diff options
author | Matti Picus <matti.picus@gmail.com> | 2019-11-19 07:44:44 -0700 |
---|---|---|
committer | Charles Harris <charlesr.harris@gmail.com> | 2019-11-19 07:44:44 -0700 |
commit | d6ecf67f88fb61cf641e2370d3e54938232de09d (patch) | |
tree | 08223e6b70fd71d0b11d378ca02f96d56c715d74 | |
parent | 53201578225cc89d383738598acec03572554019 (diff) | |
download | numpy-d6ecf67f88fb61cf641e2370d3e54938232de09d.tar.gz |
API: restructure and document numpy.random C-API (#14604)
* API: restructure and document numpy.random C-API
* DOC: fix bad reference
* API: ship, document, and start to test numpy.random C-API examples
* API, DOC, TST: fix tests, refactor documentation to include snippets
* BUILD: move public headers to numpy/core/include/numpy/random
* TST: ignore DeprecationWarnings in setuptools and numba
* DOC: document the C-API as used from Cython
30 files changed, 377 insertions, 187 deletions
diff --git a/doc/source/reference/random/bit_generators/index.rst b/doc/source/reference/random/bit_generators/index.rst index 94d3d8a3c..315657172 100644 --- a/doc/source/reference/random/bit_generators/index.rst +++ b/doc/source/reference/random/bit_generators/index.rst @@ -19,7 +19,7 @@ The included BitGenerators are: and can be advanced by an arbitrary amount. See the documentation for :meth:`~.PCG64.advance`. PCG-64 has a period of :math:`2^{128}`. See the `PCG author's page`_ for more details about this class of PRNG. -* MT19937 - The standard Python BitGenerator. Adds a `~mt19937.MT19937.jumped` +* MT19937 - The standard Python BitGenerator. Adds a `MT19937.jumped` function that returns a new generator with state as-if :math:`2^{128}` draws have been made. * Philox - A counter-based generator capable of being advanced an diff --git a/doc/source/reference/random/c-api.rst b/doc/source/reference/random/c-api.rst new file mode 100644 index 000000000..3c901f3b4 --- /dev/null +++ b/doc/source/reference/random/c-api.rst @@ -0,0 +1,177 @@ +Cython API for random +--------------------- + +.. currentmodule:: numpy.random + +Typed versions of many of the `Generator` and `BitGenerator` can be accessed +directly from Cython: the complete list is given below. + +The ``_bit_generator`` module is usable via:: + + cimport numpy.random._bit_generator + +It provides function pointers for quickly accessing the next bytes in the +`BitGenerator`:: + + struct bitgen: + void *state + uint64_t (*next_uint64)(void *st) nogil + uint32_t (*next_uint32)(void *st) nogil + double (*next_double)(void *st) nogil + uint64_t (*next_raw)(void *st) nogil + + ctypedef bitgen bitgen_t + +See `extending` for examples of using these functions. + +The ``_generator`` module is usable via:: + + cimport numpy.random._generator + +It provides low-level functions for various distributions. All the functions require a ``bitgen_t`` BitGenerator structure. The functions are named with the followig cconventions: + +- "standard" refers to the reference values for any parameters. For instance + "standard_uniform" means a uniform distribution on the interval ``0.0`` to + ``1.0`` + +- "fill" functions will fill the provided ``out`` with ``cnt`` values. + +- The functions without "standard" in their name require additional parameters + to describe the distributions. + +.. c:function:: double random_standard_uniform(bitgen_t *bitgen_state) + +.. c:function:: void random_standard_uniform_fill(bitgen_t* bitgen_state, np.npy_intp cnt, double *out) + +.. c:function:: double random_standard_exponential(bitgen_t *bitgen_state) + +.. c:function:: void random_standard_exponential_fill(bitgen_t *bitgen_state, np.npy_intp cnt, double *out) + +.. c:function:: double random_standard_exponential_zig(bitgen_t *bitgen_state) + +.. c:function:: void random_standard_exponential_zig_fill(bitgen_t *bitgen_state, np.npy_intp cnt, double *out) + +.. c:function:: double random_standard_normal(bitgen_t* bitgen_state) + +.. c:function:: void random_standard_normal_fill(bitgen_t *bitgen_state, np.npy_intp count, double *out) + +.. c:function:: void random_standard_normal_fill_f(bitgen_t *bitgen_state, np.npy_intp