1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
|
/**************************************************************************/
/* */
/* OCaml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. */
/* */
/* All rights reserved. This file is distributed under the terms of */
/* the GNU Lesser General Public License version 2.1, with the */
/* special exception on linking described in the file LICENSE. */
/* */
/**************************************************************************/
#define CAML_INTERNALS
/* Operations on arrays */
#include <string.h>
#include "caml/alloc.h"
#include "caml/fail.h"
#include "caml/memory.h"
#include "caml/misc.h"
#include "caml/mlvalues.h"
#include "caml/signals.h"
#include "caml/runtime_events.h"
static const mlsize_t mlsize_t_max = -1;
/* returns number of elements (either fields or floats) */
/* [ 'a array -> int ] */
CAMLexport mlsize_t caml_array_length(value array)
{
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(array) == Double_array_tag)
return Wosize_val(array) / Double_wosize;
else
#endif
return Wosize_val(array);
}
CAMLexport int caml_is_double_array(value array)
{
return (Tag_val(array) == Double_array_tag);
}
/* Note: the OCaml types on the following primitives will work both with
and without the -no-flat-float-array configure-time option. If you
respect them, your C code should work in both configurations.
*/
/* [ 'a array -> int -> 'a ] where 'a != float */
CAMLprim value caml_array_get_addr(value array, value index)
{
intnat idx = Long_val(index);
if (idx < 0 || idx >= Wosize_val(array)) caml_array_bound_error();
return Field(array, idx);
}
/* [ floatarray -> int -> float ] */
CAMLprim value caml_floatarray_get(value array, value index)
{
intnat idx = Long_val(index);
double d;
value res;
CAMLassert (Tag_val(array) == Double_array_tag);
if (idx < 0 || idx >= Wosize_val(array) / Double_wosize)
caml_array_bound_error();
d = Double_flat_field(array, idx);
Alloc_small(res, Double_wosize, Double_tag, Alloc_small_enter_GC);
Store_double_val(res, d);
return res;
}
/* [ 'a array -> int -> 'a ] */
CAMLprim value caml_array_get(value array, value index)
{
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(array) == Double_array_tag)
return caml_floatarray_get(array, index);
#else
CAMLassert (Tag_val(array) != Double_array_tag);
#endif
return caml_array_get_addr(array, index);
}
/* [ 'a array -> int -> 'a -> unit ] where 'a != float */
CAMLprim value caml_array_set_addr(value array, value index, value newval)
{
intnat idx = Long_val(index);
if (idx < 0 || idx >= Wosize_val(array)) caml_array_bound_error();
caml_modify(&Field(array, idx), newval);
return Val_unit;
}
/* [ floatarray -> int -> float -> unit ] */
CAMLprim value caml_floatarray_set(value array, value index, value newval)
{
intnat idx = Long_val(index);
double d = Double_val (newval);
CAMLassert (Tag_val(array) == Double_array_tag);
if (idx < 0 || idx >= Wosize_val(array) / Double_wosize)
caml_array_bound_error();
Store_double_flat_field(array, idx, d);
return Val_unit;
}
/* [ 'a array -> int -> 'a -> unit ] */
CAMLprim value caml_array_set(value array, value index, value newval)
{
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(array) == Double_array_tag)
return caml_floatarray_set(array, index, newval);
#else
CAMLassert (Tag_val(array) != Double_array_tag);
#endif
return caml_array_set_addr(array, index, newval);
}
/* [ floatarray -> int -> float ] */
CAMLprim value caml_floatarray_unsafe_get(value array, value index)
{
intnat idx = Long_val(index);
double d;
value res;
CAMLassert (Tag_val(array) == Double_array_tag);
d = Double_flat_field(array, idx);
Alloc_small(res, Double_wosize, Double_tag, Alloc_small_enter_GC);
Store_double_val(res, d);
return res;
}
/* [ 'a array -> int -> 'a ] */
CAMLprim value caml_array_unsafe_get(value array, value index)
{
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(array) == Double_array_tag)
return caml_floatarray_unsafe_get(array, index);
#else
CAMLassert (Tag_val(array) != Double_array_tag);
#endif
return Field(array, Long_val(index));
}
/* [ 'a array -> int -> 'a -> unit ] where 'a != float */
static value caml_array_unsafe_set_addr(value array, value index,value newval)
{
intnat idx = Long_val(index);
caml_modify(&Field(array, idx), newval);
return Val_unit;
}
/* [ floatarray -> int -> float -> unit ] */
/* [MM]: [caml_array_unsafe_set_addr] has a fence for enforcing the OCaml
memory model through its use of [caml_modify].
