summaryrefslogtreecommitdiff
path: root/numpy/lib/scimath.py
blob: 0e1bafa91356f5c8ed27683e855b9533287e641b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
"""
Wrapper functions to more user-friendly calling of certain math functions
whose output data-type is different than the input data-type in certain
domains of the input.

For example, for functions like log() with branch cuts, the versions in this
module provide the mathematically valid answers in the complex plane:

>>> import math
>>> from numpy.lib import scimath
>>> scimath.log(-math.exp(1)) == (1+1j*math.pi)
True

Similarly, sqrt(), other base logarithms, power() and trig functions are
correctly handled.  See their respective docstrings for specific examples.
"""

__all__ = ['sqrt', 'log', 'log2', 'logn','log10', 'power', 'arccos',
           'arcsin', 'arctanh']

import numpy.core.numeric as nx
import numpy.core.numerictypes as nt
from numpy.core.numeric import asarray, any
from numpy.lib.type_check import isreal

_ln2 = nx.log(2.0)

def _tocomplex(arr):
    """Convert its input `arr` to a complex array.

    The input is returned as a complex array of the smallest type that will fit
    the original data: types like single, byte, short, etc. become csingle,
    while others become cdouble.

    A copy of the input is always made.

    Parameters
    ----------
    arr : array

    Returns
    -------
    array
        An array with the same input data as the input but in complex form.

    Examples
    --------

    First, consider an input of type short:

    >>> a = np.array([1,2,3],np.short)

    >>> ac = np.lib.scimath._tocomplex(a); ac
    array([ 1.+0.j,  2.+0.j,  3.+0.j], dtype=complex64)

    >>> ac.dtype
    dtype('complex64')

    If the input is of type double, the output is correspondingly of the
    complex double type as well:

    >>> b = np.array([1,2,3],np.double)

    >>> bc = np.lib.scimath._tocomplex(b); bc
    array([ 1.+0.j,  2.+0.j,  3.+0.j])

    >>> bc.dtype
    dtype('complex128')

    Note that even if the input was complex to begin with, a copy is still
    made, since the astype() method always copies:

    >>> c = np.array([1,2,3],np.csingle)

    >>> cc = np.lib.scimath._tocomplex(c); cc
    array([ 1.+0.j,  2.+0.j,  3.+0.j], dtype=complex64)

    >>> c *= 2; c
    array([ 2.+0.j,  4.+0.j,  6.+0.j], dtype=complex64)

    >>> cc
    array([ 1.+0.j,  2.+0.j,  3.+0.j], dtype=complex64)
    """
    if issubclass(arr.dtype.type, (nt.single, nt.byte, nt.short, nt.ubyte,
                                   nt.ushort,nt.csingle)):
        return arr.astype(nt.csingle)
    else:
        return arr.astype(nt.cdouble)

def _fix_real_lt_zero(x):
    """Convert `x` to complex if it has real, negative components.

    Otherwise, output is just the array version of the input (via asarray).

    Parameters
    ----------
    x : array_like

    Returns
    -------
    array

    Examples
    --------
    >>> np.lib.scimath._fix_real_lt_zero([1,2])
    array([1, 2])

    >>> np.lib.scimath._fix_real_lt_zero([-1,2])
    array([-1.+0.j,  2.+0.j])
    """
    x = asarray(x)
    if any(isreal(x) & (x<0)):
        x = _tocomplex(x)
    return x

def _fix_int_lt_zero(x):
    """Convert `x` to double if it has real, negative components.

    Otherwise, output is just the array version of the input (via asarray).

    Parameters
    ----------
    x : array_like

    Returns
    -------
    array

    Examples
    --------
    >>> np.lib.scimath._fix_int_lt_zero([1,2])
    array([1, 2])

    >>> np.lib.scimath._fix_int_lt_zero([-1,2])
    array([-1.,  2.])
    """
    x = asarray(x)
    if any(isreal(x) & (x < 0)):
        x = x * 1.0
    return x

def _fix_real_abs_gt_1(x):
    """Convert `x` to complex if it has real components x_i with abs(x_i)>1.

    Otherwise, output is just the array version of the input (via asarray).

    Parameters
    ----------
    x : array_like

    Returns
    -------
    array

    Examples
    --------
    >>> np.lib.scimath._fix_real_abs_gt_1([0,1])
    array([0, 1])

    >>> np.lib.scimath._fix_real_abs_gt_1([0,2])
    array([ 0.+0.j,  2.+0.j])
    """
    x = asarray(x)
    if any(isreal(x) & (abs(x)>1)):
        x = _tocomplex(x)
    return x

def sqrt(x):
    """
    Return the square root of x.

    Parameters
    ----------
    x : array_like

    Returns
    -------
    out : array_like

    Notes
    -----

    As the numpy.sqrt, this returns the principal square root of x, which is
    what most people mean when they use square root; the principal square root
    of x is not any number z such as z^2 = x.

    For positive numbers, the principal square root is defined as the positive
    number z such as z^2 = x.

    The principal square root of -1 is i, the principal square root of any
    negative number -x is defined a i * sqrt(x). For any non zero complex
    number, it is defined by using the following branch cut: x = r e^(i t) with
    r > 0 and -pi < t <= pi. The principal square root is then
    sqrt(r) e^(i t/2).

    Examples
    --------

    For real, non-negative inputs this works just like numpy.sqrt():

    >>> np.lib.scimath.sqrt(1)
    1.0

    >>> np.lib.scimath.sqrt([1,4])
    array([ 1.,  2.])

