1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
|
/*
* Copyright (C) 2012 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "RenderMultiColumnSet.h"
#include "FrameView.h"
#include "HitTestResult.h"
#include "PaintInfo.h"
#include "RenderLayer.h"
#include "RenderMultiColumnFlowThread.h"
#include "RenderMultiColumnSpannerPlaceholder.h"
#include "RenderView.h"
namespace WebCore {
RenderMultiColumnSet::RenderMultiColumnSet(RenderFlowThread& flowThread, Ref<RenderStyle>&& style)
: RenderRegionSet(flowThread.document(), WTFMove(style), flowThread)
, m_computedColumnCount(1)
, m_computedColumnWidth(0)
, m_computedColumnHeight(0)
, m_availableColumnHeight(0)
, m_columnHeightComputed(false)
, m_maxColumnHeight(RenderFlowThread::maxLogicalHeight())
, m_minSpaceShortage(RenderFlowThread::maxLogicalHeight())
, m_minimumColumnHeight(0)
{
}
RenderMultiColumnSet* RenderMultiColumnSet::nextSiblingMultiColumnSet() const
{
for (RenderObject* sibling = nextSibling(); sibling; sibling = sibling->nextSibling()) {
if (is<RenderMultiColumnSet>(*sibling))
return downcast<RenderMultiColumnSet>(sibling);
}
return nullptr;
}
RenderMultiColumnSet* RenderMultiColumnSet::previousSiblingMultiColumnSet() const
{
for (RenderObject* sibling = previousSibling(); sibling; sibling = sibling->previousSibling()) {
if (is<RenderMultiColumnSet>(*sibling))
return downcast<RenderMultiColumnSet>(sibling);
}
return nullptr;
}
RenderObject* RenderMultiColumnSet::firstRendererInFlowThread() const
{
if (RenderBox* sibling = RenderMultiColumnFlowThread::previousColumnSetOrSpannerSiblingOf(this)) {
// Adjacent sets should not occur. Currently we would have no way of figuring out what each
// of them contains then.
ASSERT(!sibling->isRenderMultiColumnSet());
RenderMultiColumnSpannerPlaceholder* placeholder = multiColumnFlowThread()->findColumnSpannerPlaceholder(sibling);
return placeholder->nextInPreOrderAfterChildren();
}
return flowThread()->firstChild();
}
RenderObject* RenderMultiColumnSet::lastRendererInFlowThread() const
{
if (RenderBox* sibling = RenderMultiColumnFlowThread::nextColumnSetOrSpannerSiblingOf(this)) {
// Adjacent sets should not occur. Currently we would have no way of figuring out what each
// of them contains then.
ASSERT(!sibling->isRenderMultiColumnSet());
RenderMultiColumnSpannerPlaceholder* placeholder = multiColumnFlowThread()->findColumnSpannerPlaceholder(sibling);
return placeholder->previousInPreOrder();
}
return flowThread()->lastLeafChild();
}
static bool precedesRenderer(RenderObject* renderer, RenderObject* boundary)
{
for (; renderer; renderer = renderer->nextInPreOrder()) {
if (renderer == boundary)
return true;
}
return false;
}
bool RenderMultiColumnSet::containsRendererInFlowThread(RenderObject* renderer) const
{
if (!previousSiblingMultiColumnSet() && !nextSiblingMultiColumnSet()) {
// There is only one set. This is easy, then.
return renderer->isDescendantOf(m_flowThread);
}
RenderObject* firstRenderer = firstRendererInFlowThread();
RenderObject* lastRenderer = lastRendererInFlowThread();
ASSERT(firstRenderer);
ASSERT(lastRenderer);
// This is SLOW! But luckily very uncommon.
return precedesRenderer(firstRenderer, renderer) && precedesRenderer(renderer, lastRenderer);
}
void RenderMultiColumnSet::setLogicalTopInFlowThread(LayoutUnit logicalTop)
{
LayoutRect rect = flowThreadPortionRect();
if (isHorizontalWritingMode())
rect.setY(logicalTop);
else
rect.setX(logicalTop);
setFlowThreadPortionRect(rect);
}
void RenderMultiColumnSet::setLogicalBottomInFlowThread(LayoutUnit logicalBottom)
{
LayoutRect rect = flowThreadPortionRect();
if (isHorizontalWritingMode())
rect.shiftMaxYEdgeTo(logicalBottom);
else
rect.shiftMaxXEdgeTo(logicalBottom);
setFlowThreadPortionRect(rect);
}
LayoutUnit RenderMultiColumnSet::heightAdjustedForSetOffset(LayoutUnit height) const
{
RenderBlockFlow& multicolBlock = downcast<RenderBlockFlow>(*parent());
LayoutUnit contentLogicalTop = logicalTop() - multicolBlock.borderAndPaddingBefore();
height -= contentLogicalTop;
return std::max(height, LayoutUnit::fromPixel(1)); // Let's avoid zero height, as that would probably cause an infinite amount of columns to be created.