[MM] [TODO]: [caml_floatarray_unsafe_set] will also need a similar fence in
[Store_double_flat_field]. */
CAMLprim value caml_floatarray_unsafe_set(value array, value index,value newval)
{
intnat idx = Long_val(index);
double d = Double_val (newval);
Store_double_flat_field(array, idx, d);
return Val_unit;
}
/* [ 'a array -> int -> 'a -> unit ] */
CAMLprim value caml_array_unsafe_set(value array, value index, value newval)
{
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(array) == Double_array_tag)
return caml_floatarray_unsafe_set(array, index, newval);
#else
CAMLassert (Tag_val(array) != Double_array_tag);
#endif
return caml_array_unsafe_set_addr(array, index, newval);
}
/* [len] is a [value] representing number of floats. */
/* [ int -> floatarray ] */
CAMLprim value caml_floatarray_create(value len)
{
mlsize_t wosize = Long_val(len) * Double_wosize;
value result;
if (wosize <= Max_young_wosize){
if (wosize == 0)
return Atom(0);
else
Alloc_small (result, wosize, Double_array_tag, Alloc_small_enter_GC);
}else if (wosize > Max_wosize)
caml_invalid_argument("Float.Array.create");
else {
result = caml_alloc_shr (wosize, Double_array_tag);
}
/* Give the GC a chance to run, and run memprof callbacks */
return caml_process_pending_actions_with_root(result);
}
/* [len] is a [value] representing number of words or floats */
CAMLprim value caml_make_vect(value len, value init)
{
CAMLparam2 (len, init);
CAMLlocal1 (res);
mlsize_t size, i;
size = Long_val(len);
if (size == 0) {
res = Atom(0);
#ifdef FLAT_FLOAT_ARRAY
} else if (Is_block(init)
&& Tag_val(init) == Double_tag) {
mlsize_t wsize;
double d;
d = Double_val(init);
wsize = size * Double_wosize;
if (wsize > Max_wosize) caml_invalid_argument("Array.make");
res = caml_alloc(wsize, Double_array_tag);
for (i = 0; i < size; i++) {
Store_double_flat_field(res, i, d);
}
#endif
} else {
if (size <= Max_young_wosize) {
res = caml_alloc_small(size, 0);
for (i = 0; i < size; i++) Field(res, i) = init;
}
else if (size > Max_wosize) caml_invalid_argument("Array.make");
else {
if (Is_block(init) && Is_young(init)) {
/* We don't want to create so many major-to-minor references,
so [init] is moved to the major heap by doing a minor GC. */
CAML_EV_COUNTER (EV_C_FORCE_MINOR_MAKE_VECT, 1);
caml_minor_collection ();
}
CAMLassert(!(Is_block(init) && Is_young(init)));
res = caml_alloc_shr(size, 0);
/* We now know that [init] is not in the minor heap, so there is
no need to call [caml_initialize]. */
for (i = 0; i < size; i++) Field(res, i) = init;
}
}
/* Give the GC a chance to run, and run memprof callbacks */
caml_process_pending_actions ();
CAMLreturn (res);
}
/* [len] is a [value] representing number of floats */
/* [ int -> float array ] */
CAMLprim value caml_make_float_vect(value len)
{
#ifdef FLAT_FLOAT_ARRAY
return caml_floatarray_create (len);
#else
/* A signaling NaN, statically allocated */
static uintnat some_float_contents[] = {
Caml_out_of_heap_header(Double_wosize, Double_tag),
#if defined(ARCH_SIXTYFOUR)
0x7FF0000000000001
#elif defined(ARCH_BIG_ENDIAN)
0x7FF00000, 0x00000001,
#else
0x00000001, 0x7FF00000
#endif
};
value some_float = Val_hp(some_float_contents);
return caml_make_vect (len, some_float);
#endif
}
/* This primitive is used internally by the compiler to compile
explicit array expressions.
For float arrays when FLAT_FLOAT_ARRAY is true, it takes an array of
boxed floats and returns the corresponding flat-allocated [float array].
In all other cases, it just returns its argument unchanged.
*/
CAMLprim value caml_make_array(value init)
{
#ifdef FLAT_FLOAT_ARRAY
CAMLparam1 (init);
mlsize_t wsize, size, i;
CAMLlocal2 (v, res);
size = Wosize_val(init);
if (size == 0) {
CAMLreturn (init);
} else {
v = Field(init, 0);
if (Is_long(v)
|| Tag_val(v) != Double_tag) {
CAMLreturn (init);
} else {
wsize = size * Double_wosize;
if (wsize <= Max_young_wosize) {
res = caml_alloc_small(wsize, Double_array_tag);
} else {
res = caml_alloc_shr(wsize, Double_array_tag);
}
for (i = 0; i < size; i++) {
double d = Double_val(Field(init, i));
Store_double_flat_field(res, i, d);
}
/* run memprof callbacks */
caml_process_pending_actions();
CAMLreturn (res);
}
}
#else
return init;
#endif
}
/* Blitting */
/* [wo_memmove] copies [nvals] values from [src] to [dst]. If there is a single
domain running, then we use [memmove]. Otherwise, we copy one word at a
time.
