summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMatti Picus <matti.picus@gmail.com>2019-11-19 07:44:44 -0700
committerCharles Harris <charlesr.harris@gmail.com>2019-11-19 07:44:44 -0700
commitd6ecf67f88fb61cf641e2370d3e54938232de09d (patch)
tree08223e6b70fd71d0b11d378ca02f96d56c715d74
parent53201578225cc89d383738598acec03572554019 (diff)
downloadnumpy-d6ecf67f88fb61cf641e2370d3e54938232de09d.tar.gz
API: restructure and document numpy.random C-API (#14604)
* API: restructure and document numpy.random C-API * DOC: fix bad reference * API: ship, document, and start to test numpy.random C-API examples * API, DOC, TST: fix tests, refactor documentation to include snippets * BUILD: move public headers to numpy/core/include/numpy/random * TST: ignore DeprecationWarnings in setuptools and numba * DOC: document the C-API as used from Cython
-rw-r--r--doc/source/reference/random/bit_generators/index.rst2
-rw-r--r--doc/source/reference/random/c-api.rst177
-rw-r--r--doc/source/reference/random/examples/cython/extending.pyx4
-rw-r--r--doc/source/reference/random/examples/cython/extending.pyx.rst5
-rw-r--r--doc/source/reference/random/examples/cython/extending_distributions.pyx.rst5
-rw-r--r--doc/source/reference/random/examples/cython/index.rst9
-rw-r--r--doc/source/reference/random/examples/cython/setup.py.rst5
-rw-r--r--doc/source/reference/random/examples/numba.rst5
-rw-r--r--doc/source/reference/random/examples/numba_cffi.rst5
-rw-r--r--doc/source/reference/random/extending.rst132
-rw-r--r--doc/source/reference/random/index.rst7
-rw-r--r--numpy/core/include/numpy/random/bitgen.h (renamed from numpy/random/include/bitgen.h)0
-rw-r--r--numpy/core/include/numpy/random/distributions.h (renamed from numpy/random/include/distributions.h)2
-rw-r--r--numpy/random/_bit_generator.pxd2
-rw-r--r--numpy/random/_bounded_integers.pyx.in2
-rw-r--r--numpy/random/_generator.pyx2
-rw-r--r--numpy/random/examples/__init__.py0
-rw-r--r--numpy/random/examples/cython/extending.pyx2
-rw-r--r--numpy/random/examples/cython/extending_distributions.pyx34
-rw-r--r--numpy/random/examples/cython/setup.py17
-rw-r--r--numpy/random/examples/numba/extending.py97
-rw-r--r--numpy/random/include/legacy-distributions.h2
-rw-r--r--numpy/random/mtrand.pyx2
-rw-r--r--numpy/random/setup.py3
-rw-r--r--numpy/random/src/distributions/distributions.c2
-rw-r--r--numpy/random/src/distributions/random_hypergeometric.c2
-rw-r--r--numpy/random/src/distributions/random_mvhg_count.c2
-rw-r--r--numpy/random/src/distributions/random_mvhg_marginals.c2
-rw-r--r--numpy/random/tests/test_extending.py32
-rw-r--r--numpy/tests/test_public_api.py3
30 files changed, 377 insertions, 187 deletions
diff --git a/doc/source/reference/random/bit_generators/index.rst b/doc/source/reference/random/bit_generators/index.rst
index 94d3d8a3c..315657172 100644
--- a/doc/source/reference/random/bit_generators/index.rst
+++ b/doc/source/reference/random/bit_generators/index.rst
@@ -19,7 +19,7 @@ The included BitGenerators are:
and can be advanced by an arbitrary amount. See the documentation for
:meth:`~.PCG64.advance`. PCG-64 has a period of :math:`2^{128}`. See the `PCG
author's page`_ for more details about this class of PRNG.
-* MT19937 - The standard Python BitGenerator. Adds a `~mt19937.MT19937.jumped`
+* MT19937 - The standard Python BitGenerator. Adds a `MT19937.jumped`
function that returns a new generator with state as-if :math:`2^{128}` draws have
been made.
* Philox - A counter-based generator capable of being advanced an
diff --git a/doc/source/reference/random/c-api.rst b/doc/source/reference/random/c-api.rst
new file mode 100644
index 000000000..3c901f3b4
--- /dev/null
+++ b/doc/source/reference/random/c-api.rst
@@ -0,0 +1,177 @@
+Cython API for random
+---------------------
+
+.. currentmodule:: numpy.random
+
+Typed versions of many of the `Generator` and `BitGenerator` can be accessed
+directly from Cython: the complete list is given below.
+
+The ``_bit_generator`` module is usable via::
+
+ cimport numpy.random._bit_generator
+
+It provides function pointers for quickly accessing the next bytes in the
+`BitGenerator`::
+
+ struct bitgen:
+ void *state
+ uint64_t (*next_uint64)(void *st) nogil
+ uint32_t (*next_uint32)(void *st) nogil
+ double (*next_double)(void *st) nogil
+ uint64_t (*next_raw)(void *st) nogil
+
+ ctypedef bitgen bitgen_t
+
+See `extending` for examples of using these functions.