}
LayoutUnit RenderMultiColumnSet::pageLogicalTopForOffset(LayoutUnit offset) const
{
unsigned columnIndex = columnIndexAtOffset(offset, AssumeNewColumns);
return logicalTopInFlowThread() + columnIndex * computedColumnHeight();
}
void RenderMultiColumnSet::setAndConstrainColumnHeight(LayoutUnit newHeight)
{
m_computedColumnHeight = newHeight;
if (m_computedColumnHeight > m_maxColumnHeight)
m_computedColumnHeight = m_maxColumnHeight;
// FIXME: The available column height is not the same as the constrained height specified
// by the pagination API. The column set in this case is allowed to be bigger than the
// height of a single column. We cache available column height in order to use it
// in computeLogicalHeight later. This is pretty gross, and maybe there's a better way
// to formalize the idea of clamped column heights without having a view dependency
// here.
m_availableColumnHeight = m_computedColumnHeight;
if (multiColumnFlowThread() && !multiColumnFlowThread()->progressionIsInline() && parent()->isRenderView()) {
int pageLength = view().frameView().pagination().pageLength;
if (pageLength)
m_computedColumnHeight = pageLength;
}
m_columnHeightComputed = true;
// FIXME: the height may also be affected by the enclosing pagination context, if any.
}
unsigned RenderMultiColumnSet::findRunWithTallestColumns() const
{
unsigned indexWithLargestHeight = 0;
LayoutUnit largestHeight;
LayoutUnit previousOffset;
size_t runCount = m_contentRuns.size();
ASSERT(runCount);
for (size_t i = 0; i < runCount; i++) {
const ContentRun& run = m_contentRuns[i];
LayoutUnit height = run.columnLogicalHeight(previousOffset);
if (largestHeight < height) {
largestHeight = height;
indexWithLargestHeight = i;
}
previousOffset = run.breakOffset();
}
return indexWithLargestHeight;
}
void RenderMultiColumnSet::distributeImplicitBreaks()
{
#ifndef NDEBUG
// There should be no implicit breaks assumed at this point.
for (unsigned i = 0; i < forcedBreaksCount(); i++)
ASSERT(!m_contentRuns[i].assumedImplicitBreaks());
#endif // NDEBUG
// Insert a final content run to encompass all content. This will include overflow if this is
// the last set.
addForcedBreak(logicalBottomInFlowThread());
unsigned breakCount = forcedBreaksCount();
// If there is room for more breaks (to reach the used value of column-count), imagine that we
// insert implicit breaks at suitable locations. At any given time, the content run with the
// currently tallest columns will get another implicit break "inserted", which will increase its
// column count by one and shrink its columns' height. Repeat until we have the desired total
// number of breaks. The largest column height among the runs will then be the initial column
// height for the balancer to use.
while (breakCount < m_computedColumnCount) {
unsigned index = findRunWithTallestColumns();
m_contentRuns[index].assumeAnotherImplicitBreak();
breakCount++;
}
}
LayoutUnit RenderMultiColumnSet::calculateBalancedHeight(bool initial) const
{
if (initial) {
// Start with the lowest imaginable column height.
unsigned index = findRunWithTallestColumns();
LayoutUnit startOffset = index > 0 ? m_contentRuns[index - 1].breakOffset() : logicalTopInFlowThread();
return std::max<LayoutUnit>(m_contentRuns[index].columnLogicalHeight(startOffset), m_minimumColumnHeight);
}
if (columnCount() <= computedColumnCount()) {
// With the current column height, the content fits without creating overflowing columns. We're done.
return m_computedColumnHeight;
}
if (forcedBreaksCount() > 1 && forcedBreaksCount() >= computedColumnCount()) {
// Too many forced breaks to allow any implicit breaks. Initial balancing should already
// have set a good height. There's nothing more we should do.
return m_computedColumnHeight;
}
// If the initial guessed column height wasn't enough, stretch it now. Stretch by the lowest
// amount of space shortage found during layout.
ASSERT(m_minSpaceShortage > 0); // We should never _shrink_ the height!
//ASSERT(m_minSpaceShortage != RenderFlowThread::maxLogicalHeight()); // If this happens, we probably have a bug.
if (m_minSpaceShortage == RenderFlowThread::maxLogicalHeight())
return m_computedColumnHeight; // So bail out rather than looping infinitely.
return m_computedColumnHeight + m_minSpaceShortage;
}
void RenderMultiColumnSet::clearForcedBreaks()
{
m_contentRuns.clear();
}
void RenderMultiColumnSet::addForcedBreak(LayoutUnit offsetFromFirstPage)
{
if (!requiresBalancing())
return;
if (!m_contentRuns.isEmpty() && offsetFromFirstPage <= m_contentRuns.last().breakOffset())
return;
// Append another item as long as we haven't exceeded used column count. What ends up in the
// overflow area shouldn't affect column balancing.
if (m_contentRuns.size() < m_computedColumnCount)
m_contentRuns.append(ContentRun(offsetFromFirstPage));
}
bool RenderMultiColumnSet::recalculateColumnHeight(bool initial)
{
LayoutUnit oldColumnHeight = m_computedColumnHeight;
if (requiresBalancing()) {
if (initial)
distributeImplicitBreaks();
LayoutUnit newColumnHeight = calculateBalancedHeight(initial);
setAndConstrainColumnHeight(newColumnHeight);
// After having calculated an initial column height, the multicol container typically needs at
// least one more layout pass with a new column height, but if a height was specified, we only
// need to do this if we think that we need less space than specified. Conversely, if we
// determined that the columns need to be as tall as the specified height of the container, we
// have already laid it out correctly, and there's no need for another pass.