Since the [memmove] implementation does not guarantee that the writes are
always word-sized, we explicitly perform word-sized writes of the release
kind to avoid mixed-mode accesses. Performing release writes should be
sufficient to prevent smart compilers from coalesing the writes into vector
writes, and hence prevent mixed-mode accesses. [MM].
*/
static void wo_memmove (volatile value* const dst,
volatile const value* const src,
mlsize_t nvals)
{
mlsize_t i;
if (caml_domain_alone ()) {
memmove ((value*)dst, (value*)src, nvals * sizeof (value));
} else {
/* See memory model [MM] notes in memory.c */
atomic_thread_fence(memory_order_acquire);
if (dst < src) {
/* copy ascending */
for (i = 0; i < nvals; i++)
atomic_store_release(&((atomic_value*)dst)[i], src[i]);
} else {
/* copy descending */
for (i = nvals; i > 0; i--)
atomic_store_release(&((atomic_value*)dst)[i-1], src[i-1]);
}
}
}
/* [MM] [TODO]: Not consistent with the memory model. See the discussion in
https://github.com/ocaml-multicore/ocaml-multicore/pull/822. */
CAMLprim value caml_floatarray_blit(value a1, value ofs1, value a2, value ofs2,
value n)
{
/* See memory model [MM] notes in memory.c */
atomic_thread_fence(memory_order_acquire);
memmove((double *)a2 + Long_val(ofs2),
(double *)a1 + Long_val(ofs1),
Long_val(n) * sizeof(double));
return Val_unit;
}
CAMLprim value caml_array_blit(value a1, value ofs1, value a2, value ofs2,
value n)
{
volatile value * src, * dst;
intnat count;
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(a2) == Double_array_tag)
return caml_floatarray_blit(a1, ofs1, a2, ofs2, n);
#endif
CAMLassert (Tag_val(a2) != Double_array_tag);
if (Is_young(a2)) {
/* Arrays of values, destination is in young generation.
Here too we can do a direct copy since this cannot create
old-to-young pointers, nor mess up with the incremental major GC.
Again, wo_memmove takes care of overlap. */
wo_memmove(&Field(a2, Long_val(ofs2)),
&Field(a1, Long_val(ofs1)),
Long_val(n));
return Val_unit;
}
/* Array of values, destination is in old generation.
We must use caml_modify. */
count = Long_val(n);
if (a1 == a2 && Long_val(ofs1) < Long_val(ofs2)) {
/* Copy in descending order */
for (dst = &Field(a2, Long_val(ofs2) + count - 1),
src = &Field(a1, Long_val(ofs1) + count - 1);
count > 0;
count--, src--, dst--) {
caml_modify(dst, *src);
}
} else {
/* Copy in ascending order */
for (dst = &Field(a2, Long_val(ofs2)), src = &Field(a1, Long_val(ofs1));
count > 0;
count--, src++, dst++) {
caml_modify(dst, *src);
}
}
/* Many caml_modify in a row can create a lot of old-to-young refs.
Give the minor GC a chance to run if it needs to. */
caml_check_urgent_gc(Val_unit);
return Val_unit;
}
/* A generic function for extraction and concatenation of sub-arrays */
static value caml_array_gather(intnat num_arrays,
value arrays[/*num_arrays*/],
intnat offsets[/*num_arrays*/],
intnat lengths[/*num_arrays*/])
{
CAMLparamN(arrays, num_arrays);
value res; /* no need to register it as a root */
#ifdef FLAT_FLOAT_ARRAY
int isfloat = 0;
mlsize_t wsize;
#endif
mlsize_t i, size, count, pos;
volatile value * src;
/* Determine total size and whether result array is an array of floats */
size = 0;
for (i = 0; i < num_arrays; i++) {
if (mlsize_t_max - lengths[i] < size) caml_invalid_argument("Array.concat");
size += lengths[i];
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(arrays[i]) == Double_array_tag) isfloat = 1;
#endif
}
if (size == 0) {
/* If total size = 0, just return empty array */
res = Atom(0);
}
#ifdef FLAT_FLOAT_ARRAY
else if (isfloat) {
/* This is an array of floats. We can use memcpy directly. */
if (size > Max_wosize/Double_wosize) caml_invalid_argument("Array.concat");
wsize = size * Double_wosize;
res = caml_alloc(wsize, Double_array_tag);
for (i = 0, pos = 0; i < num_arrays; i++) {
/* [res] is freshly allocated, and no other domain has a reference to it.
