diff options
Diffstat (limited to 'numpy/oldnumeric/functions.py')
-rw-r--r-- | numpy/oldnumeric/functions.py | 127 |
1 files changed, 0 insertions, 127 deletions
diff --git a/numpy/oldnumeric/functions.py b/numpy/oldnumeric/functions.py deleted file mode 100644 index 156a09a43..000000000 --- a/numpy/oldnumeric/functions.py +++ /dev/null @@ -1,127 +0,0 @@ -"""Functions that should behave the same as Numeric and need changing - -""" -from __future__ import division, absolute_import, print_function - -import numpy as np -import numpy.core.multiarray as mu -import numpy.core.numeric as nn -from .typeconv import convtypecode, convtypecode2 - -__all__ = ['take', 'repeat', 'sum', 'product', 'sometrue', 'alltrue', - 'cumsum', 'cumproduct', 'compress', 'fromfunction', - 'ones', 'empty', 'identity', 'zeros', 'array', 'asarray', - 'nonzero', 'reshape', 'arange', 'fromstring', 'ravel', 'trace', - 'indices', 'where', 'sarray', 'cross_product', 'argmax', 'argmin', - 'average'] - -def take(a, indicies, axis=0): - return np.take(a, indicies, axis) - -def repeat(a, repeats, axis=0): - return np.repeat(a, repeats, axis) - -def sum(x, axis=0): - return np.sum(x, axis) - -def product(x, axis=0): - return np.product(x, axis) - -def sometrue(x, axis=0): - return np.sometrue(x, axis) - -def alltrue(x, axis=0): - return np.alltrue(x, axis) - -def cumsum(x, axis=0): - return np.cumsum(x, axis) - -def cumproduct(x, axis=0): - return np.cumproduct(x, axis) - -def argmax(x, axis=-1): - return np.argmax(x, axis) - -def argmin(x, axis=-1): - return np.argmin(x, axis) - -def compress(condition, m, axis=-1): - return np.compress(condition, m, axis) - -def fromfunction(args, dimensions): - return np.fromfunction(args, dimensions, dtype=int) - -def ones(shape, typecode='l', savespace=0, dtype=None): - """ones(shape, dtype=int) returns an array of the given - dimensions which is initialized to all ones. - """ - dtype = convtypecode(typecode, dtype) - a = mu.empty(shape, dtype) - a.fill(1) - return a - -def zeros(shape, typecode='l', savespace=0, dtype=None): - """zeros(shape, dtype=int) returns an array of the given - dimensions which is initialized to all zeros - """ - dtype = convtypecode(typecode, dtype) - return mu.zeros(shape, dtype) - -def identity(n,typecode='l', dtype=None): - """identity(n) returns the identity 2-d array of shape n x n. - """ - dtype = convtypecode(typecode, dtype) - return nn.identity(n, dtype) - -def empty(shape, typecode='l', dtype=None): - dtype = convtypecode(typecode, dtype) - return mu.empty(shape, dtype) - -def array(sequence, typecode=None, copy=1, savespace=0, dtype=None): - dtype = convtypecode2(typecode, dtype) - return mu.array(sequence, dtype, copy=copy) - -def sarray(a, typecode=None, copy=False, dtype=None): - dtype = convtypecode2(typecode, dtype) - return mu.array(a, dtype, copy) - -def asarray(a, typecode=None, dtype=None): - dtype = convtypecode2(typecode, dtype) - return mu.array(a, dtype, copy=0) - -def nonzero(a): - res = np.nonzero(a) - if len(res) == 1: - return res[0] - else: - raise ValueError("Input argument must be 1d") - -def reshape(a, shape): - return np.reshape(a, shape) - -def arange(start, stop=None, step=1, typecode=None, dtype=None): - dtype = convtypecode2(typecode, dtype) - return mu.arange(start, stop, step, dtype) - -def fromstring(string, typecode='l', count=-1, dtype=None): - dtype = convtypecode(typecode, dtype) - return mu.fromstring(string, dtype, count=count) - -def ravel(m): - return np.ravel(m) - -def trace(a, offset=0, axis1=0, axis2=1): - return np.trace(a, offset=0, axis1=0, axis2=1) - -def indices(dimensions, typecode=None, dtype=None): - dtype = convtypecode(typecode, dtype) - return np.indices(dimensions, dtype) - -def where(condition, x, y): - return np.where(condition, x, y) - -def cross_product(a, b, axis1=-1, axis2=-1): - return np.cross(a, b, axis1, axis2) - -def average(a, axis=0, weights=None, returned=False): - return np.average(a, axis, weights, returned) |