count, float *out) + +.. c:function:: double random_standard_gamma(bitgen_t *bitgen_state, double shape) + +.. c:function:: float random_standard_uniform_f(bitgen_t *bitgen_state) + +.. c:function:: void random_standard_uniform_fill_f(bitgen_t* bitgen_state, np.npy_intp cnt, float *out) + +.. c:function:: float random_standard_exponential_f(bitgen_t *bitgen_state) + +.. c:function:: float random_standard_exponential_zig_f(bitgen_t *bitgen_state) + +.. c:function:: void random_standard_exponential_fill_f(bitgen_t *bitgen_state, np.npy_intp cnt, float *out) + +.. c:function:: void random_standard_exponential_zig_fill_f(bitgen_t *bitgen_state, np.npy_intp cnt, float *out) + +.. c:function:: float random_standard_normal_f(bitgen_t* bitgen_state) + +.. c:function:: float random_standard_gamma_f(bitgen_t *bitgen_state, float shape) + +.. c:function:: double random_normal(bitgen_t *bitgen_state, double loc, double scale) + +.. c:function:: double random_gamma(bitgen_t *bitgen_state, double shape, double scale) + +.. c:function:: float random_gamma_f(bitgen_t *bitgen_state, float shape, float scale) + +.. c:function:: double random_exponential(bitgen_t *bitgen_state, double scale) + +.. c:function:: double random_uniform(bitgen_t *bitgen_state, double lower, double range) +.. c:function:: double random_beta(bitgen_t *bitgen_state, double a, double b) + +.. c:function:: double random_chisquare(bitgen_t *bitgen_state, double df) + +.. c:function:: double random_f(bitgen_t *bitgen_state, double dfnum, double dfden) + +.. c:function:: double random_standard_cauchy(bitgen_t *bitgen_state) + +.. c:function:: double random_pareto(bitgen_t *bitgen_state, double a) + +.. c:function:: double random_weibull(bitgen_t *bitgen_state, double a) + +.. c:function:: double random_power(bitgen_t *bitgen_state, double a) + +.. c:function:: double random_laplace(bitgen_t *bitgen_state, double loc, double scale) + +.. c:function:: double random_gumbel(bitgen_t *bitgen_state, double loc, double scale) + +.. c:function:: double random_logistic(bitgen_t *bitgen_state, double loc, double scale) + +.. c:function:: double random_lognormal(bitgen_t *bitgen_state, double mean, double sigma) + +.. c:function:: double random_rayleigh(bitgen_t *bitgen_state, double mode) + +.. c:function:: double random_standard_t(bitgen_t *bitgen_state, double df) + +.. c:function:: double random_noncentral_chisquare(bitgen_t *bitgen_state, double df, + double nonc) +.. c:function:: double random_noncentral_f(bitgen_t *bitgen_state, double dfnum, + double dfden, double nonc) +.. c:function:: double random_wald(bitgen_t *bitgen_state, double mean, double scale) + +.. c:function:: double random_vonmises(bitgen_t *bitgen_state, double mu, double kappa) + +.. c:function:: double random_triangular(bitgen_t *bitgen_state, double left, double mode, + double right) + +.. c:function:: int64_t random_poisson(bitgen_t *bitgen_state, double lam) + +.. c:function:: int64_t random_negative_binomial(bitgen_t *bitgen_state, double n, double p) + +.. c:function:: int64_t random_binomial(bitgen_t *bitgen_state, double p, int64_t n, binomial_t *binomial) + +.. c:function:: int64_t random_logseries(bitgen_t *bitgen_state, double p) + +.. c:function:: int64_t random_geometric_search(bitgen_t *bitgen_state, double p) + +.. c:function:: int64_t random_geometric_inversion(bitgen_t *bitgen_state, double p) + +.. c:function:: int64_t random_geometric(bitgen_t *bitgen_state, double p) + +.. c:function:: int64_t random_zipf(bitgen_t *bitgen_state, double a) + +.. c:function:: int64_t random_hypergeometric(bitgen_t *bitgen_state, int64_t good, int64_t bad, + int64_t sample) + +.. c:function:: uint64_t random_interval(bitgen_t *bitgen_state, uint64_t max) + +.. c:function:: void random_multinomial(bitgen_t *bitgen_state, int64_t n, int64_t *mnix, + double *pix, np.npy_intp d, binomial_t *binomial) + +.. c:function:: int random_mvhg_count(bitgen_t *bitgen_state, + int64_t total, + size_t num_colors, int64_t *colors, + int64_t nsample, + size_t num_variates, int64_t *variates) + +.. c:function:: void random_mvhg_marginals(bitgen_t *bitgen_state, + int64_t total, + size_t num_colors, int64_t *colors, + int64_t nsample, + size_t num_variates, int64_t *variates) + +Generate a single integer + +.. c:function:: int64_t random_positive_int64(bitgen_t *bitgen_state) + +.. c:function:: int32_t random_positive_int32(bitgen_t *bitgen_state) + +.. c:function:: int64_t random_positive_int(bitgen_t *bitgen_state) + +.. c:function:: uint64_t random_uint(bitgen_t *bitgen_state) + + +Generate random uint64 numbers in closed interval [off, off + rng]. + +.. c:function:: uint64_t random_bounded_uint64(bitgen_t *bitgen_state, + uint64_t off, uint64_t rng, + uint64_t mask, bint use_masked) + + diff --git a/doc/source/reference/random/examples/cython/extending.pyx b/doc/source/reference/random/examples/cython/extending.pyx new file mode 100644 index 000000000..0cfbc146f --- /dev/null +++ b/doc/source/reference/random/examples/cython/extending.pyx @@ -0,0 +1,4 @@ +extending.pyx +------------- + +.. include:: ../../../../../../numpy/random/examples/extending.pyx diff --git a/doc/source/reference/random/examples/cython/extending.pyx.rst b/doc/source/reference/random/examples/cython/extending.pyx.rst new file mode 100644 index 000000000..bc31488d7 --- /dev/null +++ b/doc/source/reference/random/examples/cython/extending.pyx.rst @@ -0,0 +1,5 @@ +extending.pyx +------------- + +.. literalinclude:: ../../../../../../numpy/random/examples/cython/extending.pyx + :language: cython diff --git a/doc/source/reference/random/examples/cython/extending_distributions.pyx.rst b/doc/source/reference/random/examples/cython/extending_distributions.pyx.rst new file mode 100644 index 000000000..a1bb01f45 --- /dev/null +++ b/doc/source/reference/random/examples/cython/extending_distributions.pyx.rst @@ -0,0 +1,5 @@ +extending_distributions.pyx +--------------------------- + +.. literalinclude:: ../../../../../../numpy/random/examples/cython/extending_distributions.pyx + :language: cython diff --git a/doc/source/reference/random/examples/cython/index.rst b/doc/source/reference/random/examples/cython/index.rst new file mode 100644 index 000000000..9c5da9559 --- /dev/null +++ b/doc/source/reference/random/examples/cython/index.rst @@ -0,0 +1,9 @@ + +Extending `numpy.random` via Cython +----------------------------------- + + +.. toctree:: + setup.py.rst + extending.pyx + extending_distributions.pyx diff --git a/doc/source/reference/random/examples/cython/setup.py.rst b/doc/source/reference/random/examples/cython/setup.py.rst new file mode 100644 index 000000000..381b45fd4 --- /dev/null +++ b/doc/source/reference/random/examples/cython/setup.py.rst @@ -0,0 +1,5 @@ +setup.py +-------- + +.. literalinclude:: ../../../../../../numpy/random/examples/cython/setup.py + :language: python diff --git a/doc/source/reference/random/examples/numba.rst b/doc/source/reference/random/examples/numba.rst new file mode 100644 index 000000000..a780afde7 --- /dev/null +++ b/doc/source/reference/random/examples/numba.rst @@ -0,0 +1,5 @@ +Extending via Numba +------------------- + +.. literalinclude:: ../../../../../numpy/random/examples/numba/extending.py + :language: python diff --git a/doc/source/reference/random/examples/numba_cffi.rst b/doc/source/reference/random/examples/numba_cffi.rst new file mode 100644 index 000000000..ad4767a7a --- /dev/null +++ b/doc/source/reference/random/examples/numba_cffi.rst @@ -0,0 +1,5 @@ +Extending via Numba and CFFI +---------------------------- + +.. literalinclude:: ../../../../../numpy/random/examples/numba/extending_distributions.py + :language: python diff --git a/doc/source/reference/random/extending.rst b/doc/source/reference/random/extending.rst index 22f9cb7e4..c63fb1a1b 100644 --- a/doc/source/reference/random/extending.rst +++ b/doc/source/reference/random/extending.rst @@ -12,128 +12,42 @@ Numba Numba can be used with either CTypes or CFFI. The current iteration of the BitGenerators all export a small set of functions through both interfaces. -This example shows how numba can be used to produce Box-Muller normals using +This example shows how numba can be used to produce