} else {
// The position of the column set may have changed, in which case height available for
// columns may have changed as well.
setAndConstrainColumnHeight(m_computedColumnHeight);
}
if (m_computedColumnHeight == oldColumnHeight)
return false; // No change. We're done.
m_minSpaceShortage = RenderFlowThread::maxLogicalHeight();
return true; // Need another pass.
}
void RenderMultiColumnSet::recordSpaceShortage(LayoutUnit spaceShortage)
{
if (spaceShortage >= m_minSpaceShortage)
return;
// The space shortage is what we use as our stretch amount. We need a positive number here in
// order to get anywhere. Some lines actually have zero height. Ignore them.
if (spaceShortage > 0)
m_minSpaceShortage = spaceShortage;
}
void RenderMultiColumnSet::updateLogicalWidth()
{
setComputedColumnWidthAndCount(multiColumnFlowThread()->columnWidth(), multiColumnFlowThread()->columnCount()); // FIXME: This will eventually vary if we are contained inside regions.
// FIXME: When we add regions support, we'll start it off at the width of the multi-column
// block in that particular region.
setLogicalWidth(parentBox()->contentLogicalWidth());
}
bool RenderMultiColumnSet::requiresBalancing() const
{
if (!multiColumnFlowThread()->progressionIsInline())
return false;
if (RenderBox* next = RenderMultiColumnFlowThread::nextColumnSetOrSpannerSiblingOf(this)) {
if (!next->isRenderMultiColumnSet()) {
// If we're followed by a spanner, we need to balance.
ASSERT(multiColumnFlowThread()->findColumnSpannerPlaceholder(next));
return true;
}
}
RenderBlockFlow* container = multiColumnBlockFlow();
if (container->style().columnFill() == ColumnFillBalance)
return true;
return !multiColumnFlowThread()->columnHeightAvailable();
}
void RenderMultiColumnSet::prepareForLayout(bool initial)
{
// Guess box logical top. This might eliminate the need for another layout pass.
if (RenderBox* previous = RenderMultiColumnFlowThread::previousColumnSetOrSpannerSiblingOf(this))
setLogicalTop(previous->logicalBottom() + previous->marginAfter());
else
setLogicalTop(multiColumnBlockFlow()->borderAndPaddingBefore());
if (initial)
m_maxColumnHeight = calculateMaxColumnHeight();
if (requiresBalancing()) {
if (initial) {
m_computedColumnHeight = 0;
m_availableColumnHeight = 0;
m_columnHeightComputed = false;
}
} else
setAndConstrainColumnHeight(heightAdjustedForSetOffset(multiColumnFlowThread()->columnHeightAvailable()));
// Set box width.
updateLogicalWidth();
// Any breaks will be re-inserted during layout, so get rid of what we already have.
clearForcedBreaks();
// Nuke previously stored minimum column height. Contents may have changed for all we know.
m_minimumColumnHeight = 0;
// Start with "infinite" flow thread portion height until height is known.
setLogicalBottomInFlowThread(RenderFlowThread::maxLogicalHeight());
setNeedsLayout(MarkOnlyThis);
}
void RenderMultiColumnSet::beginFlow(RenderBlock* container)
{
RenderMultiColumnFlowThread* flowThread = multiColumnFlowThread();
// At this point layout is exactly at the beginning of this set. Store block offset from flow
// thread start.
LayoutUnit logicalTopInFlowThread = flowThread->offsetFromLogicalTopOfFirstRegion(container) + container->logicalHeight();
setLogicalTopInFlowThread(logicalTopInFlowThread);
}
void RenderMultiColumnSet::endFlow(RenderBlock* container, LayoutUnit bottomInContainer)
{
RenderMultiColumnFlowThread* flowThread = multiColumnFlowThread();
// At this point layout is exactly at the end of this set. Store block offset from flow thread
// start. Also note that a new column height may have affected the height used in the flow
// thread (because of struts), which may affect the number of columns. So we also need to update
// the flow thread portion height in order to be able to calculate actual column-count.
LayoutUnit logicalBottomInFlowThread = flowThread->offsetFromLogicalTopOfFirstRegion(container) + bottomInContainer;
setLogicalBottomInFlowThread(logicalBottomInFlowThread);
container->setLogicalHeight(bottomInContainer);
}
void RenderMultiColumnSet::layout()
{
RenderBlockFlow::layout();
// At this point the logical top and bottom of the column set are known. Update maximum column
// height (multicol height may be constrained).
m_maxColumnHeight = calculateMaxColumnHeight();
if (!nextSiblingMultiColumnSet()) {
// This is the last set, i.e. the last region. Seize the opportunity to validate them.
multiColumnFlowThread()->validateRegions();
}
}
void RenderMultiColumnSet::computeLogicalHeight(LayoutUnit, LayoutUnit logicalTop, LogicalExtentComputedValues& computedValues) const
{
computedValues.m_extent = m_availableColumnHeight;
computedValues.m_position = logicalTop;
}
LayoutUnit RenderMultiColumnSet::calculateMaxColumnHeight() const
{
RenderBlockFlow* multicolBlock = multiColumnBlockFlow();
const RenderStyle& multicolStyle = multicolBlock->style();
LayoutUnit availableHeight = multiColumnFlowThread()->columnHeightAvailable();
LayoutUnit maxColumnHeight = availableHeight ? availableHeight : RenderFlowThread::maxLogicalHeight();
if (!multicolStyle.logicalMaxHeight().isUndefined())
maxColumnHeight = std::min(maxColumnHeight, multicolBlock->computeContentLogicalHeight(MaxSize, multicolStyle.logicalMaxHeight(), Nullopt).valueOr(maxColumnHeight));
return heightAdjustedForSetOffset(maxColumnHeight);
}
LayoutUnit RenderMultiColumnSet::columnGap() const
{
// FIXME: Eventually we will cache the column gap when the widths of columns start varying, but for now we just
// go to the parent block to get the gap.