+
+The ``_generator`` module is usable via::
+
+ cimport numpy.random._generator
+
+It provides low-level functions for various distributions. All the functions require a ``bitgen_t`` BitGenerator structure. The functions are named with the followig cconventions:
+
+- "standard" refers to the reference values for any parameters. For instance
+ "standard_uniform" means a uniform distribution on the interval ``0.0`` to
+ ``1.0``
+
+- "fill" functions will fill the provided ``out`` with ``cnt`` values.
+
+- The functions without "standard" in their name require additional parameters
+ to describe the distributions.
+
+.. c:function:: double random_standard_uniform(bitgen_t *bitgen_state)
+
+.. c:function:: void random_standard_uniform_fill(bitgen_t* bitgen_state, np.npy_intp cnt, double *out)
+
+.. c:function:: double random_standard_exponential(bitgen_t *bitgen_state)
+
+.. c:function:: void random_standard_exponential_fill(bitgen_t *bitgen_state, np.npy_intp cnt, double *out)
+
+.. c:function:: double random_standard_exponential_zig(bitgen_t *bitgen_state)
+
+.. c:function:: void random_standard_exponential_zig_fill(bitgen_t *bitgen_state, np.npy_intp cnt, double *out)
+
+.. c:function:: double random_standard_normal(bitgen_t* bitgen_state)
+
+.. c:function:: void random_standard_normal_fill(bitgen_t *bitgen_state, np.npy_intp count, double *out)
+
+.. c:function:: void random_standard_normal_fill_f(bitgen_t *bitgen_state, np.npy_intp count, float *out)
+
+.. c:function:: double random_standard_gamma(bitgen_t *bitgen_state, double shape)
+
+.. c:function:: float random_standard_uniform_f(bitgen_t *bitgen_state)
+
+.. c:function:: void random_standard_uniform_fill_f(bitgen_t* bitgen_state, np.npy_intp cnt, float *out)
+
+.. c:function:: float random_standard_exponential_f(bitgen_t *bitgen_state)
+
+.. c:function:: float random_standard_exponential_zig_f(bitgen_t *bitgen_state)
+
+.. c:function:: void random_standard_exponential_fill_f(bitgen_t *bitgen_state, np.npy_intp cnt, float *out)
+
+.. c:function:: void random_standard_exponential_zig_fill_f(bitgen_t *bitgen_state, np.npy_intp cnt, float *out)
+
+.. c:function:: float random_standard_normal_f(bitgen_t* bitgen_state)
+
+.. c:function:: float random_standard_gamma_f(bitgen_t *bitgen_state, float shape)
+
+.. c:function:: double random_normal(bitgen_t *bitgen_state, double loc, double scale)
+
+.. c:function:: double random_gamma(bitgen_t *bitgen_state, double shape, double scale)
+
+.. c:function:: float random_gamma_f(bitgen_t *bitgen_state, float shape, float scale)
+
+.. c:function:: double random_exponential(bitgen_t *bitgen_state, double scale)
+
+.. c:function:: double random_uniform(bitgen_t *bitgen_state, double lower, double range)
+.. c:function:: double random_beta(bitgen_t *bitgen_state, double a, double b)
+
+.. c:function:: double random_chisquare(bitgen_t *bitgen_state, double df)
+
+.. c:function:: double random_f(bitgen_t *bitgen_state, double dfnum, double dfden)
+
+.. c:function:: double random_standard_cauchy(bitgen_t *bitgen_state)
+
+.. c:function:: double random_pareto(bitgen_t *bitgen_state, double a)
+
+.. c:function:: double random_weibull(bitgen_t *bitgen_state, double a)
+
+.. c:function:: double random_power(bitgen_t *bitgen_state, double a)
+
+.. c:function:: double random_laplace(bitgen_t *bitgen_state, double loc, double scale)
+
+.. c:function:: double random_gumbel(bitgen_t *bitgen_state, double loc, double scale)
+
+.. c:function:: double random_logistic(bitgen_t *bitgen_state, double loc, double scale)
+
+.. c:function:: double random_lognormal(bitgen_t *bitgen_state, double mean, double sigma)
+
+.. c:function:: double random_rayleigh(bitgen_t *bitgen_state, double mode)
+
+.. c:function:: double random_standard_t(bitgen_t *bitgen_state, double df)
+
+.. c:function:: double random_noncentral_chisquare(bitgen_t *bitgen_state, double df,
+ double nonc)
+.. c:function:: double random_noncentral_f(bitgen_t *bitgen_state, double dfnum,
+ double dfden, double nonc)
+.. c:function:: double random_wald(bitgen_t *bitgen_state, double mean, double scale)
+
+.. c:function:: double random_vonmises(bitgen_t *bitgen_state, double mu, double kappa)
+
+.. c:function:: double random_triangular(bitgen_t *bitgen_state, double left, double mode,
+ double right)
+
+.. c:function:: int64_t random_poisson(bitgen_t *bitgen_state, double lam)
+
+.. c:function:: int64_t random_negative_binomial(bitgen_t *bitgen_state, double n, double p)
+
+.. c:function:: int64_t random_binomial(bitgen_t *bitgen_state, double p, int64_t n, binomial_t *binomial)
+
+.. c:function:: int64_t random_logseries(bitgen_t *bitgen_state, double p)
+
+.. c:function:: int64_t random_geometric_search(bitgen_t *bitgen_state, double p)
+
