1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
|
/*
* Copyright © 2011 Intel Corporation
* Copyright © 2012 Collabora, Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "config.h"
#include <assert.h>
#include <float.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <wayland-server.h>
#include <libweston/matrix.h>
/*
* Matrices are stored in column-major order, that is the array indices are:
* 0 4 8 12
* 1 5 9 13
* 2 6 10 14
* 3 7 11 15
*/
WL_EXPORT void
weston_matrix_init(struct weston_matrix *matrix)
{
static const struct weston_matrix identity = {
.d = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 },
.type = 0,
};
memcpy(matrix, &identity, sizeof identity);
}
/* m <- n * m, that is, m is multiplied on the LEFT. */
WL_EXPORT void
weston_matrix_multiply(struct weston_matrix *m, const struct weston_matrix *n)
{
struct weston_matrix tmp;
const float *row, *column;
int i, j, k;
for (i = 0; i < 4; i++) {
row = m->d + i * 4;
for (j = 0; j < 4; j++) {
tmp.d[4 * i + j] = 0;
column = n->d + j;
for (k = 0; k < 4; k++)
tmp.d[4 * i + j] += row[k] * column[k * 4];
}
}
tmp.type = m->type | n->type;
memcpy(m, &tmp, sizeof tmp);
}
WL_EXPORT void
weston_matrix_translate(struct weston_matrix *matrix, float x, float y, float z)
{
struct weston_matrix translate = {
.d = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, x, y, z, 1 },
.type = WESTON_MATRIX_TRANSFORM_TRANSLATE,
};
weston_matrix_multiply(matrix, &translate);
}
WL_EXPORT void
weston_matrix_scale(struct weston_matrix *matrix, float x, float y,float z)
{
struct weston_matrix scale = {
.d = { x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 },
.type = WESTON_MATRIX_TRANSFORM_SCALE,
};
weston_matrix_multiply(matrix, &scale);
}
WL_EXPORT void
weston_matrix_rotate_xy(struct weston_matrix *matrix, float cos, float sin)
{
struct weston_matrix translate = {
.d = { cos, sin, 0, 0, -sin, cos, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 },
.type = WESTON_MATRIX_TRANSFORM_ROTATE,
};
weston_matrix_multiply(matrix, &translate);
}
/* v <- m * v */
WL_EXPORT void
weston_matrix_transform(const struct weston_matrix *matrix,
struct weston_vector *v)
{
int i, j;
struct weston_vector t;
for (i = 0; i < 4; i++) {
t.f[i] = 0;
for (j = 0; j < 4; j++)
t.f[i] += v->f[j] * matrix->d[i + j * 4];
}
*v = t;
}
WL_EXPORT struct weston_coord
weston_matrix_transform_coord(const struct weston_matrix *matrix,
struct weston_coord c)
{
struct weston_coord out;
struct weston_vector t = { { c.x, c.y, 0.0, 1.0 } };
weston_matrix_transform(matrix, &t);
assert(fabsf(t.f[3]) > 1e-6);
out.x = t.f[0] / t.f[3];
out.y = t.f[1] / t.f[3];
return out;
}
static inline void
swap_rows(double *a, double *b)
{
unsigned k;
double tmp;
for (k = 0; k < 13; k += 4) {
tmp = a[k];
a[k] = b[k];
b[k] = tmp;
}
}
static inline void
swap_unsigned(unsigned *a, unsigned *b)
{
unsigned tmp;
tmp = *a;
*a = *b;
*b = tmp;
}
static inline unsigned
find_pivot(double *column, unsigned k)
{
unsigned p = k;
for (++k; k < 4; ++k)
if (fabs(column[p]) < fabs(column[k]))
p = k;
return p;
}
/*
* reference: Gene H. Golub and Charles F. van Loan. Matrix computations.
* 3rd ed. The Johns Hopkins University Press. 1996.
* LU decomposition, forward and back substitution: Chapter 3.