Hence, a plain [memcpy] is sufficient. */
memcpy((double *)res + pos,
(double *)arrays[i] + offsets[i],
lengths[i] * sizeof(double));
pos += lengths[i];
}
CAMLassert(pos == size);
}
#endif
else if (size <= Max_young_wosize) {
/* Array of values, small enough to fit in young generation.
We can use memcpy directly. */
res = caml_alloc_small(size, 0);
for (i = 0, pos = 0; i < num_arrays; i++) {
/* [res] is freshly allocated, and no other domain has a reference to it.
Hence, a plain [memcpy] is sufficient. */
memcpy((value*)&Field(res, pos),
(value*)&Field(arrays[i], offsets[i]),
lengths[i] * sizeof(value));
pos += lengths[i];
}
CAMLassert(pos == size);
}
else if (size > Max_wosize) {
/* Array of values, too big. */
caml_invalid_argument("Array.concat");
} else {
/* Array of values, must be allocated in old generation and filled
using caml_initialize. */
res = caml_alloc_shr(size, 0);
for (i = 0, pos = 0; i < num_arrays; i++) {
for (src = &Field(arrays[i], offsets[i]), count = lengths[i];
count > 0;
count--, src++, pos++) {
caml_initialize(&Field(res, pos), *src);
}
}
CAMLassert(pos == size);
/* Many caml_initialize in a row can create a lot of old-to-young
refs. Give the minor GC a chance to run if it needs to.
Run memprof callbacks for the major allocation. */
res = caml_process_pending_actions_with_root (res);
}
CAMLreturn (res);
}
CAMLprim value caml_array_sub(value a, value ofs, value len)
{
value arrays[1] = { a };
intnat offsets[1] = { Long_val(ofs) };
intnat lengths[1] = { Long_val(len) };
return caml_array_gather(1, arrays, offsets, lengths);
}
CAMLprim value caml_array_append(value a1, value a2)
{
value arrays[2] = { a1, a2 };
intnat offsets[2] = { 0, 0 };
intnat lengths[2] = { caml_array_length(a1), caml_array_length(a2) };
return caml_array_gather(2, arrays, offsets, lengths);
}
CAMLprim value caml_array_concat(value al)
{
#define STATIC_SIZE 16
value static_arrays[STATIC_SIZE], * arrays;
intnat static_offsets[STATIC_SIZE], * offsets;
intnat static_lengths[STATIC_SIZE], * lengths;
intnat n, i;
value l, res;
/* Length of list = number of arrays */
for (n = 0, l = al; l != Val_emptylist; l = Field(l, 1)) n++;
/* Allocate extra storage if too many arrays */
if (n <= STATIC_SIZE) {
arrays = static_arrays;
offsets = static_offsets;
lengths = static_lengths;
} else {
arrays = caml_stat_alloc(n * sizeof(value));
offsets = caml_stat_alloc_noexc(n * sizeof(intnat));
if (offsets == NULL) {
caml_stat_free(arrays);
caml_raise_out_of_memory();
}
lengths = caml_stat_alloc_noexc(n * sizeof(value));
if (lengths == NULL) {
caml_stat_free(offsets);
caml_stat_free(arrays);
caml_raise_out_of_memory();
}
}
/* Build the parameters to caml_array_gather */
for (i = 0, l = al; l != Val_emptylist; l = Field(l, 1), i++) {
arrays[i] = Field(l, 0);
offsets[i] = 0;
lengths[i] = caml_array_length(Field(l, 0));
}
/* Do the concatenation */
res = caml_array_gather(n, arrays, offsets, lengths);
/* Free the extra storage if needed */
if (n > STATIC_SIZE) {
caml_stat_free(arrays);
caml_stat_free(offsets);
caml_stat_free(lengths);
}
return res;
}
CAMLprim value caml_array_fill(value array,
value v_ofs,
value v_len,
value val)
{
intnat ofs = Long_val(v_ofs);
intnat len = Long_val(v_len);
volatile value* fp;
/* This duplicates the logic of caml_modify. Please refer to the
implementation of that function for a description of GC
invariants we need to enforce.*/
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(array) == Double_array_tag) {
double d = Double_val (val);
for (; len > 0; len--, ofs++)
Store_double_flat_field(array, ofs, d);
return Val_unit;
}
#endif
fp = &Field(array, ofs);
if (Is_young(array)) {
for (; len > 0; len--, fp++) *fp = val;
} else {
int is_val_young_block = Is_block(val) && Is_young(val);
for (; len > 0; len--, fp++) {
value old = *fp;
if (old == val) continue;
*fp = val;
if (Is_block(old)) {
if (Is_young(old)) continue;
caml_darken(Caml_state, old, NULL);
}
if (is_val_young_block)
Ref_table_add(&Caml_state->minor_tables->major_ref, fp);
}
if (is_val_young_block) caml_check_urgent_gc (Val_unit);
}
return Val_unit;
}
|