+.. c:function:: int64_t random_geometric_inversion(bitgen_t *bitgen_state, double p)
+
+.. c:function:: int64_t random_geometric(bitgen_t *bitgen_state, double p)
+
+.. c:function:: int64_t random_zipf(bitgen_t *bitgen_state, double a)
+
+.. c:function:: int64_t random_hypergeometric(bitgen_t *bitgen_state, int64_t good, int64_t bad,
+ int64_t sample)
+
+.. c:function:: uint64_t random_interval(bitgen_t *bitgen_state, uint64_t max)
+
+.. c:function:: void random_multinomial(bitgen_t *bitgen_state, int64_t n, int64_t *mnix,
+ double *pix, np.npy_intp d, binomial_t *binomial)
+
+.. c:function:: int random_mvhg_count(bitgen_t *bitgen_state,
+ int64_t total,
+ size_t num_colors, int64_t *colors,
+ int64_t nsample,
+ size_t num_variates, int64_t *variates)
+
+.. c:function:: void random_mvhg_marginals(bitgen_t *bitgen_state,
+ int64_t total,
+ size_t num_colors, int64_t *colors,
+ int64_t nsample,
+ size_t num_variates, int64_t *variates)
+
+Generate a single integer
+
+.. c:function:: int64_t random_positive_int64(bitgen_t *bitgen_state)
+
+.. c:function:: int32_t random_positive_int32(bitgen_t *bitgen_state)
+
+.. c:function:: int64_t random_positive_int(bitgen_t *bitgen_state)
+
+.. c:function:: uint64_t random_uint(bitgen_t *bitgen_state)
+
+
+Generate random uint64 numbers in closed interval [off, off + rng].
+
+.. c:function:: uint64_t random_bounded_uint64(bitgen_t *bitgen_state,
+ uint64_t off, uint64_t rng,
+ uint64_t mask, bint use_masked)
+
+
diff --git a/doc/source/reference/random/examples/cython/extending.pyx b/doc/source/reference/random/examples/cython/extending.pyx
new file mode 100644
index 000000000..0cfbc146f
--- /dev/null
+++ b/doc/source/reference/random/examples/cython/extending.pyx
@@ -0,0 +1,4 @@
+extending.pyx
+-------------
+
+.. include:: ../../../../../../numpy/random/examples/extending.pyx
diff --git a/doc/source/reference/random/examples/cython/extending.pyx.rst b/doc/source/reference/random/examples/cython/extending.pyx.rst
new file mode 100644
index 000000000..bc31488d7
--- /dev/null
+++ b/doc/source/reference/random/examples/cython/extending.pyx.rst
@@ -0,0 +1,5 @@
+extending.pyx
+-------------
+
+.. literalinclude:: ../../../../../../numpy/random/examples/cython/extending.pyx
+ :language: cython
diff --git a/doc/source/reference/random/examples/cython/extending_distributions.pyx.rst b/doc/source/reference/random/examples/cython/extending_distributions.pyx.rst
new file mode 100644
index 000000000..a1bb01f45
--- /dev/null
+++ b/doc/source/reference/random/examples/cython/extending_distributions.pyx.rst
@@ -0,0 +1,5 @@
+extending_distributions.pyx
+---------------------------
+
+.. literalinclude:: ../../../../../../numpy/random/examples/cython/extending_distributions.pyx
+ :language: cython
diff --git a/doc/source/reference/random/examples/cython/index.rst b/doc/source/reference/random/examples/cython/index.rst
new file mode 100644
index 000000000..9c5da9559
--- /dev/null
+++ b/doc/source/reference/random/examples/cython/index.rst
@@ -0,0 +1,9 @@
+
+Extending `numpy.random` via Cython
+-----------------------------------
+
+
+.. toctree::
+ setup.py.rst
+ extending.pyx
+ extending_distributions.pyx
diff --git a/doc/source/reference/random/examples/cython/setup.py.rst b/doc/source/reference/random/examples/cython/setup.py.rst
new file mode 100644
index 000000000..381b45fd4
--- /dev/null
+++ b/doc/source/reference/random/examples/cython/setup.py.rst
@@ -0,0 +1,5 @@
+setup.py
+--------
+
+.. literalinclude:: ../../../../../../numpy/random/examples/cython/setup.py
+ :language: python
diff --git a/doc/source/reference/random/examples/numba.rst b/doc/source/reference/random/examples/numba.rst
new file mode 100644
index 000000000..a780afde7
--- /dev/null
+++ b/doc/source/reference/random/examples/numba.rst
@@ -0,0 +1,5 @@
+Extending via Numba
+-------------------
+
+.. literalinclude:: ../../../../../numpy/random/examples/numba/extending.py
+ :language: python
diff --git a/doc/source/reference/random/examples/numba_cffi.rst b/doc/source/reference/random/examples/numba_cffi.rst
new file mode 100644
index 000000000..ad4767a7a
--- /dev/null
+++ b/doc/source/reference/random/examples/numba_cffi.rst
@@ -0,0 +1,5 @@
+Extending via Numba and CFFI
+----------------------------
+
+.. literalinclude:: ../../../../../numpy/random/examples/numba/extending_distributions.py
+ :language: python
diff --git a/doc/source/reference/random/extending.rst b/doc/source/reference/random/extending.rst
index 22f9cb7e4..c63fb1a1b 100644
--- a/doc/source/reference/random/extending.rst
+++ b/doc/source/reference/random/extending.rst
@@ -12,128 +12,42 @@ Numba
Numba can be used with either CTypes or CFFI. The current iteration of the
BitGenerators all export a small set of functions through both interfaces.