gaussian samples using a pure Python implementation which is then compiled. The random numbers are provided by ``ctypes.next_double``. -.. code-block:: python - - from numpy.random import PCG64 - import numpy as np - import numba as nb - - x = PCG64() - f = x.ctypes.next_double - s = x.ctypes.state - state_addr = x.ctypes.state_address - - def normals(n, state): - out = np.empty(n) - for i in range((n+1)//2): - x1 = 2.0*f(state) - 1.0 - x2 = 2.0*f(state) - 1.0 - r2 = x1*x1 + x2*x2 - while r2 >= 1.0 or r2 == 0.0: - x1 = 2.0*f(state) - 1.0 - x2 = 2.0*f(state) - 1.0 - r2 = x1*x1 + x2*x2 - g = np.sqrt(-2.0*np.log(r2)/r2) - out[2*i] = g*x1 - if 2*i+1 < n: - out[2*i+1] = g*x2 - return out - - # Compile using Numba - print(normals(10, s).var()) - # Warm up - normalsj = nb.jit(normals, nopython=True) - # Must use state address not state with numba - normalsj(1, state_addr) - %timeit normalsj(1000000, state_addr) - print('1,000,000 Box-Muller (numba/PCG64) randoms') - %timeit np.random.standard_normal(1000000) - print('1,000,000 Box-Muller (NumPy) randoms') - +.. literalinclude:: ../../../../numpy/random/examples/numba/extending.py + :language: python + :end-before: example 2 Both CTypes and CFFI allow the more complicated distributions to be used -directly in Numba after compiling the file distributions.c into a DLL or so. -An example showing the use of a more complicated distribution is in the -examples folder. +directly in Numba after compiling the file distributions.c into a ``DLL`` or +``so``. An example showing the use of a more complicated distribution is in +the `examples` section below. -.. _randomgen_cython: +.. _random_cython: Cython ====== Cython can be used to unpack the ``PyCapsule`` provided by a BitGenerator. -This example uses `~pcg64.PCG64` and -``random_gauss_zig``, the Ziggurat-based generator for normals, to fill an -array. The usual caveats for writing high-performance code using Cython -- -removing bounds checks and wrap around, providing array alignment information --- still apply. - -.. code-block:: cython - - import numpy as np - cimport numpy as np - cimport cython - from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer - from numpy.random.common cimport * - from numpy.random.distributions cimport random_gauss_zig - from numpy.random import PCG64 - - - @cython.boundscheck(False) - @cython.wraparound(False) - def normals_zig(Py_ssize_t n): - cdef Py_ssize_t i - cdef bitgen_t *rng - cdef const char *capsule_name = "BitGenerator" - cdef double[::1] random_values - - x = PCG64() - capsule = x.capsule - if not PyCapsule_IsValid(capsule, capsule_name): - raise ValueError("Invalid pointer to anon_func_state") - rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name) - random_values = np.empty(n) - # Best practice is to release GIL and acquire the lock - with x.lock, nogil: - for i in range(n): - random_values[i] = random_gauss_zig(rng) - randoms = np.asarray(random_values) - return randoms +This example uses `PCG64` and the example from above. The usual caveats +for writing high-performance code using Cython -- removing bounds checks and +wrap around, providing array alignment information -- still apply. + +.. literalinclude:: ../../../../numpy/random/examples/cython/extending_distributions.pyx + :language: cython + :end-before: example 2 The BitGenerator can also be directly accessed using the members of the basic RNG structure. -.. code-block:: cython - - @cython.boundscheck(False) - @cython.wraparound(False) - def uniforms(Py_ssize_t n): - cdef Py_ssize_t i - cdef bitgen_t *rng - cdef const char *capsule_name = "BitGenerator" - cdef double[::1] random_values - - x = PCG64() - capsule = x.capsule - # Optional check that the capsule if from a BitGenerator - if not PyCapsule_IsValid(capsule, capsule_name): - raise ValueError("Invalid pointer to anon_func_state") - # Cast the pointer - rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name) - random_values = np.empty(n) - with x.lock, nogil: - for i in range(n): - # Call the function - random_values[i] = rng.next_double(rng.state) - randoms = np.asarray(random_values) - return