RenderBlockFlow& parentBlock = downcast<RenderBlockFlow>(*parent());
if (parentBlock.style().hasNormalColumnGap())
return parentBlock.style().fontDescription().computedPixelSize(); // "1em" is recommended as the normal gap setting. Matches <p> margins.
return parentBlock.style().columnGap();
}
unsigned RenderMultiColumnSet::columnCount() const
{
// We must always return a value of 1 or greater. Column count = 0 is a meaningless situation,
// and will confuse and cause problems in other parts of the code.
if (!computedColumnHeight())
return 1;
// Our portion rect determines our column count. We have as many columns as needed to fit all the content.
LayoutUnit logicalHeightInColumns = flowThread()->isHorizontalWritingMode() ? flowThreadPortionRect().height() : flowThreadPortionRect().width();
if (!logicalHeightInColumns)
return 1;
unsigned count = ceil(static_cast<float>(logicalHeightInColumns) / computedColumnHeight());
ASSERT(count >= 1);
return count;
}
LayoutUnit RenderMultiColumnSet::columnLogicalLeft(unsigned index) const
{
LayoutUnit colLogicalWidth = computedColumnWidth();
LayoutUnit colLogicalLeft = borderAndPaddingLogicalLeft();
LayoutUnit colGap = columnGap();
bool progressionReversed = multiColumnFlowThread()->progressionIsReversed();
bool progressionInline = multiColumnFlowThread()->progressionIsInline();
if (progressionInline) {
if (style().isLeftToRightDirection() ^ progressionReversed)
colLogicalLeft += index * (colLogicalWidth + colGap);
else
colLogicalLeft += contentLogicalWidth() - colLogicalWidth - index * (colLogicalWidth + colGap);
}
return colLogicalLeft;
}
LayoutUnit RenderMultiColumnSet::columnLogicalTop(unsigned index) const
{
LayoutUnit colLogicalHeight = computedColumnHeight();
LayoutUnit colLogicalTop = borderAndPaddingBefore();
LayoutUnit colGap = columnGap();
bool progressionReversed = multiColumnFlowThread()->progressionIsReversed();
bool progressionInline = multiColumnFlowThread()->progressionIsInline();
if (!progressionInline) {
if (!progressionReversed)
colLogicalTop += index * (colLogicalHeight + colGap);
else
colLogicalTop += contentLogicalHeight() - colLogicalHeight - index * (colLogicalHeight + colGap);
}
return colLogicalTop;
}
LayoutRect RenderMultiColumnSet::columnRectAt(unsigned index) const
{
LayoutUnit colLogicalWidth = computedColumnWidth();
LayoutUnit colLogicalHeight = computedColumnHeight();
if (isHorizontalWritingMode())
return LayoutRect(columnLogicalLeft(index), columnLogicalTop(index), colLogicalWidth, colLogicalHeight);
return LayoutRect(columnLogicalTop(index), columnLogicalLeft(index), colLogicalHeight, colLogicalWidth);
}
unsigned RenderMultiColumnSet::columnIndexAtOffset(LayoutUnit offset, ColumnIndexCalculationMode mode) const
{
LayoutRect portionRect(flowThreadPortionRect());
// Handle the offset being out of range.
LayoutUnit flowThreadLogicalTop = isHorizontalWritingMode() ? portionRect.y() : portionRect.x();
if (offset < flowThreadLogicalTop)
return 0;
// If we're laying out right now, we cannot constrain against some logical bottom, since it
// isn't known yet. Otherwise, just return the last column if we're past the logical bottom.
if (mode == ClampToExistingColumns) {
LayoutUnit flowThreadLogicalBottom = isHorizontalWritingMode() ? portionRect.maxY() : portionRect.maxX();
if (offset >= flowThreadLogicalBottom)
return columnCount() - 1;
}
// Sometimes computedColumnHeight() is 0 here: see https://bugs.webkit.org/show_bug.cgi?id=132884
if (!computedColumnHeight())
return 0;
// Just divide by the column height to determine the correct column.
return static_cast<float>(offset - flowThreadLogicalTop) / computedColumnHeight();
}
LayoutRect RenderMultiColumnSet::flowThreadPortionRectAt(unsigned index) const
{
LayoutRect portionRect = flowThreadPortionRect();
if (isHorizontalWritingMode())
portionRect = LayoutRect(portionRect.x(), portionRect.y() + index * computedColumnHeight(), portionRect.width(), computedColumnHeight());
else
portionRect = LayoutRect(portionRect.x() + index * computedColumnHeight(), portionRect.y(), computedColumnHeight(), portionRect.height());
return portionRect;
}
LayoutRect RenderMultiColumnSet::flowThreadPortionOverflowRect(const LayoutRect& portionRect, unsigned index, unsigned colCount, LayoutUnit colGap)
{
// This function determines the portion of the flow thread that paints for the column. Along the inline axis, columns are
// unclipped at outside edges (i.e., the first and last column in the set), and they clip to half the column
// gap along interior edges.