-This example shows how numba can be used to produce Box-Muller normals using
+This example shows how numba can be used to produce gaussian samples using
a pure Python implementation which is then compiled. The random numbers are
provided by ``ctypes.next_double``.
-.. code-block:: python
-
- from numpy.random import PCG64
- import numpy as np
- import numba as nb
-
- x = PCG64()
- f = x.ctypes.next_double
- s = x.ctypes.state
- state_addr = x.ctypes.state_address
-
- def normals(n, state):
- out = np.empty(n)
- for i in range((n+1)//2):
- x1 = 2.0*f(state) - 1.0
- x2 = 2.0*f(state) - 1.0
- r2 = x1*x1 + x2*x2
- while r2 >= 1.0 or r2 == 0.0:
- x1 = 2.0*f(state) - 1.0
- x2 = 2.0*f(state) - 1.0
- r2 = x1*x1 + x2*x2
- g = np.sqrt(-2.0*np.log(r2)/r2)
- out[2*i] = g*x1
- if 2*i+1 < n:
- out[2*i+1] = g*x2
- return out
-
- # Compile using Numba
- print(normals(10, s).var())
- # Warm up
- normalsj = nb.jit(normals, nopython=True)
- # Must use state address not state with numba
- normalsj(1, state_addr)
- %timeit normalsj(1000000, state_addr)
- print('1,000,000 Box-Muller (numba/PCG64) randoms')
- %timeit np.random.standard_normal(1000000)
- print('1,000,000 Box-Muller (NumPy) randoms')
-
+.. literalinclude:: ../../../../numpy/random/examples/numba/extending.py
+ :language: python
+ :end-before: example 2
Both CTypes and CFFI allow the more complicated distributions to be used
-directly in Numba after compiling the file distributions.c into a DLL or so.
-An example showing the use of a more complicated distribution is in the
-examples folder.
+directly in Numba after compiling the file distributions.c into a ``DLL`` or
+``so``. An example showing the use of a more complicated distribution is in
+the `examples` section below.
-.. _randomgen_cython:
+.. _random_cython:
Cython
======
Cython can be used to unpack the ``PyCapsule`` provided by a BitGenerator.
-This example uses `~pcg64.PCG64` and
-``random_gauss_zig``, the Ziggurat-based generator for normals, to fill an
-array. The usual caveats for writing high-performance code using Cython --
-removing bounds checks and wrap around, providing array alignment information
--- still apply.
-
-.. code-block:: cython
-
- import numpy as np
- cimport numpy as np
- cimport cython
- from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer
- from numpy.random.common cimport *
- from numpy.random.distributions cimport random_gauss_zig
- from numpy.random import PCG64
-
-
- @cython.boundscheck(False)
- @cython.wraparound(False)
- def normals_zig(Py_ssize_t n):
- cdef Py_ssize_t i
- cdef bitgen_t *rng
- cdef const char *capsule_name = "BitGenerator"
- cdef double[::1] random_values
-
- x = PCG64()
- capsule = x.capsule
- if not PyCapsule_IsValid(capsule, capsule_name):
- raise ValueError("Invalid pointer to anon_func_state")
- rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)
- random_values = np.empty(n)
- # Best practice is to release GIL and acquire the lock
- with x.lock, nogil:
- for i in range(n):
- random_values[i] = random_gauss_zig(rng)
- randoms = np.asarray(random_values)
- return randoms
+This example uses `PCG64` and the example from above. The usual caveats
+for writing high-performance code using Cython -- removing bounds checks and
+wrap around, providing array alignment information -- still apply.
+
+.. literalinclude:: ../../../../numpy/random/examples/cython/extending_distributions.pyx
+ :language: cython
+ :end-before: example 2
The BitGenerator can also be directly accessed using the members of the basic
RNG structure.
-.. code-block:: cython
-
- @cython.boundscheck(False)
- @cython.wraparound(False)
- def uniforms(Py_ssize_t n):
- cdef Py_ssize_t i
- cdef bitgen_t *rng
- cdef const char *capsule_name = "BitGenerator"
- cdef double[::1] random_values
-
- x = PCG64()
- capsule = x.capsule
- # Optional check that the capsule if from a BitGenerator
- if not PyCapsule_IsValid(capsule, capsule_name):
- raise ValueError("Invalid pointer to anon_func_state")
- # Cast the pointer
- rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)
- random_values = np.empty(n)
- with x.lock, nogil:
- for i in range(n):
- # Call the function
- random_values[i] = rng.next_double(rng.state)
- randoms = np.asarray(random_values)
- return randoms
+.. literalinclude:: ../../../../numpy/random/examples/cython/extending_distributions.pyx
+ :language: cython
+ :start-after: example 2
These functions along with a minimal setup file are included in the
-examples folder.