    But it automatically handles negative inputs:

    >>> np.lib.scimath.sqrt(-1)
    (0.0+1.0j)

    >>> np.lib.scimath.sqrt([-1,4])
    array([ 0.+1.j,  2.+0.j])

    """
    x = _fix_real_lt_zero(x)
    return nx.sqrt(x)

def log(x):
    """
    Return the natural logarithm of x.

    If x contains negative inputs, the answer is computed and returned in the
    complex domain.

    Parameters
    ----------
    x : array_like

    Returns
    -------
    out : array_like

    Examples
    --------
    >>> import math
    >>> np.lib.scimath.log(math.exp(1))
    1.0

    Negative arguments are correctly handled (recall that for negative
    arguments, the identity exp(log(z))==z does not hold anymore):

    >>> np.lib.scimath.log(-math.exp(1)) == (1+1j*math.pi)
    True

    """
    x = _fix_real_lt_zero(x)
    return nx.log(x)

def log10(x):
    """
    Return the base 10 logarithm of x.

    If x contains negative inputs, the answer is computed and returned in the
    complex domain.

    Parameters
    ----------
    x : array_like

    Returns
    -------
    out : array_like

    Examples
    --------

    (We set the printing precision so the example can be auto-tested)

    >>> np.set_printoptions(precision=4)

    >>> np.lib.scimath.log10([10**1,10**2])
    array([ 1.,  2.])


    >>> np.lib.scimath.log10([-10**1,-10**2,10**2])
    array([ 1.+1.3644j,  2.+1.3644j,  2.+0.j    ])

    """
    x = _fix_real_lt_zero(x)
    return nx.log10(x)

def logn(n, x):
    """
    Take log base n of x.

    If x contains negative inputs, the answer is computed and returned in the
    complex domain.

    Parameters
    ----------
    x : array_like

    Returns
    -------
    out : array_like

    Examples
    --------

    (We set the printing precision so the example can be auto-tested)

    >>> np.set_printoptions(precision=4)

    >>> np.lib.scimath.logn(2,[4,8])
    array([ 2.,  3.])

    >>> np.lib.scimath.logn(2,[-4,-8,8])
    array([ 2.+4.5324j,  3.+4.5324j,  3.+0.j    ])

    """
    x = _fix_real_lt_zero(x)
    n = _fix_real_lt_zero(n)
    return nx.log(x)/nx.log(n)

def log2(x):
    """
    Take log base 2 of x.

    If x contains negative inputs, the answer is computed and returned in the
    complex domain.

    Parameters
    ----------
    x : array_like

    Returns
    -------
    out : array_like

    Examples
    --------

    (We set the printing precision so the example can be auto-tested)

    >>> np.set_printoptions(precision=4)

    >>> np.lib.scimath.log2([4,8])
    array([ 2.,  3.])

    >>> np.lib.scimath.log2([-4,-8,8])
    array([ 2.+4.5324j,  3.+4.5324j,  3.+0.j    ])

    """
    x = _fix_real_lt_zero(x)
    return nx.log2(x)

def power(x, p):
    """
    Return x**p.

    If x contains negative values, it is converted to the complex domain.

    If p contains negative values, it is converted to floating point.

    Parameters
    ----------
    x : array_like
    p : array_like of integers

    Returns
    -------
    out : array_like

    Examples
    --------
    (We set the printing precision so the example can be auto-tested)

    >>> np.set_printoptions(precision=4)

    >>> np.lib.scimath.power([2,4],2)
    array([ 4, 16])

    >>> np.lib.scimath.power([2,4],-2)
    array([ 0.25  ,  0.0625])

    >>> np.lib.scimath.power([-2,4],2)
    array([  4.+0.j,  16.+0.j])

    """
    x = _fix_real_lt_zero(x)
    p = _fix_int_lt_zero(p)
    return nx.power(x, p)

def arccos(x):
    """Compute the inverse cosine of x.

    For real x with abs(x)<=1, this returns the principal value.

    If abs(x)>1, the complex arccos() is computed.

    Parameters
    ----------
    x : array_like

    Returns
    -------
    array_like

    Examples
    --------
    >>> np.set_printoptions(precision=4)

    >>> np.lib.scimath.arccos(1)
    0.0

    >>> np.lib.scimath.arccos([1,2])
    array([ 0.-0.j   ,  0.+1.317j])
    """
    x = _fix_real_abs_gt_1(x)
    return nx.arccos(x)

def arcsin(x):
    """
    Compute the inverse sine of x.

    For real x with abs(x)<=1, this returns the principal value.

    If abs(x)>1, the complex arcsin() is computed.

    Parameters
    ----------
    x : array_like

    Returns
    -------
    array_like

    Examples
    --------
    (We set the printing precision so the example can be auto-tested)

    >>> np.set_printoptions(precision=4)

    >>> np.lib.scimath.arcsin(0)
    0.0

    >>> np.lib.scimath.arcsin([0,1])
    array([ 0.    ,  1.5708])

    """
    x = _fix_real_abs_gt_1(x)
    return nx.arcsin(x)

def arctanh(x):
    """
    Compute the inverse hyperbolic tangent of x.

    For real x with abs(x)<=1, this returns the principal value.

    If abs(x)>1, the complex arctanh() is computed.

    Parameters
    ----------
    x : array_like

    Returns
    -------
    out : array_like

    Examples
    --------
    (We set the printing precision so the example can be auto-tested)
    >>> np.set_printoptions(precision=4)

    >>> np.lib.scimath.arctanh(0)
    0.0

    >>> np.lib.scimath.arctanh([0,2])
    array([ 0.0000+0.j    ,  0.5493-1.5708j])

    """
    x = _fix_real_abs_gt_1(x)
    return nx.arctanh(x)