1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
|
/*
* Copyright (C) 2012 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef RenderMultiColumnSet_h
#define RenderMultiColumnSet_h
#include "LayerFragment.h"
#include "RenderMultiColumnFlowThread.h"
#include "RenderRegionSet.h"
#include <wtf/Vector.h>
namespace WebCore {
// RenderMultiColumnSet represents a set of columns that all have the same width and height. By combining runs of same-size columns into a single
// object, we significantly reduce the number of unique RenderObjects required to represent columns.
//
// A simple multi-column block will have exactly one RenderMultiColumnSet child. A simple paginated multi-column block will have three
// RenderMultiColumnSet children: one for the content at the bottom of the first page (whose columns will have a shorter height), one
// for the 2nd to n-1 pages, and then one last column set that will hold the shorter columns on the final page (that may have to be balanced
// as well).
//
// Column spans result in the creation of new column sets as well, since a spanning region has to be placed in between the column sets that
// come before and after the span.
class RenderMultiColumnSet final : public RenderRegionSet {
public:
RenderMultiColumnSet(RenderFlowThread&, Ref<RenderStyle>&&);
RenderBlockFlow* multiColumnBlockFlow() const { return downcast<RenderBlockFlow>(parent()); }
RenderMultiColumnFlowThread* multiColumnFlowThread() const { return static_cast<RenderMultiColumnFlowThread*>(flowThread()); }
RenderMultiColumnSet* nextSiblingMultiColumnSet() const;
RenderMultiColumnSet* previousSiblingMultiColumnSet() const;
// Return the first object in the flow thread that's rendered inside this set.
RenderObject* firstRendererInFlowThread() const;
// Return the last object in the flow thread that's rendered inside this set.
RenderObject* lastRendererInFlowThread() const;
// Return true if the specified renderer (descendant of the flow thread) is inside this column set.
bool containsRendererInFlowThread(RenderObject*) const;
void setLogicalTopInFlowThread(LayoutUnit);
LayoutUnit logicalTopInFlowThread() const { return isHorizontalWritingMode() ? flowThreadPortionRect().y() : flowThreadPortionRect().x(); }
void setLogicalBottomInFlowThread(LayoutUnit);
LayoutUnit logicalBottomInFlowThread() const { return isHorizontalWritingMode() ? flowThreadPortionRect().maxY() : flowThreadPortionRect().maxX(); }
LayoutUnit logicalHeightInFlowThread() const { return isHorizontalWritingMode() ? flowThreadPortionRect().height() : flowThreadPortionRect().width(); }
unsigned computedColumnCount() const { return m_computedColumnCount; }
LayoutUnit computedColumnWidth() const { return m_computedColumnWidth; }
LayoutUnit computedColumnHeight() const { return m_computedColumnHeight; }
bool columnHeightComputed() const { return m_columnHeightComputed; }
void setComputedColumnWidthAndCount(LayoutUnit width, unsigned count)
{
m_computedColumnWidth = width;
m_computedColumnCount = count;
}
LayoutUnit heightAdjustedForSetOffset(LayoutUnit height) const;
void updateMinimumColumnHeight(LayoutUnit height) { m_minimumColumnHeight = std::max(height, m_minimumColumnHeight); }
LayoutUnit minimumColumnHeight() const { return m_minimumColumnHeight; }
unsigned forcedBreaksCount() const { return m_contentRuns.size(); }
void clearForcedBreaks();
void addForcedBreak(LayoutUnit offsetFromFirstPage);
// (Re-)calculate the column height. This is first and foremost needed by sets that are to
// balance the column height, but even when it isn't to be balanced, this is necessary if the
// multicol container's height is constrained. If |initial| is set, and we are to balance, guess
// an initial column height; otherwise, stretch the column height a tad. Return true if column
// height changed and another layout pass is required.
bool recalculateColumnHeight(bool initial);
// Record space shortage (the amount of space that would have been enough to prevent some
// element from being moved to the next column) at a column break. The smallest amount of space
// shortage we find is the amount with which we will stretch the column height, if it turns out
// after layout that the columns weren't tall enough.
void recordSpaceShortage(LayoutUnit spaceShortage);
virtual void updateLogicalWidth() override;
void prepareForLayout(bool initial);
// Begin laying out content for this column set. This happens at the beginning of flow thread
// layout, and when advancing from a previous column set or spanner to this one.
void beginFlow(RenderBlock* container);
// Finish laying out content for this column set. This happens at end of flow thread layout, and
// when advancing to the next column set or spanner.
void endFlow(RenderBlock* container, LayoutUnit bottomInContainer);
// Has this set been flowed in this layout pass?