+`examples` folder, ``numpy.random.examples``.
New Basic RNGs
==============
@@ -163,3 +77,11 @@ the next 64-bit unsigned integer function if not needed. Functions inside
.. code-block:: c
bitgen_state->next_uint64(bitgen_state->state)
+
+Examples
+========
+
+.. toctree::
+ Numba <examples/numba>
+ CFFI + Numba <examples/numba_cffi>
+ Cython <examples/cython/index>
diff --git a/doc/source/reference/random/index.rst b/doc/source/reference/random/index.rst
index 15c161244..d28646df9 100644
--- a/doc/source/reference/random/index.rst
+++ b/doc/source/reference/random/index.rst
@@ -32,7 +32,7 @@ instance's methods are imported into the numpy.random namespace, see
Quick Start
-----------
-By default, `~Generator` uses bits provided by `~pcg64.PCG64` which
+By default, `~Generator` uses bits provided by `PCG64` which
has better statistical properties than the legacy mt19937 random
number generator in `~.RandomState`.
@@ -155,7 +155,7 @@ What's New or Different
(`~.PCG64.ctypes`) and CFFI (`~.PCG64.cffi`). This allows the bit generators
to be used in numba.
* The bit generators can be used in downstream projects via
- :ref:`Cython <randomgen_cython>`.
+ :ref:`Cython <random_cython>`.
* `~.Generator.integers` is now the canonical way to generate integer
random numbers from a discrete uniform distribution. The ``rand`` and
``randn`` methods are only available through the legacy `~.RandomState`.
@@ -199,7 +199,8 @@ Features
Multithreaded Generation <multithreading>
new-or-different
Comparing Performance <performance>
- extending
+ c-api
+ Examples of using Numba, Cython, CFFI <extending>
Original Source
~~~~~~~~~~~~~~~
diff --git a/numpy/random/include/bitgen.h b/numpy/core/include/numpy/random/bitgen.h
index 83c2858dd..83c2858dd 100644
--- a/numpy/random/include/bitgen.h
+++ b/numpy/core/include/numpy/random/bitgen.h
diff --git a/numpy/random/include/distributions.h b/numpy/core/include/numpy/random/distributions.h
index c02ea605e..e489e69b8 100644
--- a/numpy/random/include/distributions.h
+++ b/numpy/core/include/numpy/random/distributions.h
@@ -8,7 +8,7 @@
#include <stdint.h>
#include "numpy/npy_math.h"
-#include "include/bitgen.h"
+#include "numpy/random/bitgen.h"
/*
* RAND_INT_TYPE is used to share integer generators with RandomState which
diff --git a/numpy/random/_bit_generator.pxd b/numpy/random/_bit_generator.pxd
index 30fa4a27d..bd5e47a20 100644
--- a/numpy/random/_bit_generator.pxd
+++ b/numpy/random/_bit_generator.pxd
@@ -1,7 +1,7 @@
cimport numpy as np
from libc.stdint cimport uint32_t, uint64_t
-cdef extern from "include/bitgen.h":
+cdef extern from "numpy/random/bitgen.h":
struct bitgen:
void *state
uint64_t (*next_uint64)(void *st) nogil
diff --git a/numpy/random/_bounded_integers.pyx.in b/numpy/random/_bounded_integers.pyx.in
index c0068dab2..7e19471e4 100644
--- a/numpy/random/_bounded_integers.pyx.in
+++ b/numpy/random/_bounded_integers.pyx.in
@@ -8,7 +8,7 @@ __all__ = []
np.import_array()
-cdef extern from "include/distributions.h":
+cdef extern from "numpy/random/distributions.h":
# Generate random numbers in closed interval [off, off + rng].
uint64_t random_bounded_uint64(bitgen_t *bitgen_state,
uint64_t off, uint64_t rng,
diff --git a/numpy/random/_generator.pyx b/numpy/random/_generator.pyx
index b6c222cc0..39d05b32b 100644
--- a/numpy/random/_generator.pyx
+++ b/numpy/random/_generator.pyx
@@ -28,7 +28,7 @@ from ._common cimport (POISSON_LAM_MAX, CONS_POSITIVE, CONS_NONE,
)
-cdef extern from "include/distributions.h":
+cdef extern from "numpy/random/distributions.h":
struct s_binomial_t:
int has_binomial
diff --git a/numpy/random/examples/__init__.py b/numpy/random/examples/__init__.py
new file mode 100644
index 000000000..e69de29bb
--- /dev/null
+++ b/numpy/random/examples/__init__.py
diff --git a/numpy/random/examples/cython/extending.pyx b/numpy/random/examples/cython/extending.pyx
index a6a4ba4bf..2a866648d 100644
--- a/numpy/random/examples/cython/extending.pyx
+++ b/numpy/random/examples/cython/extending.pyx
@@ -8,7 +8,7 @@ import numpy as np
cimport numpy as np
cimport cython
-from numpy.random.common cimport bitgen_t
+from numpy.random._bit_generator cimport bitgen_t
from numpy.random import PCG64
np.import_array()
diff --git a/numpy/random/examples/cython/extending_distributions.pyx b/numpy/random/examples/cython/extending_distributions.pyx
index 3cefec97e..d17da45c1 100644
--- a/numpy/random/examples/cython/extending_distributions.pyx
+++ b/numpy/random/examples/cython/extending_distributions.pyx
@@ -1,21 +1,23 @@
#!/usr/bin/env python
#cython: language_level=3
"""
-This file shows how the distributions that are accessed through
-distributions.pxd can be used Cython code.
