients according to standard definition.
        float a; // Coefficient for cos().
        float b; // Coefficient for sin().

        // Calculate Fourier coefficients depending on the shape.
        // Note that the overall scaling (magnitude) of the waveforms is normalized in createBandLimitedTables().
        switch (shape) {
        case OscillatorNode::SINE:
            // Standard sine wave function.
            a = 0;
            b = (n == 1) ? 1 : 0;
            break;
        case OscillatorNode::SQUARE:
            // Square-shaped waveform with the first half its maximum value and the second half its minimum value.
            a = 0;
            b = invOmega * ((n & 1) ? 2 : 0);
            break;
        case OscillatorNode::SAWTOOTH:
            // Sawtooth-shaped waveform with the first half ramping from zero to maximum and the second half from minimum to zero.
            a = 0;
            b = -invOmega * cos(0.5 * omega);
            break;
        case OscillatorNode::TRIANGLE:
            // Triangle-shaped waveform going from its maximum value to its minimum value then back to the maximum value.
            a = (4 - 4 * cos(0.5 * omega)) / (n * n * piFloat * piFloat);
            b = 0;
            break;
        default:
            ASSERT_NOT_REACHED();
            a = 0;
            b = 0;
            break;
        }

        realP[n] = a;
        imagP[n] = b;
    }

    createBandLimitedTables(realP, imagP, halfSize);
}

} // namespace WebCore

#endif // ENABLE(WEB_AUDIO)