randoms +.. literalinclude:: ../../../../numpy/random/examples/cython/extending_distributions.pyx + :language: cython + :start-after: example 2 These functions along with a minimal setup file are included in the -examples folder. +`examples` folder, ``numpy.random.examples``. New Basic RNGs ============== @@ -163,3 +77,11 @@ the next 64-bit unsigned integer function if not needed. Functions inside .. code-block:: c bitgen_state->next_uint64(bitgen_state->state) + +Examples +======== + +.. toctree:: + Numba <examples/numba> + CFFI + Numba <examples/numba_cffi> + Cython <examples/cython/index> diff --git a/doc/source/reference/random/index.rst b/doc/source/reference/random/index.rst index 15c161244..d28646df9 100644 --- a/doc/source/reference/random/index.rst +++ b/doc/source/reference/random/index.rst @@ -32,7 +32,7 @@ instance's methods are imported into the numpy.random namespace, see Quick Start ----------- -By default, `~Generator` uses bits provided by `~pcg64.PCG64` which +By default, `~Generator` uses bits provided by `PCG64` which has better statistical properties than the legacy mt19937 random number generator in `~.RandomState`. @@ -155,7 +155,7 @@ What's New or Different (`~.PCG64.ctypes`) and CFFI (`~.PCG64.cffi`). This allows the bit generators to be used in numba. * The bit generators can be used in downstream projects via - :ref:`Cython <randomgen_cython>`. + :ref:`Cython <random_cython>`. * `~.Generator.integers` is now the canonical way to generate integer random numbers from a discrete uniform distribution. The ``rand`` and ``randn`` methods are only available through the legacy `~.RandomState`. @@ -199,7 +199,8 @@ Features Multithreaded Generation <multithreading> new-or-different Comparing Performance <performance> - extending + c-api + Examples of using Numba, Cython, CFFI <extending> Original Source ~~~~~~~~~~~~~~~ diff --git a/numpy/random/include/bitgen.h b/numpy/core/include/numpy/random/bitgen.h index 83c2858dd..83c2858dd 100644 --- a/numpy/random/include/bitgen.h +++ b/numpy/core/include/numpy/random/bitgen.h diff --git a/numpy/random/include/distributions.h b/numpy/core/include/numpy/random/distributions.h index c02ea605e..e489e69b8 100644 --- a/numpy/random/include/distributions.h +++ b/numpy/core/include/numpy/random/distributions.h @@ -8,7 +8,7 @@ #include <stdint.h> #include "numpy/npy_math.h" -#include "include/bitgen.h" +#include "numpy/random/bitgen.h" /* * RAND_INT_TYPE is used to share integer generators with RandomState which diff --git a/numpy/random/_bit_generator.pxd b/numpy/random/_bit_generator.pxd index 30fa4a27d..bd5e47a20 100644 --- a/numpy/random/_bit_generator.pxd +++ b/numpy/random/_bit_generator.pxd @@ -1,7 +1,7 @@ cimport numpy as np from libc.stdint cimport uint32_t, uint64_t -cdef extern from "include/bitgen.h": +cdef extern from "numpy/random/bitgen.h": struct bitgen: void *state uint64_t (*next_uint64)(void *st) nogil diff --git a/numpy/random/_bounded_integers.pyx.in b/numpy/random/_bounded_integers.pyx.in index c0068dab2..7e19471e4 100644 --- a/numpy/random/_bounded_integers.pyx.in +++ b/numpy/random/_bounded_integers.pyx.in @@ -8,7 +8,7 @@ __all__ = [] np.import_array() -cdef extern from "include/distributions.h": +cdef extern from "numpy/random/distributions.h": # Generate random numbers in closed interval [off, off + rng]. uint64_t random_bounded_uint64(bitgen_t *bitgen_state, uint64_t off, uint64_t rng, diff --git a/numpy/random/_generator.pyx b/numpy/random/_generator.pyx index b6c222cc0..39d05b32b 100644 --- a/numpy/random/_generator.pyx +++ b/numpy/random/_generator.pyx @@ -28,7 +28,7 @@ from ._common cimport (POISSON_LAM_MAX, CONS_POSITIVE, CONS_NONE, ) -cdef extern from "include/distributions.h": +cdef extern from "numpy/random/distributions.h": struct s_binomial_t: int has_binomial diff --git a/numpy/random/examples/__init__.py b/numpy/random/examples/__init__.py new file mode 100644 index 000000000..e69de29bb --- /dev/null +++ b/numpy/random/examples/__init__.py diff --git a/numpy/random/examples/cython/extending.pyx b/numpy/random/examples/cython/extending.pyx