+This file shows how the to use a BitGenerator to create a distribution.
"""
import numpy as np
cimport numpy as np
cimport cython
from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer
-from numpy.random.common cimport *
-from numpy.random.distributions cimport random_gauss_zig
+from numpy.random._bit_generator cimport bitgen_t
from numpy.random import PCG64
@cython.boundscheck(False)
@cython.wraparound(False)
-def normals_zig(Py_ssize_t n):
+def uniforms(Py_ssize_t n):
+ """ Create an array of `n` uniformly distributed doubles.
+ A 'real' distribution would want to process the values into
+ some non-uniform distribution
+ """
cdef Py_ssize_t i
cdef bitgen_t *rng
cdef const char *capsule_name = "BitGenerator"
@@ -23,21 +25,25 @@ def normals_zig(Py_ssize_t n):
x = PCG64()
capsule = x.capsule
+ # Optional check that the capsule if from a BitGenerator
if not PyCapsule_IsValid(capsule, capsule_name):
raise ValueError("Invalid pointer to anon_func_state")
+ # Cast the pointer
rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)
- random_values = np.empty(n)
- # Best practice is to release GIL and acquire the lock
+ random_values = np.empty(n, dtype='float64')
with x.lock, nogil:
for i in range(n):
- random_values[i] = random_gauss_zig(rng)
+ # Call the function
+ random_values[i] = rng.next_double(rng.state)
randoms = np.asarray(random_values)
- return randoms
+ return randoms
+
+# cython example 2
@cython.boundscheck(False)
@cython.wraparound(False)
-def uniforms(Py_ssize_t n):
+def uint16_uniforms(Py_ssize_t n):
cdef Py_ssize_t i
cdef bitgen_t *rng
cdef const char *capsule_name = "BitGenerator"
@@ -45,15 +51,13 @@ def uniforms(Py_ssize_t n):
x = PCG64()
capsule = x.capsule
- # Optional check that the capsule if from a BitGenerator
if not PyCapsule_IsValid(capsule, capsule_name):
raise ValueError("Invalid pointer to anon_func_state")
- # Cast the pointer
rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)
- random_values = np.empty(n)
+ random_values = np.empty(n, dtype='uint32')
+ # Best practice is to release GIL and acquire the lock
with x.lock, nogil:
for i in range(n):
- # Call the function
- random_values[i] = rng.next_double(rng.state)
+ random_values[i] = rng.next_uint32(rng.state)
randoms = np.asarray(random_values)
return randoms
diff --git a/numpy/random/examples/cython/setup.py b/numpy/random/examples/cython/setup.py
index 69f057ed5..315527a2d 100644
--- a/numpy/random/examples/cython/setup.py
+++ b/numpy/random/examples/cython/setup.py
@@ -9,15 +9,20 @@ import numpy as np
from distutils.core import setup
from Cython.Build import cythonize
from setuptools.extension import Extension
-from os.path import join
+from os.path import join, abspath, dirname
+
+curpath = abspath(dirname(__file__))
extending = Extension("extending",
- sources=['extending.pyx'],
- include_dirs=[np.get_include()])
+ sources=[join(curpath, 'extending.pyx')],
+ include_dirs=[
+ np.get_include(),
+ join(curpath, '..', '..')