//
// In the block direction, we will not clip overflow out of the top of the first column, or out of the bottom of
// the last column. This applies only to the true first column and last column across all column sets.
//
// FIXME: Eventually we will know overflow on a per-column basis, but we can't do this until we have a painting
// mode that understands not to paint contents from a previous column in the overflow area of a following column.
// This problem applies to regions and pages as well and is not unique to columns.
bool progressionReversed = multiColumnFlowThread()->progressionIsReversed();
bool isFirstColumn = !index;
bool isLastColumn = index == colCount - 1;
bool isLeftmostColumn = style().isLeftToRightDirection() ^ progressionReversed ? isFirstColumn : isLastColumn;
bool isRightmostColumn = style().isLeftToRightDirection() ^ progressionReversed ? isLastColumn : isFirstColumn;
// Calculate the overflow rectangle, based on the flow thread's, clipped at column logical
// top/bottom unless it's the first/last column.
LayoutRect overflowRect = overflowRectForFlowThreadPortion(portionRect, isFirstColumn && isFirstRegion(), isLastColumn && isLastRegion(), VisualOverflow);
// Avoid overflowing into neighboring columns, by clipping in the middle of adjacent column
// gaps. Also make sure that we avoid rounding errors.
if (isHorizontalWritingMode()) {
if (!isLeftmostColumn)
overflowRect.shiftXEdgeTo(portionRect.x() - colGap / 2);
if (!isRightmostColumn)
overflowRect.shiftMaxXEdgeTo(portionRect.maxX() + colGap - colGap / 2);
} else {
if (!isLeftmostColumn)
overflowRect.shiftYEdgeTo(portionRect.y() - colGap / 2);
if (!isRightmostColumn)
overflowRect.shiftMaxYEdgeTo(portionRect.maxY() + colGap - colGap / 2);
}
return overflowRect;
}
void RenderMultiColumnSet::paintColumnRules(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
if (paintInfo.context().paintingDisabled())
return;
RenderMultiColumnFlowThread* flowThread = multiColumnFlowThread();
const RenderStyle& blockStyle = parent()->style();
const Color& ruleColor = blockStyle.visitedDependentColor(CSSPropertyColumnRuleColor);
bool ruleTransparent = blockStyle.columnRuleIsTransparent();
EBorderStyle ruleStyle = collapsedBorderStyle(blockStyle.columnRuleStyle());
LayoutUnit ruleThickness = blockStyle.columnRuleWidth();
LayoutUnit colGap = columnGap();
bool renderRule = ruleStyle > BHIDDEN && !ruleTransparent;
if (!renderRule)
return;
unsigned colCount = columnCount();
if (colCount <= 1)
return;
bool antialias = shouldAntialiasLines(paintInfo.context());
if (flowThread->progressionIsInline()) {
bool leftToRight = style().isLeftToRightDirection() ^ flowThread->progressionIsReversed();
LayoutUnit currLogicalLeftOffset = leftToRight ? LayoutUnit() : contentLogicalWidth();
LayoutUnit ruleAdd = logicalLeftOffsetForContent();
LayoutUnit ruleLogicalLeft = leftToRight ? LayoutUnit() : contentLogicalWidth();
LayoutUnit inlineDirectionSize = computedColumnWidth();
BoxSide boxSide = isHorizontalWritingMode()
? leftToRight ? BSLeft : BSRight
: leftToRight ? BSTop : BSBottom;
for (unsigned i = 0; i < colCount; i++) {
// Move to the next position.
if (leftToRight) {
ruleLogicalLeft += inlineDirectionSize + colGap / 2;
currLogicalLeftOffset += inlineDirectionSize + colGap;
} else {
ruleLogicalLeft -= (inlineDirectionSize + colGap / 2);
currLogicalLeftOffset -= (inlineDirectionSize + colGap);
}
// Now paint the column rule.