index a6a4ba4bf..2a866648d 100644 --- a/numpy/random/examples/cython/extending.pyx +++ b/numpy/random/examples/cython/extending.pyx @@ -8,7 +8,7 @@ import numpy as np cimport numpy as np cimport cython -from numpy.random.common cimport bitgen_t +from numpy.random._bit_generator cimport bitgen_t from numpy.random import PCG64 np.import_array() diff --git a/numpy/random/examples/cython/extending_distributions.pyx b/numpy/random/examples/cython/extending_distributions.pyx index 3cefec97e..d17da45c1 100644 --- a/numpy/random/examples/cython/extending_distributions.pyx +++ b/numpy/random/examples/cython/extending_distributions.pyx @@ -1,21 +1,23 @@ #!/usr/bin/env python #cython: language_level=3 """ -This file shows how the distributions that are accessed through -distributions.pxd can be used Cython code. +This file shows how the to use a BitGenerator to create a distribution. """ import numpy as np cimport numpy as np cimport cython from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer -from numpy.random.common cimport * -from numpy.random.distributions cimport random_gauss_zig +from numpy.random._bit_generator cimport bitgen_t from numpy.random import PCG64 @cython.boundscheck(False) @cython.wraparound(False) -def normals_zig(Py_ssize_t n): +def uniforms(Py_ssize_t n): + """ Create an array of `n` uniformly distributed doubles. + A 'real' distribution would want to process the values into + some non-uniform distribution + """ cdef Py_ssize_t i cdef bitgen_t *rng cdef const char *capsule_name = "BitGenerator" @@ -23,21 +25,25 @@ def normals_zig(Py_ssize_t n): x = PCG64() capsule = x.capsule + # Optional check that the capsule if from a BitGenerator if not PyCapsule_IsValid(capsule, capsule_name): raise ValueError("Invalid pointer to anon_func_state") + # Cast the pointer rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name) - random_values = np.empty(n) - # Best practice is to release GIL and acquire the lock + random_values = np.empty(n, dtype='float64') with x.lock, nogil: for i in range(n): - random_values[i] = random_gauss_zig(rng) + # Call the function + random_values[i] = rng.next_double(rng.state) randoms = np.asarray(random_values) - return randoms + return randoms + +# cython example 2 @cython.boundscheck(False) @cython.wraparound(False) -def uniforms(Py_ssize_t n): +def uint16_uniforms(Py_ssize_t n): cdef Py_ssize_t i cdef bitgen_t *rng cdef const char *capsule_name = "BitGenerator" @@ -45,15 +51,13 @@ def uniforms(Py_ssize_t n): x = PCG64() capsule = x.capsule - # Optional check that the capsule if from a BitGenerator if not PyCapsule_IsValid(capsule, capsule_name): raise ValueError("Invalid pointer to anon_func_state") - # Cast the pointer rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name) - random_values = np.empty(n) + random_values = np.empty(n, dtype='uint32') + # Best practice is to release GIL and acquire the lock with x.lock, nogil: for i in range(n): - # Call the function - random_values[i] = rng.next_double(rng.state) + random_values[i] = rng.next_uint32(rng.state) randoms = np.asarray(random_values) return randoms diff --git a/numpy/random/examples/cython/setup.py b/numpy/random/examples/cython/setup.py index 69f057ed5..315527a2d 100644 --- a/numpy/random/examples/cython/setup.py +++ b/numpy/random/examples/cython/setup.py @@ -9,15 +9,20 @@ import numpy as np from distutils.core import setup from Cython.Build import cythonize from setuptools.extension import Extension -from os.path import join +from os.path import join, abspath, dirname + +curpath = abspath(dirname(__file__)) extending = Extension("extending", - sources=['extending.pyx'], - include_dirs=[np.get_include()]) + sources=[join(curpath, 'extending.pyx')], + include_dirs=[ + np.get_include(), + join(curpath, '..', '..') + ], + ) distributions = Extension("extending_distributions", - sources=['extending_distributions.pyx', - join('..', '..', 'src', - 'distributions', 'distributions.c')], + sources=[join(curpath, 'extending_distributions.pyx'), + ], include_dirs=[np.get_include()]) extensions = [extending, distributions] diff --git