summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMatti Picus <matti.picus@gmail.com>2023-03-26 08:44:02 +0300
committerGitHub <noreply@github.com>2023-03-26 08:44:02 +0300
commit1915e33df68ea3367fee8026f017178a3cf425c6 (patch)
treea8e1fac02e6a56cb1b5657c63d44912986243877
parentad09c69fafe5d198fab979e66fe1c13f09ed347d (diff)
parent85a311a79089f72f1ab0dadc3ab8d5cefb799c48 (diff)
downloadnumpy-1915e33df68ea3367fee8026f017178a3cf425c6.tar.gz
Merge pull request #23061 from MatteoRaso/vectorize
ENH: Enabled the use of numpy.vectorize as a decorator
-rw-r--r--doc/release/upcoming_changes/23061.new_feature.rst6
-rw-r--r--numpy/lib/function_base.py65
-rw-r--r--numpy/lib/tests/test_function_base.py55
3 files changed, 115 insertions, 11 deletions
diff --git a/doc/release/upcoming_changes/23061.new_feature.rst b/doc/release/upcoming_changes/23061.new_feature.rst
new file mode 100644
index 000000000..8c28bb2c4
--- /dev/null
+++ b/doc/release/upcoming_changes/23061.new_feature.rst
@@ -0,0 +1,6 @@
+``vectorize`` can now be used as a decorator
+--------------------------------------------
+When using ``vectorize`` as a decorator, the user
+needs to specify the keywords for the arguments.
+``vectorize`` will continue to accept arguments
+positionally when used normally.
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index f0f374f97..5e1309dfd 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -2117,10 +2117,10 @@ def _create_arrays(broadcast_shape, dim_sizes, list_of_core_dims, dtypes,
@set_module('numpy')
class vectorize:
"""
- vectorize(pyfunc, otypes=None, doc=None, excluded=None, cache=False,
- signature=None)
+ vectorize(pyfunc=np._NoValue, otypes=None, doc=None, excluded=None,
+ cache=False, signature=None)
- Generalized function class.
+ Returns an object that acts like pyfunc, but takes arrays as input.
Define a vectorized function which takes a nested sequence of objects or
numpy arrays as inputs and returns a single numpy array or a tuple of numpy
@@ -2134,8 +2134,9 @@ class vectorize:
Parameters
----------
- pyfunc : callable
+ pyfunc : callable, optional
A python function or method.
+ Can be omitted to produce a decorator with keyword arguments.
otypes : str or list of dtypes, optional
The output data type. It must be specified as either a string of
typecode characters or a list of data type specifiers. There should
@@ -2167,8 +2168,9 @@ class vectorize:
Returns
-------
- vectorized : callable
- Vectorized function.
+ out : callable
+ A vectorized function if ``pyfunc`` was provided,
+ a decorator otherwise.
See Also
--------
@@ -2265,18 +2267,44 @@ class vectorize:
[0., 0., 1., 2., 1., 0.],
[0., 0., 0., 1., 2., 1.]])
+ Decorator syntax is supported. The decorator can be called as
+ a function to provide keyword arguments.
+ >>>@np.vectorize
+ ...def identity(x):
+ ... return x
+ ...
+ >>>identity([0, 1, 2])
+ array([0, 1, 2])
+ >>>@np.vectorize(otypes=[float])
+ ...def as_float(x):
+ ... return x
+ ...
+ >>>as_float([0, 1, 2])
+ array([0., 1., 2.])
"""
- def __init__(self, pyfunc, otypes=None, doc=None, excluded=None,
- cache=False, signature=None):
+ def __init__(self, pyfunc=np._NoValue, otypes=None, doc=None,
+ excluded=None, cache=False, signature=None):
+
+ if (pyfunc != np._NoValue) and (not callable(pyfunc)):
+ #Splitting the error message to keep
+ #the length below 79 characters.
+ part1 = "When used as a decorator, "
+ part2 = "only accepts keyword arguments."
+ raise TypeError(part1 + part2)
+
self.pyfunc = pyfunc
self.cache = cache
self.signature = signature
- self._ufunc = {} # Caching to improve default performance
+ if pyfunc != np._NoValue:
+ self.__name__ = pyfunc.__name__
+ self._ufunc = {} # Caching to improve default performance
+ self._doc = None
+ self.__doc__ = doc
if doc is None:
self.__doc__ = pyfunc.__doc__
else:
- self.__doc__ = doc
+ self._doc = doc
if isinstance(otypes, str):
for char in otypes:
@@ -2298,7 +2326,15 @@ class vectorize:
else:
self._in_and_out_core_dims = None
- def __call__(self, *args, **kwargs):
+ def _init_stage_2(self, pyfunc, *args, **kwargs):
+ self.__name__ = pyfunc.__name__
+ self.pyfunc = pyfunc
+ if self._doc is None:
+ self.__doc__ = pyfunc.__doc__
+ else:
+ self.__doc__ = self._doc
+
+ def _call_as_normal(self, *args, **kwargs):
"""
Return arrays with the results of `pyfunc` broadcast (vectorized) over
`args` and `kwargs` not in `excluded`.
@@ -2328,6 +2364,13 @@ class vectorize:
return self._vectorize_call(func=func, args=vargs)
+ def __call__(self, *args, **kwargs):
+ if self.pyfunc is np._NoValue:
+ self._init_stage_2(*args, **kwargs)
+ return self
+
+ return self._call_as_normal(*args, **kwargs)
+
def _get_ufunc_and_otypes(self, func, args):
"""Return (ufunc, otypes)."""
# frompyfunc will fail if args is empty
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
index 3ec46735c..97ca13bfb 100644
--- a/numpy/lib/tests/test_function_base.py
+++ b/numpy/lib/tests/test_function_base.py
@@ -1787,6 +1787,61 @@ class TestVectorize:
assert_equal(type(r), subclass)
assert_equal(r, m * v)
+ def test_name(self):
+ #See gh-23021
+ @np.vectorize
+ def f2(a, b):
+ return a + b
+
+ assert f2.__name__ == 'f2'
+
+ def test_decorator(self):
+ @vectorize
+ def addsubtract(a, b):
+ if a > b:
+ return a - b
+ else:
+ return a + b
+
+ r = addsubtract([0, 3, 6, 9], [1, 3, 5, 7])
+ assert_array_equal(r, [1, 6, 1, 2])
+
+ def test_docstring(self):
+ @vectorize
+ def f(x):
+ """Docstring"""
+ return x
+
+ assert f.__doc__ == "Docstring"
+
+ def test_signature_otypes_decorator(self):
+ @vectorize(signature='(n)->(n)', otypes=['float64'])
+ def f(x):
+ return x
+
+ r = f([1, 2, 3])
+ assert_equal(r.dtype, np.dtype('float64'))
+ assert_array_equal(r, [1, 2, 3])
+ assert f.__name__ == 'f'
+
+ def test_bad_input(self):
+ with assert_raises(TypeError):
+ A = np.vectorize(pyfunc = 3)
+
+ def test_no_keywords(self):
+ with assert_raises(TypeError):
+ @np.vectorize("string")
+ def foo():
+ return "bar"
+
+ def test_positional_regression_9477(self):
+ # This supplies the first keyword argument as a positional,
+ # to ensure that they are still properly forwarded after the
+ # enhancement for #9477
+ f = vectorize((lambda x: x), ['float64'])
+ r = f([2])
+ assert_equal(r.dtype, np.dtype('float64'))
+
class TestLeaks:
class A: