summaryrefslogtreecommitdiff
path: root/numpy
diff options
context:
space:
mode:
authorczgdp1807 <gdp.1807@gmail.com>2021-06-09 15:42:28 +0530
committerczgdp1807 <gdp.1807@gmail.com>2021-06-09 15:42:28 +0530
commitab01330d16ec77c2bc232ce696ce3ab2be9e51d0 (patch)
tree95e5ec28afe5c5484df97e0348b0484e865a4b7e /numpy
parent3268a48ba4c0e7ae97dc358fa85e7c1b09d7cb21 (diff)
parentb9a63f5052b0ba5a7a5b2616ddcc1754df177bd3 (diff)
downloadnumpy-ab01330d16ec77c2bc232ce696ce3ab2be9e51d0.tar.gz
Merge branch 'main' into never_copy
Diffstat (limited to 'numpy')
-rw-r--r--numpy/lib/polynomial.py9
-rw-r--r--numpy/polynomial/_polybase.py10
-rw-r--r--numpy/polynomial/chebyshev.py9
-rw-r--r--numpy/polynomial/hermite.py9
-rw-r--r--numpy/polynomial/hermite_e.py9
-rw-r--r--numpy/polynomial/laguerre.py9
-rw-r--r--numpy/polynomial/legendre.py9
-rw-r--r--numpy/polynomial/polynomial.py9
8 files changed, 41 insertions, 32 deletions
diff --git a/numpy/lib/polynomial.py b/numpy/lib/polynomial.py
index 56fcce621..23021cafa 100644
--- a/numpy/lib/polynomial.py
+++ b/numpy/lib/polynomial.py
@@ -489,8 +489,11 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False):
default) just the coefficients are returned, when True diagnostic
information from the singular value decomposition is also returned.
w : array_like, shape (M,), optional
- Weights to apply to the y-coordinates of the sample points. For
- gaussian uncertainties, use 1/sigma (not 1/sigma**2).
+ Weights. If not None, the weight ``w[i]`` applies to the unsquared
+ residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
+ chosen so that the errors of the products ``w[i]*y[i]`` all have the
+ same variance. When using inverse-variance weighting, use
+ ``w[i] = 1/sigma(y[i])``. The default value is None.
cov : bool or str, optional
If given and not `False`, return not just the estimate but also its
covariance matrix. By default, the covariance are scaled by
@@ -498,7 +501,7 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False):
to be unreliable except in a relative sense and everything is scaled
such that the reduced chi2 is unity. This scaling is omitted if
``cov='unscaled'``, as is relevant for the case that the weights are
- 1/sigma**2, with sigma known to be a reliable estimate of the
+ w = 1/sigma, with sigma known to be a reliable estimate of the
uncertainty.
Returns
diff --git a/numpy/polynomial/_polybase.py b/numpy/polynomial/_polybase.py
index b04b8e66b..5525b232b 100644
--- a/numpy/polynomial/_polybase.py
+++ b/numpy/polynomial/_polybase.py
@@ -936,11 +936,11 @@ class ABCPolyBase(abc.ABC):
diagnostic information from the singular value decomposition is
also returned.
w : array_like, shape (M,), optional
- Weights. If not None the contribution of each point
- ``(x[i],y[i])`` to the fit is weighted by ``w[i]``. Ideally the
- weights are chosen so that the errors of the products
- ``w[i]*y[i]`` all have the same variance. The default value is
- None.
+ Weights. If not None, the weight ``w[i]`` applies to the unsquared
+ residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
+ chosen so that the errors of the products ``w[i]*y[i]`` all have
+ the same variance. When using inverse-variance weighting, use
+ ``w[i] = 1/sigma(y[i])``. The default value is None.
.. versionadded:: 1.5.0
window : {[beg, end]}, optional
diff --git a/numpy/polynomial/chebyshev.py b/numpy/polynomial/chebyshev.py
index d24fc738f..210000ec4 100644
--- a/numpy/polynomial/chebyshev.py
+++ b/numpy/polynomial/chebyshev.py
@@ -1582,10 +1582,11 @@ def chebfit(x, y, deg, rcond=None, full=False, w=None):
default) just the coefficients are returned, when True diagnostic
information from the singular value decomposition is also returned.
w : array_like, shape (`M`,), optional
- Weights. If not None, the contribution of each point
- ``(x[i],y[i])`` to the fit is weighted by ``w[i]``. Ideally the
- weights are chosen so that the errors of the products ``w[i]*y[i]``
- all have the same variance. The default value is None.
+ Weights. If not None, the weight ``w[i]`` applies to the unsquared
+ residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
+ chosen so that the errors of the products ``w[i]*y[i]`` all have the
+ same variance. When using inverse-variance weighting, use
+ ``w[i] = 1/sigma(y[i])``. The default value is None.
.. versionadded:: 1.5.0
diff --git a/numpy/polynomial/hermite.py b/numpy/polynomial/hermite.py
index eef5c25b2..c1b9f71c0 100644
--- a/numpy/polynomial/hermite.py
+++ b/numpy/polynomial/hermite.py
@@ -1310,10 +1310,11 @@ def hermfit(x, y, deg, rcond=None, full=False, w=None):
default) just the coefficients are returned, when True diagnostic
information from the singular value decomposition is also returned.
w : array_like, shape (`M`,), optional
- Weights. If not None, the contribution of each point
- ``(x[i],y[i])`` to the fit is weighted by ``w[i]``. Ideally the
- weights are chosen so that the errors of the products ``w[i]*y[i]``
- all have the same variance. The default value is None.
+ Weights. If not None, the weight ``w[i]`` applies to the unsquared
+ residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
+ chosen so that the errors of the products ``w[i]*y[i]`` all have the
+ same variance. When using inverse-variance weighting, use
+ ``w[i] = 1/sigma(y[i])``. The default value is None.
Returns
-------
diff --git a/numpy/polynomial/hermite_e.py b/numpy/polynomial/hermite_e.py
index 05d1337b0..b7095c910 100644
--- a/numpy/polynomial/hermite_e.py
+++ b/numpy/polynomial/hermite_e.py
@@ -1301,10 +1301,11 @@ def hermefit(x, y, deg, rcond=None, full=False, w=None):
default) just the coefficients are returned, when True diagnostic
information from the singular value decomposition is also returned.
w : array_like, shape (`M`,), optional
- Weights. If not None, the contribution of each point
- ``(x[i],y[i])`` to the fit is weighted by ``w[i]``. Ideally the
- weights are chosen so that the errors of the products ``w[i]*y[i]``
- all have the same variance. The default value is None.
+ Weights. If not None, the weight ``w[i]`` applies to the unsquared
+ residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
+ chosen so that the errors of the products ``w[i]*y[i]`` all have the
+ same variance. When using inverse-variance weighting, use
+ ``w[i] = 1/sigma(y[i])``. The default value is None.
Returns
-------
diff --git a/numpy/polynomial/laguerre.py b/numpy/polynomial/laguerre.py
index 69d557510..d3b6432dc 100644
--- a/numpy/polynomial/laguerre.py
+++ b/numpy/polynomial/laguerre.py
@@ -1307,10 +1307,11 @@ def lagfit(x, y, deg, rcond=None, full=False, w=None):
default) just the coefficients are returned, when True diagnostic
information from the singular value decomposition is also returned.
w : array_like, shape (`M`,), optional
- Weights. If not None, the contribution of each point
- ``(x[i],y[i])`` to the fit is weighted by ``w[i]``. Ideally the
- weights are chosen so that the errors of the products ``w[i]*y[i]``
- all have the same variance. The default value is None.
+ Weights. If not None, the weight ``w[i]`` applies to the unsquared
+ residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
+ chosen so that the errors of the products ``w[i]*y[i]`` all have the
+ same variance. When using inverse-variance weighting, use
+ ``w[i] = 1/sigma(y[i])``. The default value is None.
Returns
-------
diff --git a/numpy/polynomial/legendre.py b/numpy/polynomial/legendre.py
index cd4da2a79..d4cf4accf 100644
--- a/numpy/polynomial/legendre.py
+++ b/numpy/polynomial/legendre.py
@@ -1321,10 +1321,11 @@ def legfit(x, y, deg, rcond=None, full=False, w=None):
default) just the coefficients are returned, when True diagnostic
information from the singular value decomposition is also returned.
w : array_like, shape (`M`,), optional
- Weights. If not None, the contribution of each point
- ``(x[i],y[i])`` to the fit is weighted by ``w[i]``. Ideally the
- weights are chosen so that the errors of the products ``w[i]*y[i]``
- all have the same variance. The default value is None.
+ Weights. If not None, the weight ``w[i]`` applies to the unsquared
+ residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
+ chosen so that the errors of the products ``w[i]*y[i]`` all have the
+ same variance. When using inverse-variance weighting, use
+ ``w[i] = 1/sigma(y[i])``. The default value is None.
.. versionadded:: 1.5.0
diff --git a/numpy/polynomial/polynomial.py b/numpy/polynomial/polynomial.py
index 940eed5e3..d8a032068 100644
--- a/numpy/polynomial/polynomial.py
+++ b/numpy/polynomial/polynomial.py
@@ -1252,10 +1252,11 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None):
diagnostic information from the singular value decomposition (used
to solve the fit's matrix equation) is also returned.
w : array_like, shape (`M`,), optional
- Weights. If not None, the contribution of each point
- ``(x[i],y[i])`` to the fit is weighted by ``w[i]``. Ideally the
- weights are chosen so that the errors of the products ``w[i]*y[i]``
- all have the same variance. The default value is None.
+ Weights. If not None, the weight ``w[i]`` applies to the unsquared
+ residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
+ chosen so that the errors of the products ``w[i]*y[i]`` all have the
+ same variance. When using inverse-variance weighting, use
+ ``w[i] = 1/sigma(y[i])``. The default value is None.
.. versionadded:: 1.5.0