a/numpy/random/examples/numba/extending.py b/numpy/random/examples/numba/extending.py index d41c2d76f..0d240596b 100644 --- a/numpy/random/examples/numba/extending.py +++ b/numpy/random/examples/numba/extending.py @@ -1,14 +1,57 @@ -import datetime as dt - import numpy as np import numba as nb from numpy.random import PCG64 +from timeit import timeit + +bit_gen = PCG64() +next_d = bit_gen.cffi.next_double +state_addr = bit_gen.cffi.state_address + +def normals(n, state): + out = np.empty(n) + for i in range((n + 1) // 2): + x1 = 2.0 * next_d(state) - 1.0 + x2 = 2.0 * next_d(state) - 1.0 + r2 = x1 * x1 + x2 * x2 + while r2 >= 1.0 or r2 == 0.0: + x1 = 2.0 * next_d(state) - 1.0 + x2 = 2.0 * next_d(state) - 1.0 + r2 = x1 * x1 + x2 * x2 + f = np.sqrt(-2.0 * np.log(r2) / r2) + out[2 * i] = f * x1 + if 2 * i + 1 < n: + out[2 * i + 1] = f * x2 + return out + +# Compile using Numba +normalsj = nb.jit(normals, nopython=True) +# Must use state address not state with numba +n = 10000 + +def numbacall(): + return normalsj(n, state_addr) + +rg = np.random.Generator(PCG64()) -x = PCG64() -f = x.ctypes.next_uint32 -s = x.ctypes.state +def numpycall(): + return rg.normal(size=n) +# Check that the functions work +r1 = numbacall() +r2 = numpycall() +assert r1.shape == (n,) +assert r1.shape == r2.shape + +t1 = timeit(numbacall, number=1000) +print('{:.2f} secs for {} PCG64 (Numba/PCG64) gaussian randoms'.format(t1, n)) +t2 = timeit(numpycall, number=1000) +print('{:.2f} secs for {} PCG64 (NumPy/PCG64) gaussian randoms'.format(t2, n)) + +# example 2 + +next_u32 = bit_gen.ctypes.next_uint32 +ctypes_state = bit_gen.ctypes.state @nb.jit(nopython=True) def bounded_uint(lb, ub, state): @@ -19,14 +62,14 @@ def bounded_uint(lb, ub, state): mask |= mask >> 8 mask |= mask >> 16 - val = f(state) & mask + val = next_u32(state) & mask while val > delta: - val = f(state) & mask + val = next_u32(state) & mask return lb + val -print(bounded_uint(323, 2394691, s.value)) +print(bounded_uint(323, 2394691, ctypes_state.value)) @nb.jit(nopython=True) @@ -36,42 +79,6 @@ def bounded_uints(lb, ub, n, state): out[i] = bounded_uint(lb, ub, state) -bounded_uints(323, 2394691, 10000000, s.value) - -g = x.cffi.next_double -cffi_state = x.cffi.state -state_addr = x.cffi.state_address - - -def normals(n, state): - out = np.empty(n) - for i in range((n + 1) // 2): - x1 = 2.0 * g(state) - 1.0 - x2 = 2.0 * g(state) - 1.0 - r2 = x1 * x1 + x2 * x2 - while r2 >= 1.0 or r2 == 0.0: - x1 = 2.0 * g(state) - 1.0 - x2 = 2.0 * g(state) - 1.0 - r2 = x1 * x1 + x2 * x2 - f = np.sqrt(-2.0 * np.log(r2) / r2) - out[2 * i] = f * x1 - if 2 * i + 1 < n: - out[2 * i + 1] = f * x2 - return out +bounded_uints(323, 2394691, 10000000, ctypes_state.value) -print(normals(10, cffi_state).var()) -# Warm up -normalsj = nb.jit(normals, nopython=True) -normalsj(1, state_addr) - -start = dt.datetime.now() -normalsj(1000000, state_addr) -ms = 1000 * (dt.datetime.now() - start).total_seconds() -print('1,000,000 Polar-transform (numba/PCG64) randoms in ' - '{ms:0.1f}ms'.format(ms=ms)) - -start = dt.datetime.now() -np.random.standard_normal(1000000) -ms = 1000 * (dt.datetime.now() - start).total_seconds() -print('1,000,000 Polar-transform (NumPy) randoms in {ms:0.1f}ms'.format(ms=ms)) diff --git a/numpy/random/include/legacy-distributions.h b/numpy/random/include/legacy-distributions.h index 6a0fc7dc4..b8ba0841c 100644 --- a/numpy/random/include/legacy-distributions.h +++ b/numpy/random/include/legacy-distributions.h @@ -2,7 +2,7 @@ #define _RANDOMDGEN__DISTRIBUTIONS_LEGACY_H_ -#include "distributions.h" +#include "numpy/random/distributions.h" typedef struct aug_bitgen { bitgen_t *bit_generator; diff --git a/numpy/random/mtrand.pyx b/numpy/random/mtrand.pyx index b21607282..691a6e6e7 100644 --- a/numpy/random/mtrand.pyx +++ b/numpy/random/mtrand.pyx @@ -25,7 +25,7 @@ from ._common cimport (POISSON_LAM_MAX, CONS_POSITIVE, CONS_NONE, check_array_constraint, check_constraint, disc, discrete_broadcast_iii, ) -cdef extern from "include/distributions.h": +cdef extern from "numpy/random/distributions.h": struct s_binomial_t: int