if (i < colCount - 1) {
LayoutUnit ruleLeft = isHorizontalWritingMode() ? paintOffset.x() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd : paintOffset.x() + borderLeft() + paddingLeft();
LayoutUnit ruleRight = isHorizontalWritingMode() ? ruleLeft + ruleThickness : ruleLeft + contentWidth();
LayoutUnit ruleTop = isHorizontalWritingMode() ? paintOffset.y() + borderTop() + paddingTop() : paintOffset.y() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd;
LayoutUnit ruleBottom = isHorizontalWritingMode() ? ruleTop + contentHeight() : ruleTop + ruleThickness;
IntRect pixelSnappedRuleRect = snappedIntRect(ruleLeft, ruleTop, ruleRight - ruleLeft, ruleBottom - ruleTop);
drawLineForBoxSide(paintInfo.context(), pixelSnappedRuleRect, boxSide, ruleColor, ruleStyle, 0, 0, antialias);
}
ruleLogicalLeft = currLogicalLeftOffset;
}
} else {
bool topToBottom = !style().isFlippedBlocksWritingMode() ^ flowThread->progressionIsReversed();
LayoutUnit ruleLeft = isHorizontalWritingMode() ? LayoutUnit() : colGap / 2 - colGap - ruleThickness / 2;
LayoutUnit ruleWidth = isHorizontalWritingMode() ? contentWidth() : ruleThickness;
LayoutUnit ruleTop = isHorizontalWritingMode() ? colGap / 2 - colGap - ruleThickness / 2 : LayoutUnit();
LayoutUnit ruleHeight = isHorizontalWritingMode() ? ruleThickness : contentHeight();
LayoutRect ruleRect(ruleLeft, ruleTop, ruleWidth, ruleHeight);
if (!topToBottom) {
if (isHorizontalWritingMode())
ruleRect.setY(height() - ruleRect.maxY());
else
ruleRect.setX(width() - ruleRect.maxX());
}
ruleRect.moveBy(paintOffset);
BoxSide boxSide = isHorizontalWritingMode() ? topToBottom ? BSTop : BSBottom : topToBottom ? BSLeft : BSRight;
LayoutSize step(0, topToBottom ? computedColumnHeight() + colGap : -(computedColumnHeight() + colGap));
if (!isHorizontalWritingMode())
step = step.transposedSize();
for (unsigned i = 1; i < colCount; i++) {
ruleRect.move(step);
IntRect pixelSnappedRuleRect = snappedIntRect(ruleRect);
drawLineForBoxSide(paintInfo.context(), pixelSnappedRuleRect, boxSide, ruleColor, ruleStyle, 0, 0, antialias);
}
}
}
void RenderMultiColumnSet::repaintFlowThreadContent(const LayoutRect& repaintRect)
{
// Figure out the start and end columns and only check within that range so that we don't walk the
// entire column set. Put the repaint rect into flow thread coordinates by flipping it first.
LayoutRect flowThreadRepaintRect(repaintRect);
flowThread()->flipForWritingMode(flowThreadRepaintRect);
// Now we can compare this rect with the flow thread portions owned by each column. First let's
// just see if the repaint rect intersects our flow thread portion at all.
LayoutRect clippedRect(flowThreadRepaintRect);
clippedRect.intersect(RenderRegion::flowThreadPortionOverflowRect());
if (clippedRect.isEmpty())
return;
// Now we know we intersect at least one column. Let's figure out the logical top and logical
// bottom of the area we're repainting.
LayoutUnit repaintLogicalTop = isHorizontalWritingMode() ? flowThreadRepaintRect.y() : flowThreadRepaintRect.x();
LayoutUnit repaintLogicalBottom = (isHorizontalWritingMode() ? flowThreadRepaintRect.maxY() : flowThreadRepaintRect.maxX()) - 1;
unsigned startColumn = columnIndexAtOffset(repaintLogicalTop);
unsigned endColumn = columnIndexAtOffset(repaintLogicalBottom);
LayoutUnit colGap = columnGap();
unsigned colCount = columnCount();
for (unsigned i = startColumn; i <= endColumn; i++) {
LayoutRect colRect = columnRectAt(i);
// Get the portion of the flow thread that corresponds to this column.
LayoutRect flowThreadPortion = flowThreadPortionRectAt(i);
// Now get the overflow rect that corresponds to the column.
LayoutRect flowThreadOverflowPortion = flowThreadPortionOverflowRect(flowThreadPortion, i, colCount, colGap);
// Do a repaint for this specific column.
flipForWritingMode(colRect);
repaintFlowThreadContentRectangle(repaintRect, flowThreadPortion, colRect.location(), &flowThreadOverflowPortion);
}
}
LayoutUnit RenderMultiColumnSet::initialBlockOffsetForPainting() const
{
bool progressionReversed = multiColumnFlowThread()->progressionIsReversed();
bool progressionIsInline = multiColumnFlowThread()->progressionIsInline();
LayoutUnit result = 0;
if (!progressionIsInline && progressionReversed) {
LayoutRect colRect = columnRectAt(0);
result = isHorizontalWritingMode() ? colRect.y() : colRect.x();
}
return result;
}
void RenderMultiColumnSet::collectLayerFragments(LayerFragments& fragments, const LayoutRect& layerBoundingBox, const LayoutRect& dirtyRect)
{
// Let's start by introducing the different coordinate systems involved here. They are different
// in how they deal with writing modes and columns. RenderLayer rectangles tend to be more
// physical than the rectangles used in RenderObject & co.
//
// The two rectangles passed to this method are physical, except that we pretend that there's
// only one long column (that's the flow thread). They are relative to the top left corner of
// the flow thread. All rectangles being compared to the dirty rect also need to be in this
// coordinate system.
//
// Then there's the output from this method - the stuff we put into the list of fragments. The
// translationOffset point is the actual physical translation required to get from a location in
// the flow thread to a location in some column. The paginationClip rectangle is in the same
// coordinate system as the two rectangles passed to this method (i.e. physical, in flow thread
// coordinates, pretending that there's only one long column).
//
// All other rectangles in this method are slightly less physical, when it comes to how they are
// used with different writing modes, but they aren't really logical either. They are just like
// RenderBox::frameRect(). More precisely, the sizes are physical, and the inline direction
// coordinate is too, but the block direction coordinate is always "logical top". These
// rectangles also pretend that there's only one long column, i.e. they are for the flow thread.
