summaryrefslogtreecommitdiff
path: root/numpy/oldnumeric/functions.py
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2013-08-18 18:40:28 -0600
committerCharles Harris <charlesr.harris@gmail.com>2013-09-23 15:11:12 -0600
commit3beebbc0164afbbcc2b6840cf56174c6c073bb40 (patch)
tree5eece25d48cd246d78a94e3fcda8c565b6d78258 /numpy/oldnumeric/functions.py
parent2a1705f4932f446c67074e46bd5fa9098920122d (diff)
downloadnumpy-3beebbc0164afbbcc2b6840cf56174c6c073bb40.tar.gz
DEP: Remove deprecated modules numarray and oldnumeric.
They were deprecated in 1.8 and scheduled for removal in 1.9. Closes #3637.
Diffstat (limited to 'numpy/oldnumeric/functions.py')
-rw-r--r--numpy/oldnumeric/functions.py127
1 files changed, 0 insertions, 127 deletions
diff --git a/numpy/oldnumeric/functions.py b/numpy/oldnumeric/functions.py
deleted file mode 100644
index 156a09a43..000000000
--- a/numpy/oldnumeric/functions.py
+++ /dev/null
@@ -1,127 +0,0 @@
-"""Functions that should behave the same as Numeric and need changing
-
-"""
-from __future__ import division, absolute_import, print_function
-
-import numpy as np
-import numpy.core.multiarray as mu
-import numpy.core.numeric as nn
-from .typeconv import convtypecode, convtypecode2
-
-__all__ = ['take', 'repeat', 'sum', 'product', 'sometrue', 'alltrue',
- 'cumsum', 'cumproduct', 'compress', 'fromfunction',
- 'ones', 'empty', 'identity', 'zeros', 'array', 'asarray',
- 'nonzero', 'reshape', 'arange', 'fromstring', 'ravel', 'trace',
- 'indices', 'where', 'sarray', 'cross_product', 'argmax', 'argmin',
- 'average']
-
-def take(a, indicies, axis=0):
- return np.take(a, indicies, axis)
-
-def repeat(a, repeats, axis=0):
- return np.repeat(a, repeats, axis)
-
-def sum(x, axis=0):
- return np.sum(x, axis)
-
-def product(x, axis=0):
- return np.product(x, axis)
-
-def sometrue(x, axis=0):
- return np.sometrue(x, axis)
-
-def alltrue(x, axis=0):
- return np.alltrue(x, axis)
-
-def cumsum(x, axis=0):
- return np.cumsum(x, axis)
-
-def cumproduct(x, axis=0):
- return np.cumproduct(x, axis)
-
-def argmax(x, axis=-1):
- return np.argmax(x, axis)
-
-def argmin(x, axis=-1):
- return np.argmin(x, axis)
-
-def compress(condition, m, axis=-1):
- return np.compress(condition, m, axis)
-
-def fromfunction(args, dimensions):
- return np.fromfunction(args, dimensions, dtype=int)
-
-def ones(shape, typecode='l', savespace=0, dtype=None):
- """ones(shape, dtype=int) returns an array of the given
- dimensions which is initialized to all ones.
- """
- dtype = convtypecode(typecode, dtype)
- a = mu.empty(shape, dtype)
- a.fill(1)
- return a
-
-def zeros(shape, typecode='l', savespace=0, dtype=None):
- """zeros(shape, dtype=int) returns an array of the given
- dimensions which is initialized to all zeros
- """
- dtype = convtypecode(typecode, dtype)
- return mu.zeros(shape, dtype)
-
-def identity(n,typecode='l', dtype=None):
- """identity(n) returns the identity 2-d array of shape n x n.
- """
- dtype = convtypecode(typecode, dtype)
- return nn.identity(n, dtype)
-
-def empty(shape, typecode='l', dtype=None):
- dtype = convtypecode(typecode, dtype)
- return mu.empty(shape, dtype)
-
-def array(sequence, typecode=None, copy=1, savespace=0, dtype=None):
- dtype = convtypecode2(typecode, dtype)
- return mu.array(sequence, dtype, copy=copy)
-
-def sarray(a, typecode=None, copy=False, dtype=None):
- dtype = convtypecode2(typecode, dtype)
- return mu.array(a, dtype, copy)
-
-def asarray(a, typecode=None, dtype=None):
- dtype = convtypecode2(typecode, dtype)
- return mu.array(a, dtype, copy=0)
-
-def nonzero(a):
- res = np.nonzero(a)
- if len(res) == 1:
- return res[0]
- else:
- raise ValueError("Input argument must be 1d")
-
-def reshape(a, shape):
- return np.reshape(a, shape)
-
-def arange(start, stop=None, step=1, typecode=None, dtype=None):
- dtype = convtypecode2(typecode, dtype)
- return mu.arange(start, stop, step, dtype)
-
-def fromstring(string, typecode='l', count=-1, dtype=None):
- dtype = convtypecode(typecode, dtype)
- return mu.fromstring(string, dtype, count=count)
-
-def ravel(m):
- return np.ravel(m)
-
-def trace(a, offset=0, axis1=0, axis2=1):
- return np.trace(a, offset=0, axis1=0, axis2=1)
-
-def indices(dimensions, typecode=None, dtype=None):
- dtype = convtypecode(typecode, dtype)
- return np.indices(dimensions, dtype)
-
-def where(condition, x, y):
- return np.where(condition, x, y)
-
-def cross_product(a, b, axis1=-1, axis2=-1):
- return np.cross(a, b, axis1, axis2)
-
-def average(a, axis=0, weights=None, returned=False):
- return np.average(a, axis, weights, returned)