has_binomial double psave diff --git a/numpy/random/setup.py b/numpy/random/setup.py index f9059d7d7..93d5144ea 100644 --- a/numpy/random/setup.py +++ b/numpy/random/setup.py @@ -34,6 +34,7 @@ def configuration(parent_package='', top_path=None): defs.append(('NPY_NO_DEPRECATED_API', 0)) config.add_data_dir('tests') + config.add_data_dir('examples') EXTRA_LINK_ARGS = [] # Math lib @@ -92,6 +93,7 @@ def configuration(parent_package='', top_path=None): depends=['%s.pyx' % gen, '%s.pxd' % gen,], define_macros=defs, ) + config.add_data_files('{0}.pxd'.format(gen)) other_srcs = [ 'src/distributions/logfactorial.c', 'src/distributions/distributions.c', @@ -110,6 +112,7 @@ def configuration(parent_package='', top_path=None): depends=['%s.pyx' % gen], define_macros=defs, ) + config.add_data_files('_bounded_inteters.pxd') config.add_extension('mtrand', sources=['mtrand.c', 'src/legacy/legacy-distributions.c', diff --git a/numpy/random/src/distributions/distributions.c b/numpy/random/src/distributions/distributions.c index ab8de8bcb..df3323408 100644 --- a/numpy/random/src/distributions/distributions.c +++ b/numpy/random/src/distributions/distributions.c @@ -1,4 +1,4 @@ -#include "include/distributions.h" +#include "numpy/random/distributions.h" #include "ziggurat_constants.h" #include "logfactorial.h" diff --git a/numpy/random/src/distributions/random_hypergeometric.c b/numpy/random/src/distributions/random_hypergeometric.c index da5ea9c68..0da49bd62 100644 --- a/numpy/random/src/distributions/random_hypergeometric.c +++ b/numpy/random/src/distributions/random_hypergeometric.c @@ -1,4 +1,4 @@ -#include "include/distributions.h" +#include "numpy/random/distributions.h" #include "logfactorial.h" #include <stdint.h> diff --git a/numpy/random/src/distributions/random_mvhg_count.c b/numpy/random/src/distributions/random_mvhg_count.c index 9c0cc045d..0c46ea417 100644 --- a/numpy/random/src/distributions/random_mvhg_count.c +++ b/numpy/random/src/distributions/random_mvhg_count.c @@ -2,7 +2,7 @@ #include <stdlib.h> #include <stdbool.h> -#include "include/distributions.h" +#include "numpy/random/distributions.h" /* * random_mvhg_count diff --git a/numpy/random/src/distributions/random_mvhg_marginals.c b/numpy/random/src/distributions/random_mvhg_marginals.c index 301a4acad..7e4c24988 100644 --- a/numpy/random/src/distributions/random_mvhg_marginals.c +++ b/numpy/random/src/distributions/random_mvhg_marginals.c @@ -3,7 +3,7 @@ #include <stdbool.h> #include <math.h> -#include "include/distributions.h" +#include "numpy/random/distributions.h" #include "logfactorial.h" diff --git a/numpy/random/tests/test_extending.py b/numpy/random/tests/test_extending.py new file mode 100644 index 000000000..01e43b9e8 --- /dev/null +++ b/numpy/random/tests/test_extending.py @@ -0,0 +1,32 @@ +import os, sys +import pytest +import warnings + +try: + with warnings.catch_warnings(record=True) as w: + # numba issue gh-4733 + warnings.filterwarnings('always', '', DeprecationWarning) + import numba + import cffi +except ImportError: + numba = None + +def test_cython(): + curdir = os.getcwd() + argv = sys.argv + examples = (os.path.dirname(__file__), '..', 'examples') + try: + os.chdir(os.path.join(*examples)) + sys.argv = argv[:1] + ['build'] + with warnings.catch_warnings(record=True) as w: + # setuptools issue gh-1885 + warnings.filterwarnings('always', '', DeprecationWarning) + from numpy.random.examples.cython import setup + finally: + sys.argv = argv + os.chdir(curdir) + +@pytest.mark.skipif(numba is None, reason="requires numba") +def test_numba(): + from numpy.random.examples.numba import extending + diff --git a/numpy/tests/test_public_api.py b/numpy/tests/test_public_api.py index c71d03432..ba3961bef 100644 --- a/numpy/tests/test_public_api.py +++ b/numpy/tests/test_public_api.py @@ -334,6 +334,7 @@ SKIP_LIST = [ "numpy.core.cversions", "numpy.core.generate_numpy_api", "numpy.distutils.msvc9compiler", + 'numpy.random.examples', ] @@ -386,7 +387,7 @@ SKIP_LIST_2 = [ 'numpy.matlib.fft', 'numpy.matlib.random', 'numpy.matlib.ctypeslib', - 'numpy.matlib.ma' + 'numpy.matlib.ma', ] |