bool hasBeenFlowed() const { return logicalBottomInFlowThread() != RenderFlowThread::maxLogicalHeight(); }
bool requiresBalancing() const;
LayoutPoint columnTranslationForOffset(const LayoutUnit&) const;
void paintColumnRules(PaintInfo&, const LayoutPoint& paintOffset) override;
enum ColumnHitTestTranslationMode {
ClampHitTestTranslationToColumns,
DoNotClampHitTestTranslationToColumns
};
LayoutPoint translateRegionPointToFlowThread(const LayoutPoint & logicalPoint, ColumnHitTestTranslationMode = DoNotClampHitTestTranslationToColumns) const;
virtual void updateHitTestResult(HitTestResult&, const LayoutPoint&) override;
LayoutRect columnRectAt(unsigned index) const;
unsigned columnCount() const;
protected:
virtual void addOverflowFromChildren() override;
private:
virtual bool isRenderMultiColumnSet() const override { return true; }
virtual void layout() override;
virtual void computeLogicalHeight(LayoutUnit logicalHeight, LayoutUnit logicalTop, LogicalExtentComputedValues&) const override;
virtual void paintObject(PaintInfo&, const LayoutPoint&) override { }
virtual LayoutUnit pageLogicalWidth() const override { return m_computedColumnWidth; }
virtual LayoutUnit pageLogicalHeight() const override { return m_computedColumnHeight; }
virtual LayoutUnit pageLogicalTopForOffset(LayoutUnit offset) const override;
virtual LayoutUnit logicalHeightOfAllFlowThreadContent() const override { return logicalHeightInFlowThread(); }
virtual void repaintFlowThreadContent(const LayoutRect& repaintRect) override;
virtual void collectLayerFragments(LayerFragments&, const LayoutRect& layerBoundingBox, const LayoutRect& dirtyRect) override;
virtual void adjustRegionBoundsFromFlowThreadPortionRect(LayoutRect& regionBounds) const override;
virtual VisiblePosition positionForPoint(const LayoutPoint&, const RenderRegion*) override;
virtual const char* renderName() const override;
LayoutUnit calculateMaxColumnHeight() const;
LayoutUnit columnGap() const;
LayoutUnit columnLogicalLeft(unsigned) const;
LayoutUnit columnLogicalTop(unsigned) const;
LayoutRect flowThreadPortionRectAt(unsigned index) const;
LayoutRect flowThreadPortionOverflowRect(const LayoutRect& flowThreadPortion, unsigned index, unsigned colCount, LayoutUnit colGap);
LayoutUnit initialBlockOffsetForPainting() const;
enum ColumnIndexCalculationMode {
ClampToExistingColumns, // Stay within the range of already existing columns.
AssumeNewColumns // Allow column indices outside the range of already existing columns.
};
unsigned columnIndexAtOffset(LayoutUnit, ColumnIndexCalculationMode = ClampToExistingColumns) const;
void setAndConstrainColumnHeight(LayoutUnit);
// Return the index of the content run with the currently tallest columns, taking all implicit
// breaks assumed so far into account.
unsigned findRunWithTallestColumns() const;
// Given the current list of content runs, make assumptions about where we need to insert
// implicit breaks (if there's room for any at all; depending on the number of explicit breaks),
// and store the results. This is needed in order to balance the columns.
void distributeImplicitBreaks();
LayoutUnit calculateBalancedHeight(bool initial) const;
unsigned m_computedColumnCount; // Used column count (the resulting 'N' from the pseudo-algorithm in the multicol spec)
LayoutUnit m_computedColumnWidth; // Used column width (the resulting 'W' from the pseudo-algorithm in the multicol spec)
LayoutUnit m_computedColumnHeight;
LayoutUnit m_availableColumnHeight;
bool m_columnHeightComputed;
// The following variables are used when balancing the column set.
LayoutUnit m_maxColumnHeight; // Maximum column height allowed.
LayoutUnit m_minSpaceShortage; // The smallest amout of space shortage that caused a column break.
LayoutUnit m_minimumColumnHeight;
// A run of content without explicit (forced) breaks; i.e. a flow thread portion between two
// explicit breaks, between flow thread start and an explicit break, between an explicit break
// and flow thread end, or, in cases when there are no explicit breaks at all: between flow flow
// thread start and flow thread end. We need to know where the explicit breaks are, in order to
// figure out where the implicit breaks will end up, so that we get the columns properly
// balanced. A content run starts out as representing one single column, and will represent one
// additional column for each implicit break "inserted" there.
class ContentRun {
public:
ContentRun(LayoutUnit breakOffset)
: m_breakOffset(breakOffset)
, m_assumedImplicitBreaks(0) { }
unsigned assumedImplicitBreaks() const { return m_assumedImplicitBreaks; }
void assumeAnotherImplicitBreak() { m_assumedImplicitBreaks++; }
LayoutUnit breakOffset() const { return m_breakOffset; }
// Return the column height that this content run would require, considering the implicit
// breaks assumed so far.
LayoutUnit columnLogicalHeight(LayoutUnit startOffset) const { return ceilf(float(m_breakOffset - startOffset) / float(m_assumedImplicitBreaks + 1)); }
private:
LayoutUnit m_breakOffset; // Flow thread offset where this run ends.
unsigned m_assumedImplicitBreaks; // Number of implicit breaks in this run assumed so far.
};
Vector<ContentRun, 1> m_contentRuns;
};
} // namespace WebCore
SPECIALIZE_TYPE_TRAITS_RENDER_OBJECT(RenderMultiColumnSet, isRenderMultiColumnSet())
#endif // RenderMultiColumnSet_h
|