+ ],
+ )
distributions = Extension("extending_distributions",
- sources=['extending_distributions.pyx',
- join('..', '..', 'src',
- 'distributions', 'distributions.c')],
+ sources=[join(curpath, 'extending_distributions.pyx'),
+ ],
include_dirs=[np.get_include()])
extensions = [extending, distributions]
diff --git a/numpy/random/examples/numba/extending.py b/numpy/random/examples/numba/extending.py
index d41c2d76f..0d240596b 100644
--- a/numpy/random/examples/numba/extending.py
+++ b/numpy/random/examples/numba/extending.py
@@ -1,14 +1,57 @@
-import datetime as dt
-
import numpy as np
import numba as nb
from numpy.random import PCG64
+from timeit import timeit
+
+bit_gen = PCG64()
+next_d = bit_gen.cffi.next_double
+state_addr = bit_gen.cffi.state_address
+
+def normals(n, state):
+ out = np.empty(n)
+ for i in range((n + 1) // 2):
+ x1 = 2.0 * next_d(state) - 1.0
+ x2 = 2.0 * next_d(state) - 1.0
+ r2 = x1 * x1 + x2 * x2
+ while r2 >= 1.0 or r2 == 0.0:
+ x1 = 2.0 * next_d(state) - 1.0
+ x2 = 2.0 * next_d(state) - 1.0
+ r2 = x1 * x1 + x2 * x2
+ f = np.sqrt(-2.0 * np.log(r2) / r2)
+ out[2 * i] = f * x1
+ if 2 * i + 1 < n:
+ out[2 * i + 1] = f * x2
+ return out
+
+# Compile using Numba
+normalsj = nb.jit(normals, nopython=True)
+# Must use state address not state with numba
+n = 10000
+
+def numbacall():
+ return normalsj(n, state_addr)
+
+rg = np.random.Generator(PCG64())
-x = PCG64()
-f = x.ctypes.next_uint32
-s = x.ctypes.state
+def numpycall():
+ return rg.normal(size=n)
+# Check that the functions work
+r1 = numbacall()
+r2 = numpycall()
+assert r1.shape == (n,)
+assert r1.shape == r2.shape
+
+t1 = timeit(numbacall, number=1000)
+print('{:.2f} secs for {} PCG64 (Numba/PCG64) gaussian randoms'.format(t1, n))
+t2 = timeit(numpycall, number=1000)
+print('{:.2f} secs for {} PCG64 (NumPy/PCG64) gaussian randoms'.format(t2, n))
+
+# example 2
+
+next_u32 = bit_gen.ctypes.next_uint32
+ctypes_state = bit_gen.ctypes.state
@nb.jit(nopython=True)
def bounded_uint(lb, ub, state):
@@ -19,14 +62,14 @@ def bounded_uint(lb, ub, state):
mask |= mask >> 8
mask |= mask >> 16
- val = f(state) & mask
+ val = next_u32(state) & mask
while val > delta:
- val = f(state) & mask
+ val = next_u32(state) & mask
return lb + val
-print(bounded_uint(323, 2394691, s.value))
+print(bounded_uint(323, 2394691, ctypes_state.value))
@nb.jit(nopython=True)
@@ -36,42 +79,6 @@ def bounded_uints(lb, ub, n, state):
out[i] = bounded_uint(lb, ub, state)
-bounded_uints(323, 2394691, 10000000, s.value)
-
-g = x.cffi.next_double
-cffi_state = x.cffi.state
-state_addr = x.cffi.state_address
-
-
-def normals(n, state):
- out = np.empty(n)
- for i in range((n + 1) // 2):
- x1 = 2.0 * g(state) - 1.0
- x2 = 2.0 * g(state) - 1.0
- r2 = x1 * x1 + x2 * x2
- while r2 >= 1.0 or r2 == 0.0:
- x1 = 2.0 * g(state) - 1.0
- x2 = 2.0 * g(state) - 1.0
- r2 = x1 * x1 + x2 * x2
- f = np.sqrt(-2.0 * np.log(r2) / r2)
- out[2 * i] = f * x1
- if 2 * i + 1 < n:
- out[2 * i + 1] = f * x2
- return out
+bounded_uints(323, 2394691, 10000000, ctypes_state.value)
-print(normals(10, cffi_state).var())
-# Warm up
-normalsj = nb.jit(normals, nopython=True)
-normalsj(1, state_addr)
-
-start = dt.datetime.now()
-normalsj(1000000, state_addr)
-ms = 1000 * (dt.datetime.now() - start).total_seconds()
-print('1,000,000 Polar-transform (numba/PCG64) randoms in '
- '{ms:0.1f}ms'.format(ms=ms))
-
-start = dt.datetime.now()
-np.random.standard_normal(1000000)
-ms = 1000 * (dt.datetime.now() - start).total_seconds()
-print('1,000,000 Polar-transform (NumPy) randoms in {ms:0.1f}ms'.format(ms=ms))
diff --git a/numpy/random/include/legacy-distributions.h b/numpy/random/include/legacy-distributions.h
index 6a0fc7dc4..b8ba0841c 100644
--- a/numpy/random/include/legacy-distributions.h
+++ b/numpy/random/include/legacy-distributions.h
@@ -2,7 +2,7 @@
#define _RANDOMDGEN__DISTRIBUTIONS_LEGACY_H_
-#include "distributions.h"
+#include "numpy/random/distributions.h"
typedef struct aug_bitgen {
bitgen_t *bit_generator;
diff --git a/numpy/random/mtrand.pyx b/numpy/random/mtrand.pyx
index b21607282..691a6e6e7 100644
--- a/numpy/random/mtrand.pyx
+++ b/numpy/random/mtrand.pyx
@@ -25,7 +25,7 @@ from ._common cimport (POISSON_LAM_MAX, CONS_POSITIVE, CONS_NONE,
check_array_constraint, check_constraint, disc, discrete_broadcast_iii,
