diff options
author | Alan McIntyre <alan.mcintyre@local> | 2008-07-05 14:26:16 +0000 |
---|---|---|
committer | Alan McIntyre <alan.mcintyre@local> | 2008-07-05 14:26:16 +0000 |
commit | 36e02207c1a82fe669531dd24ec799eca2989c80 (patch) | |
tree | 104f800d6800c4a01a0aecac323a8a70517aa94b /numpy/add_newdocs.py | |
parent | f07e385b69ee59ef6abe05f164138dc6a7279291 (diff) | |
download | numpy-36e02207c1a82fe669531dd24ec799eca2989c80.tar.gz |
Use the implicit "import numpy as np" made available to all doctests instead
of explicit imports or dependency on the local scope where the doctest is
defined..
Diffstat (limited to 'numpy/add_newdocs.py')
-rw-r--r-- | numpy/add_newdocs.py | 76 |
1 files changed, 38 insertions, 38 deletions
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py index c44ba9094..eb1083df7 100644 --- a/numpy/add_newdocs.py +++ b/numpy/add_newdocs.py @@ -19,46 +19,46 @@ Examples -------- Using array-scalar type: ->>> dtype(int16) +>>> np.dtype(np.int16) dtype('int16') Record, one field name 'f1', containing int16: ->>> dtype([('f1', int16)]) +>>> np.dtype([('f1', np.int16)]) dtype([('f1', '<i2')]) Record, one field named 'f1', in itself containing a record with one field: ->>> dtype([('f1', [('f1', int16)])]) +>>> np.dtype([('f1', [('f1', np.int16)])]) dtype([('f1', [('f1', '<i2')])]) Record, two fields: the first field contains an unsigned int, the second an int32: ->>> dtype([('f1', uint), ('f2', int32)]) +>>> np.dtype([('f1', np.uint), ('f2', np.int32)]) dtype([('f1', '<u4'), ('f2', '<i4')]) Using array-protocol type strings: ->>> dtype([('a','f8'),('b','S10')]) +>>> np.dtype([('a','f8'),('b','S10')]) dtype([('a', '<f8'), ('b', '|S10')]) Using comma-separated field formats. The shape is (2,3): ->>> dtype("i4, (2,3)f8") +>>> np.dtype("i4, (2,3)f8") dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))]) Using tuples. ``int`` is a fixed type, 3 the field's shape. ``void`` is a flexible type, here of size 10: ->>> dtype([('hello',(int,3)),('world',void,10)]) +>>> np.dtype([('hello',(np.int,3)),('world',np.void,10)]) dtype([('hello', '<i4', 3), ('world', '|V10')]) Subdivide ``int16`` into 2 ``int8``'s, called x and y. 0 and 1 are the offsets in bytes: ->>> dtype((int16, {'x':(int8,0), 'y':(int8,1)})) +>>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)})) dtype(('<i2', [('x', '|i1'), ('y', '|i1')])) Using dictionaries. Two fields named 'gender' and 'age': ->>> dtype({'names':['gender','age'], 'formats':['S1',uint8]}) +>>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]}) dtype([('gender', '|S1'), ('age', '|u1')]) Offsets in bytes, here 0 and 25: ->>> dtype({'surname':('S25',0),'age':(uint8,25)}) +>>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)}) dtype([('surname', '|S25'), ('age', '|u1')]) """) @@ -386,7 +386,7 @@ add_newdoc('numpy.core.multiarray','concatenate', Examples -------- - >>> concatenate( ([0,1,2], [5,6,7]) ) + >>> np.concatenate( ([0,1,2], [5,6,7]) ) array([0, 1, 2, 5, 6, 7]) """) @@ -480,7 +480,7 @@ add_newdoc('numpy.core.multiarray','where', Examples -------- - >>> where([True,False,True],[1,2,3],[4,5,6]) + >>> np.where([True,False,True],[1,2,3],[4,5,6]) array([1, 5, 3]) """) @@ -520,12 +520,12 @@ add_newdoc('numpy.core.multiarray','lexsort', -------- >>> a = [1,5,1,4,3,6,7] >>> b = [9,4,0,4,0,4,3] - >>> ind = lexsort((b,a)) + >>> ind = np.lexsort((b,a)) >>> print ind [2 0 4 3 1 5 6] - >>> print take(a,ind) + >>> print np.take(a,ind) [1 1 3 4 5 6 7] - >>> print take(b,ind) + >>> print np.take(b,ind) [0 9 0 4 4 4 3] """) @@ -858,7 +858,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax', Examples -------- - >>> a = arange(6).reshape(2,3) + >>> a = np.arange(6).reshape(2,3) >>> a.argmax() 5 >>> a.argmax(0) @@ -889,7 +889,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin', Examples -------- - >>> a = arange(6).reshape(2,3) + >>> a = np.arange(6).reshape(2,3) >>> a.argmin() 0 >>> a.argmin(0) @@ -1008,10 +1008,10 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('choose', -------- >>> choices = [[0, 1, 2, 3], [10, 11, 12, 13], ... [20, 21, 22, 23], [30, 31, 32, 33]] - >>> a = array([2, 3, 1, 0], dtype=int) + >>> a = np.array([2, 3, 1, 0], dtype=int) >>> a.choose(choices) array([20, 31, 12, 3]) - >>> a = array([2, 4, 1, 0], dtype=int) + >>> a = np.array([2, 4, 1, 0], dtype=int) >>> a.choose(choices, mode='clip') array([20, 31, 12, 3]) >>> a.choose(choices, mode='wrap') @@ -1226,7 +1226,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal', Examples -------- - >>> a = arange(4).reshape(2,2) + >>> a = np.arange(4).reshape(2,2) >>> a array([[0, 1], [2, 3]]) @@ -1235,7 +1235,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal', >>> a.diagonal(1) array([1]) - >>> a = arange(8).reshape(2,2,2) + >>> a = np.arange(8).reshape(2,2,2) >>> a array([[[0, 1], [2, 3]], @@ -1462,13 +1462,13 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('prod', Examples -------- - >>> prod([1.,2.]) + >>> np.prod([1.,2.]) 2.0 - >>> prod([1.,2.], dtype=int32) + >>> np.prod([1.,2.], dtype=np.int32) 2 - >>> prod([[1.,2.],[3.,4.]]) + >>> np.prod([[1.,2.],[3.,4.]]) 24.0 - >>> prod([[1.,2.],[3.,4.]], axis=1) + >>> np.prod([[1.,2.],[3.,4.]], axis=1) array([ 2., 12.]) Notes @@ -1599,7 +1599,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel', Examples -------- - >>> x = array([[1,2,3],[4,5,6]]) + >>> x = np.array([[1,2,3],[4,5,6]]) >>> x array([[1, 2, 3], [4, 5, 6]]) @@ -1637,7 +1637,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat', Examples -------- - >>> x = array([[1,2],[3,4]]) + >>> x = np.array([[1,2],[3,4]]) >>> x.repeat(2) array([1, 1, 2, 2, 3, 3, 4, 4]) >>> x.repeat(3, axis=1) @@ -1725,10 +1725,10 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('round', Examples -------- - >>> x = array([.5, 1.5, 2.5, 3.5, 4.5]) + >>> x = np.array([.5, 1.5, 2.5, 3.5, 4.5]) >>> x.round() array([ 0., 2., 2., 4., 4.]) - >>> x = array([1,2,3,11]) + >>> x = np.array([1,2,3,11]) >>> x.round(decimals=1) array([ 1, 2, 3, 11]) >>> x.round(decimals=-1) @@ -1840,7 +1840,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze', Examples -------- - >>> x = array([[[1,1,1],[2,2,2],[3,3,3]]]) + >>> x = np.array([[[1,1,1],[2,2,2],[3,3,3]]]) >>> x.shape (1, 3, 3) >>> x.squeeze().shape @@ -1929,15 +1929,15 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('sum', Examples -------- - >>> array([0.5, 1.5]).sum() + >>> np.array([0.5, 1.5]).sum() 2.0 - >>> array([0.5, 1.5]).sum(dtype=int32) + >>> np.array([0.5, 1.5]).sum(dtype=np.int32) 1 - >>> array([[0, 1], [0, 5]]).sum(axis=0) + >>> np.array([[0, 1], [0, 5]]).sum(axis=0) array([0, 6]) - >>> array([[0, 1], [0, 5]]).sum(axis=1) + >>> np.array([[0, 1], [0, 5]]).sum(axis=1) array([1, 5]) - >>> ones(128, dtype=int8).sum(dtype=int8) # overflow! + >>> np.ones(128, dtype=np.int8).sum(dtype=np.int8) # overflow! -128 Notes @@ -2120,9 +2120,9 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('trace', Examples -------- - >>> eye(3).trace() + >>> np.eye(3).trace() 3.0 - >>> a = arange(8).reshape((2,2,2)) + >>> a = np.arange(8).reshape((2,2,2)) >>> a.trace() array([6, 8]) @@ -2139,7 +2139,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose', Examples -------- - >>> a = array([[1,2],[3,4]]) + >>> a = np.array([[1,2],[3,4]]) >>> a array([[1, 2], [3, 4]]) |