*/
static int
matrix_invert(double *A, unsigned *p, const struct weston_matrix *matrix)
{
unsigned i, j, k;
unsigned pivot;
double pv;
for (i = 0; i < 4; ++i)
p[i] = i;
for (i = 16; i--; )
A[i] = matrix->d[i];
/* LU decomposition with partial pivoting */
for (k = 0; k < 4; ++k) {
pivot = find_pivot(&A[k * 4], k);
if (pivot != k) {
swap_unsigned(&p[k], &p[pivot]);
swap_rows(&A[k], &A[pivot]);
}
pv = A[k * 4 + k];
if (fabs(pv) < 1e-9)
return -1; /* zero pivot, not invertible */
for (i = k + 1; i < 4; ++i) {
A[i + k * 4] /= pv;
for (j = k + 1; j < 4; ++j)
A[i + j * 4] -= A[i + k * 4] * A[k + j * 4];
}
}
return 0;
}
static void
inverse_transform(const double *LU, const unsigned *p, float *v)
{
/* Solve A * x = v, when we have P * A = L * U.
* P * A * x = P * v => L * U * x = P * v
* Let U * x = b, then L * b = P * v.
*/
double b[4];
unsigned j;
/* Forward substitution, column version, solves L * b = P * v */
/* The diagonal of L is all ones, and not explicitly stored. */
b[0] = v[p[0]];
b[1] = (double)v[p[1]] - b[0] * LU[1 + 0 * 4];
b[2] = (double)v[p[2]] - b[0] * LU[2 + 0 * 4];
b[3] = (double)v[p[3]] - b[0] * LU[3 + 0 * 4];
b[2] -= b[1] * LU[2 + 1 * 4];
b[3] -= b[1] * LU[3 + 1 * 4];
b[3] -= b[2] * LU[3 + 2 * 4];
/* backward substitution, column version, solves U * y = b */
#if 1
/* hand-unrolled, 25% faster for whole function */
b[3] /= LU[3 + 3 * 4];
b[0] -= b[3] * LU[0 + 3 * 4];
b[1] -= b[3] * LU[1 + 3 * 4];
b[2] -= b[3] * LU[2 + 3 * 4];
b[2] /= LU[2 + 2 * 4];
b[0] -= b[2] * LU[0 + 2 * 4];
b[1] -= b[2] * LU[1 + 2 * 4];
b[1] /= LU[1 + 1 * 4];
b[0] -= b[1] * LU[0 + 1 * 4];
b[0] /= LU[0 + 0 * 4];
#else
for (j = 3; j > 0; --j) {
unsigned k;
b[j] /= LU[j + j * 4];
for (k = 0; k < j; ++k)
b[k] -= b[j] * LU[k + j * 4];
}
b[0] /= LU[0 + 0 * 4];
#endif
/* the result */
for (j = 0; j < 4; ++j)
v[j] = b[j];
}
WL_EXPORT int
weston_matrix_invert(struct weston_matrix *inverse,
const struct weston_matrix *matrix)
{
double LU[16]; /* column-major */
unsigned perm[4]; /* permutation */
unsigned c;
if (matrix_invert(LU, perm, matrix) < 0)
return -1;
weston_matrix_init(inverse);
for (c = 0; c < 4; ++c)
inverse_transform(LU, perm, &inverse->d[c * 4]);
inverse->type = matrix->type;
return 0;
}
static bool
near_zero(float a)
{
if (fabs(a) > 0.00001)
return false;
return true;
}
static float
get_el(const struct weston_matrix *matrix, int row, int col)
{
assert(row >= 0 && row <= 3);
assert(col >= 0 && col <= 3);
return matrix->d[col * 4 + row];
}
static bool
near_zero_at(const struct weston_matrix *matrix, int row, int col)
{
return near_zero(get_el(matrix, row, col));
}
static bool
near_one_at(const struct weston_matrix *matrix, int row, int col)
{
return near_zero(get_el(matrix, row, col) - 1.0);
}
static bool
near_pm_one_at(const struct weston_matrix *matrix, int row, int col)
{
return near_zero(fabs(get_el(matrix, row, col)) - 1.0);
}
static bool
near_int_at(const struct weston_matrix *matrix, int row, int col)
{
float el = get_el(matrix, row, col);
return near_zero(roundf(el) - el);
}
/* Lazy decompose the matrix to figure out whether its operations will
* cause an image to look ugly without some kind of filtering.
*
* while this is a 3D transformation matrix, we only concern ourselves
* with 2D for this test. We do use some small rounding to try to catch
* sequences of operations that lead back to a matrix that doesn't
* require filters.