)
-cdef extern from "include/distributions.h":
+cdef extern from "numpy/random/distributions.h":
struct s_binomial_t:
int has_binomial
double psave
diff --git a/numpy/random/setup.py b/numpy/random/setup.py
index f9059d7d7..93d5144ea 100644
--- a/numpy/random/setup.py
+++ b/numpy/random/setup.py
@@ -34,6 +34,7 @@ def configuration(parent_package='', top_path=None):
defs.append(('NPY_NO_DEPRECATED_API', 0))
config.add_data_dir('tests')
+ config.add_data_dir('examples')
EXTRA_LINK_ARGS = []
# Math lib
@@ -92,6 +93,7 @@ def configuration(parent_package='', top_path=None):
depends=['%s.pyx' % gen, '%s.pxd' % gen,],
define_macros=defs,
)
+ config.add_data_files('{0}.pxd'.format(gen))
other_srcs = [
'src/distributions/logfactorial.c',
'src/distributions/distributions.c',
@@ -110,6 +112,7 @@ def configuration(parent_package='', top_path=None):
depends=['%s.pyx' % gen],
define_macros=defs,
)
+ config.add_data_files('_bounded_inteters.pxd')
config.add_extension('mtrand',
sources=['mtrand.c',
'src/legacy/legacy-distributions.c',
diff --git a/numpy/random/src/distributions/distributions.c b/numpy/random/src/distributions/distributions.c
index ab8de8bcb..df3323408 100644
--- a/numpy/random/src/distributions/distributions.c
+++ b/numpy/random/src/distributions/distributions.c
@@ -1,4 +1,4 @@
-#include "include/distributions.h"
+#include "numpy/random/distributions.h"
#include "ziggurat_constants.h"
#include "logfactorial.h"
diff --git a/numpy/random/src/distributions/random_hypergeometric.c b/numpy/random/src/distributions/random_hypergeometric.c
index da5ea9c68..0da49bd62 100644
--- a/numpy/random/src/distributions/random_hypergeometric.c
+++ b/numpy/random/src/distributions/random_hypergeometric.c
@@ -1,4 +1,4 @@
-#include "include/distributions.h"
+#include "numpy/random/distributions.h"
#include "logfactorial.h"
#include <stdint.h>
diff --git a/numpy/random/src/distributions/random_mvhg_count.c b/numpy/random/src/distributions/random_mvhg_count.c
index 9c0cc045d..0c46ea417 100644
--- a/numpy/random/src/distributions/random_mvhg_count.c
+++ b/numpy/random/src/distributions/random_mvhg_count.c
@@ -2,7 +2,7 @@
#include <stdlib.h>
#include <stdbool.h>
-#include "include/distributions.h"
+#include "numpy/random/distributions.h"
/*
* random_mvhg_count
diff --git a/numpy/random/src/distributions/random_mvhg_marginals.c b/numpy/random/src/distributions/random_mvhg_marginals.c
index 301a4acad..7e4c24988 100644
--- a/numpy/random/src/distributions/random_mvhg_marginals.c
+++ b/numpy/random/src/distributions/random_mvhg_marginals.c
@@ -3,7 +3,7 @@
#include <stdbool.h>
#include <math.h>
-#include "include/distributions.h"
+#include "numpy/random/distributions.h"
#include "logfactorial.h"
diff --git a/numpy/random/tests/test_extending.py b/numpy/random/tests/test_extending.py
new file mode 100644
index 000000000..01e43b9e8
--- /dev/null
+++ b/numpy/random/tests/test_extending.py
@@ -0,0 +1,32 @@
+import os, sys
+import pytest
+import warnings
+
+try:
+ with warnings.catch_warnings(record=True) as w:
+ # numba issue gh-4733
+ warnings.filterwarnings('always', '', DeprecationWarning)
+ import numba
+ import cffi
+except ImportError:
+ numba = None
+
+def test_cython():
+ curdir = os.getcwd()
+ argv = sys.argv
+ examples = (os.path.dirname(__file__), '..', 'examples')
+ try:
+ os.chdir(os.path.join(*examples))
+ sys.argv = argv[:1] + ['build']
+ with warnings.catch_warnings(record=True) as w:
+ # setuptools issue gh-1885
+ warnings.filterwarnings('always', '', DeprecationWarning)
+ from numpy.random.examples.cython import setup
+ finally:
+ sys.argv = argv
+ os.chdir(curdir)
+
+@pytest.mark.skipif(numba is None, reason="requires numba")
+def test_numba():
+ from numpy.random.examples.numba import extending
+
diff --git a/numpy/tests/test_public_api.py b/numpy/tests/test_public_api.py
index c71d03432..ba3961bef 100644
--- a/numpy/tests/test_public_api.py
+++ b/numpy/tests/test_public_api.py
@@ -334,6 +334,7 @@ SKIP_LIST = [
"numpy.core.cversions",
"numpy.core.generate_numpy_api",
"numpy.distutils.msvc9compiler",
+ 'numpy.random.examples',
]
@@ -386,7 +387,7 @@ SKIP_LIST_2 = [
'numpy.matlib.fft',
'numpy.matlib.random',
'numpy.matlib.ctypeslib',
- 'numpy.matlib.ma'
+ 'numpy.matlib.ma',
]