//
// To sum up: input and output from this method are "physical" RenderLayer-style rectangles and
// points, while inside this method we mostly use the RenderObject-style rectangles (with the
// block direction coordinate always being logical top).
// Put the layer bounds into flow thread-local coordinates by flipping it first. Since we're in
// a renderer, most rectangles are represented this way.
LayoutRect layerBoundsInFlowThread(layerBoundingBox);
flowThread()->flipForWritingMode(layerBoundsInFlowThread);
// Now we can compare with the flow thread portions owned by each column. First let's
// see if the rect intersects our flow thread portion at all.
LayoutRect clippedRect(layerBoundsInFlowThread);
clippedRect.intersect(RenderRegion::flowThreadPortionOverflowRect());
if (clippedRect.isEmpty())
return;
// Now we know we intersect at least one column. Let's figure out the logical top and logical
// bottom of the area we're checking.
LayoutUnit layerLogicalTop = isHorizontalWritingMode() ? layerBoundsInFlowThread.y() : layerBoundsInFlowThread.x();
LayoutUnit layerLogicalBottom = (isHorizontalWritingMode() ? layerBoundsInFlowThread.maxY() : layerBoundsInFlowThread.maxX()) - 1;
// Figure out the start and end columns and only check within that range so that we don't walk the
// entire column set.
unsigned startColumn = columnIndexAtOffset(layerLogicalTop);
unsigned endColumn = columnIndexAtOffset(layerLogicalBottom);
LayoutUnit colLogicalWidth = computedColumnWidth();
LayoutUnit colGap = columnGap();
unsigned colCount = columnCount();
bool progressionReversed = multiColumnFlowThread()->progressionIsReversed();
bool progressionIsInline = multiColumnFlowThread()->progressionIsInline();
LayoutUnit initialBlockOffset = initialBlockOffsetForPainting();
for (unsigned i = startColumn; i <= endColumn; i++) {
// Get the portion of the flow thread that corresponds to this column.
LayoutRect flowThreadPortion = flowThreadPortionRectAt(i);
// Now get the overflow rect that corresponds to the column.
LayoutRect flowThreadOverflowPortion = flowThreadPortionOverflowRect(flowThreadPortion, i, colCount, colGap);
// In order to create a fragment we must intersect the portion painted by this column.
LayoutRect clippedRect(layerBoundsInFlowThread);
clippedRect.intersect(flowThreadOverflowPortion);
if (clippedRect.isEmpty())
continue;
// We also need to intersect the dirty rect. We have to apply a translation and shift based off
// our column index.
LayoutSize translationOffset;
LayoutUnit inlineOffset = progressionIsInline ? i * (colLogicalWidth + colGap) : LayoutUnit();
bool leftToRight = style().isLeftToRightDirection() ^ progressionReversed;
if (!leftToRight) {
inlineOffset = -inlineOffset;
if (progressionReversed)
inlineOffset += contentLogicalWidth() - colLogicalWidth;
}
translationOffset.setWidth(inlineOffset);
LayoutUnit blockOffset = initialBlockOffset + logicalTop() - flowThread()->logicalTop() + (isHorizontalWritingMode() ? -flowThreadPortion.y() : -flowThreadPortion.x());
if (!progressionIsInline) {
if (!progressionReversed)
blockOffset = i * colGap;
else
blockOffset -= i * (computedColumnHeight() + colGap);
}
if (isFlippedWritingMode(style().writingMode()))
blockOffset = -blockOffset;
translationOffset.setHeight(blockOffset);
if (!isHorizontalWritingMode())
translationOffset = translationOffset.transposedSize();
// Shift the dirty rect to be in flow thread coordinates with this translation applied.
LayoutRect translatedDirtyRect(dirtyRect);
translatedDirtyRect.move(-translationOffset);
// See if we intersect the dirty rect.
clippedRect = layerBoundingBox;
clippedRect.intersect(translatedDirtyRect);
if (clippedRect.isEmpty())
continue;
// Something does need to paint in this column. Make a fragment now and supply the physical translation
// offset and the clip rect for the column with that offset applied.
LayerFragment fragment;
fragment.paginationOffset = translationOffset;
LayoutRect flippedFlowThreadOverflowPortion(flowThreadOverflowPortion);
// Flip it into more a physical (RenderLayer-style) rectangle.
flowThread()->flipForWritingMode(flippedFlowThreadOverflowPortion);
fragment.paginationClip = flippedFlowThreadOverflowPortion;
fragments.append(fragment);
}
}
LayoutPoint RenderMultiColumnSet::columnTranslationForOffset(const LayoutUnit& offset) const
{
unsigned startColumn = columnIndexAtOffset(offset);
LayoutUnit colGap = columnGap();
LayoutRect flowThreadPortion = flowThreadPortionRectAt(startColumn);
LayoutPoint translationOffset;
bool progressionReversed = multiColumnFlowThread()->progressionIsReversed();
bool progressionIsInline = multiColumnFlowThread()->progressionIsInline();
LayoutUnit initialBlockOffset = initialBlockOffsetForPainting();
translationOffset.setX(columnLogicalLeft(startColumn));
LayoutUnit blockOffset = initialBlockOffset - (isHorizontalWritingMode() ? flowThreadPortion.y() : flowThreadPortion.x());
if (!progressionIsInline) {
if (!progressionReversed)
blockOffset = startColumn * colGap;
else
blockOffset -= startColumn * (computedColumnHeight() + colGap);
}
if (isFlippedWritingMode(style().writingMode()))
blockOffset = -blockOffset;
translationOffset.setY(blockOffset);
if (!isHorizontalWritingMode())
translationOffset = translationOffset.transposedPoint();
return translationOffset;
}
void RenderMultiColumnSet::adjustRegionBoundsFromFlowThreadPortionRect(LayoutRect&) const
{
// This only fires for named flow thread compositing code, so let's make sure to ASSERT if this ever gets invoked.