*
* We assume the matrix won't be used to transform a vector with w != 1.0
*
* Filtering will be necessary when:
* a non-integral translation is applied
* non-affine (perspective) translation is in use
* any scaling (other than -1) is in use
* a rotation that isn't a multiple of 90 degrees about Z is present
*/
WL_EXPORT bool
weston_matrix_needs_filtering(const struct weston_matrix *matrix)
{
/* check for non-integral X/Y translation - ignore Z */
if (!near_int_at(matrix, 0, 3) ||
!near_int_at(matrix, 1, 3))
return true;
/* Any transform matrix that matches this will be non-affine. */
if (!near_zero_at(matrix, 3, 0) ||
!near_zero_at(matrix, 3, 1) ||
!near_zero_at(matrix, 3, 2) ||
!near_pm_one_at(matrix, 3, 3))
return true;
/* Check for anything that could come from a rotation that isn't
* around the Z axis:
* [ ? ? 0 ? ]
* [ ? ? 0 ? ]
* [ 0 0 ±1 ? ]
* [ ? ? ? 1 ]
* It's not clear that we'd realistically see a -1 in [2][2], but
* it wouldn't require filtering if we did, so allow it.
*/
if (!near_zero_at(matrix, 0, 2) ||
!near_zero_at(matrix, 1, 2) ||
!near_zero_at(matrix, 2, 0) ||
!near_zero_at(matrix, 2, 1) ||
!near_pm_one_at(matrix, 2, 2))
return true;
/* We've culled the low hanging fruit, now let's match the only
* matrices left we don't have to filter, before defaulting to
* filtering.
*
* These are a combination of testing rotation and scaling at once: */
if (near_pm_one_at(matrix, 0, 0)) {
/* This could be a multiple of 90 degree rotation about Z,
* possibly with a flip, if the matrix is of the form:
* [ ±1 0 0 ? ]
* [ 0 ±1 0 ? ]
* [ 0 0 1 ? ]
* [ 0 0 0 1 ]
* Forcing ±1 excludes non-unity scale.
*/
if (near_zero_at(matrix, 1, 0) &&
near_zero_at(matrix, 0, 1) &&
near_pm_one_at(matrix, 1, 1))
return false;
}
if (near_zero_at(matrix, 0, 0)) {
/* This could be a multiple of 90 degree rotation about Z,
* possibly with a flip, if the matrix is of the form:
* [ 0 ±1 0 ? ]
* [ ±1 0 0 ? ]
* [ 0 0 1 ? ]
* [ 0 0 0 1 ]
* Forcing ±1 excludes non-unity scale.
*/
if (near_zero_at(matrix, 1, 1) &&
near_pm_one_at(matrix, 1, 0) &&
near_pm_one_at(matrix, 0, 1))
return false;
}
/* The matrix wasn't "simple" enough to classify with dumb
* heuristics, so recommend filtering */
return true;
}
/** Examine a matrix to see if it applies a standard output transform.
*
* \param mat matrix to examine
* \param[out] transform the transform, if applicable
* \return true if a standard transform is present
* Note that the check only considers rotations and flips.
* If any other scale or translation is present, those may have to
* be dealt with by the caller in some way.
*/
WL_EXPORT bool
weston_matrix_to_transform(const struct weston_matrix *mat,
enum wl_output_transform *transform)
{
/* As a first pass we can eliminate any matrix that doesn't have
* zeroes in these positions:
* [ ? ? 0 ? ]
* [ ? ? 0 ? ]
* [ 0 0 ? ? ]
* [ 0 0 0 ? ]
* As they will be non-affine, or rotations about axes
* other than Z.
*/
if (!near_zero_at(mat, 2, 0) ||
!near_zero_at(mat, 3, 0) ||
!near_zero_at(mat, 2, 1) ||
!near_zero_at(mat, 3, 1) ||
!near_zero_at(mat, 0, 2) ||
!near_zero_at(mat, 1, 2) ||
!near_zero_at(mat, 3, 2))
return false;
/* Enforce the form:
* [ ? ? 0 ? ]
* [ ? ? 0 ? ]
* [ 0 0 ? ? ]
* [ 0 0 0 1 ]
* While we could scale all the elements by a constant to make
* 3,3 == 1, we choose to be lazy and not bother. A matrix
* that doesn't fit this form seems likely to be too complicated
* to pass the other checks.