ASSERT_NOT_REACHED();
}
void RenderMultiColumnSet::addOverflowFromChildren()
{
// FIXME: Need to do much better here.
unsigned colCount = columnCount();
if (!colCount)
return;
LayoutRect lastRect = columnRectAt(colCount - 1);
addLayoutOverflow(lastRect);
if (!hasOverflowClip())
addVisualOverflow(lastRect);
}
VisiblePosition RenderMultiColumnSet::positionForPoint(const LayoutPoint& logicalPoint, const RenderRegion*)
{
return multiColumnFlowThread()->positionForPoint(translateRegionPointToFlowThread(logicalPoint, ClampHitTestTranslationToColumns), this);
}
LayoutPoint RenderMultiColumnSet::translateRegionPointToFlowThread(const LayoutPoint & logicalPoint, ColumnHitTestTranslationMode clampMode) const
{
// Determine which columns we intersect.
LayoutUnit colGap = columnGap();
LayoutUnit halfColGap = colGap / 2;
bool progressionIsInline = multiColumnFlowThread()->progressionIsInline();
LayoutPoint point = logicalPoint;
for (unsigned i = 0; i < columnCount(); i++) {
// Add in half the column gap to the left and right of the rect.
LayoutRect colRect = columnRectAt(i);
if (isHorizontalWritingMode() == progressionIsInline) {
LayoutRect gapAndColumnRect(colRect.x() - halfColGap, colRect.y(), colRect.width() + colGap, colRect.height());
if (point.x() >= gapAndColumnRect.x() && point.x() < gapAndColumnRect.maxX()) {
if (clampMode == ClampHitTestTranslationToColumns) {
if (progressionIsInline) {
// FIXME: The clamping that follows is not completely right for right-to-left
// content.
// Clamp everything above the column to its top left.
if (point.y() < gapAndColumnRect.y())
point = gapAndColumnRect.location();
// Clamp everything below the column to the next column's top left. If there is
// no next column, this still maps to just after this column.
else if (point.y() >= gapAndColumnRect.maxY()) {
point = gapAndColumnRect.location();
point.move(0, gapAndColumnRect.height());
}
} else {
if (point.x() < colRect.x())
point.setX(colRect.x());
else if (point.x() >= colRect.maxX())
point.setX(colRect.maxX() - 1);
}
}
LayoutSize offsetInColumn = point - colRect.location();
LayoutRect flowThreadPortion = flowThreadPortionRectAt(i);
return flowThreadPortion.location() + offsetInColumn;
}
} else {
LayoutRect gapAndColumnRect(colRect.x(), colRect.y() - halfColGap, colRect.width(), colRect.height() + colGap);
if (point.y() >= gapAndColumnRect.y() && point.y() < gapAndColumnRect.maxY()) {
if (clampMode == ClampHitTestTranslationToColumns) {
if (progressionIsInline) {
// FIXME: The clamping that follows is not completely right for right-to-left
// content.
// Clamp everything above the column to its top left.
if (point.x() < gapAndColumnRect.x())
point = gapAndColumnRect.location();
// Clamp everything below the column to the next column's top left. If there is
// no next column, this still maps to just after this column.
else if (point.x() >= gapAndColumnRect.maxX()) {
point = gapAndColumnRect.location();
point.move(gapAndColumnRect.width(), 0);
}
} else {
if (point.y() < colRect.y())
point.setY(colRect.y());
else if (point.y() >= colRect.maxY())
point.setY(colRect.maxY() - 1);
}
}
LayoutSize offsetInColumn = point - colRect.location();
LayoutRect flowThreadPortion = flowThreadPortionRectAt(i);
return flowThreadPortion.location() + offsetInColumn;
}
}
}
return logicalPoint;
}
void RenderMultiColumnSet::updateHitTestResult(HitTestResult& result, const LayoutPoint& point)
{
if (result.innerNode() || !parent()->isRenderView())
return;
// Note this does not work with column spans, but once we implement RenderPageSet, we can move this code
// over there instead (and spans of course won't be allowed on pages).
Node* node = document().documentElement();
if (node) {
result.setInnerNode(node);
if (!result.innerNonSharedNode())
result.setInnerNonSharedNode(node);
LayoutPoint adjustedPoint = translateRegionPointToFlowThread(point);
view().offsetForContents(adjustedPoint);
result.setLocalPoint(adjustedPoint);
}
}
const char* RenderMultiColumnSet::renderName() const
{
return "RenderMultiColumnSet";
}
}
|