*/
if (!near_one_at(mat, 3, 3))
return false;
if (near_zero_at(mat, 0, 0)) {
if (!near_zero_at(mat, 1, 1))
return false;
/* We now have a matrix like:
* [ 0 A 0 ? ]
* [ B 0 0 ? ]
* [ 0 0 ? ? ]
* [ 0 0 0 1 ]
* When transforming a vector with a matrix of this form, the X
* and Y coordinates are effectively exchanged, so we have a
* 90 or 270 degree rotation (not 0 or 180), and could have
* a flip depending on the signs of A and B.
*
* We don't require A and B to have the same absolute value,
* so there may be independent scales in the X or Y dimensions.
*/
if (get_el(mat, 0, 1) > 0) {
/* A is positive */
if (get_el(mat, 1, 0) > 0)
*transform = WL_OUTPUT_TRANSFORM_FLIPPED_90;
else
*transform = WL_OUTPUT_TRANSFORM_90;
} else {
/* A is negative */
if (get_el(mat, 1, 0) > 0)
*transform = WL_OUTPUT_TRANSFORM_270;
else
*transform = WL_OUTPUT_TRANSFORM_FLIPPED_270;
}
} else if (near_zero_at(mat, 1, 0)) {
if (!near_zero_at(mat, 0, 1))
return false;
/* We now have a matrix like:
* [ A 0 0 ? ]
* [ 0 B 0 ? ]
* [ 0 0 ? ? ]
* [ 0 0 0 1 ]
* This case won't exchange the X and Y inputs, so the
* transform is 0 or 180 degrees. We could have a flip
* depending on the signs of A and B.
*
* We don't require A and B to have the same absolute value,
* so there may be independent scales in the X or Y dimensions.
*/
if (get_el(mat, 0, 0) > 0) {
/* A is positive */
if (get_el(mat, 1, 1) > 0)
*transform = WL_OUTPUT_TRANSFORM_NORMAL;
else
*transform = WL_OUTPUT_TRANSFORM_FLIPPED_180;
} else {
/* A is negative */
if (get_el(mat, 1, 1) > 0)
*transform = WL_OUTPUT_TRANSFORM_FLIPPED;
else
*transform = WL_OUTPUT_TRANSFORM_180;
}
} else {
return false;
}
return true;
}
WL_EXPORT void
weston_matrix_init_transform(struct weston_matrix *matrix,
enum wl_output_transform transform,
int x, int y, int width, int height,
int scale)
{
weston_matrix_init(matrix);
weston_matrix_translate(matrix, -x, -y, 0);
switch (transform) {
case WL_OUTPUT_TRANSFORM_FLIPPED:
case WL_OUTPUT_TRANSFORM_FLIPPED_90:
case WL_OUTPUT_TRANSFORM_FLIPPED_180:
case WL_OUTPUT_TRANSFORM_FLIPPED_270:
weston_matrix_scale(matrix, -1, 1, 1);
weston_matrix_translate(matrix, width, 0, 0);
break;
default:
break;
}
switch (transform) {
default:
case WL_OUTPUT_TRANSFORM_NORMAL:
case WL_OUTPUT_TRANSFORM_FLIPPED:
break;
case WL_OUTPUT_TRANSFORM_90:
case WL_OUTPUT_TRANSFORM_FLIPPED_90:
weston_matrix_rotate_xy(matrix, 0, -1);
weston_matrix_translate(matrix, 0, width, 0);
break;
case WL_OUTPUT_TRANSFORM_180:
case WL_OUTPUT_TRANSFORM_FLIPPED_180:
weston_matrix_rotate_xy(matrix, -1, 0);
weston_matrix_translate(matrix,
width, height, 0);
break;
case WL_OUTPUT_TRANSFORM_270:
case WL_OUTPUT_TRANSFORM_FLIPPED_270:
weston_matrix_rotate_xy(matrix, 0, 1);
weston_matrix_translate(matrix, height, 0, 0);
break;
}
weston_matrix_scale(matrix, scale, scale, 1);
}
|